外源亚精胺缓解黄瓜幼苗高温胁迫伤害的生理调节机制和蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温胁迫对农业生产的威胁是一个全球性的热点问题,严重影响着作物的生育和产量。黄瓜(Cucumis sativus L.)是世界性的重要蔬菜作物,也是我国设施栽培的主要蔬菜种类之一。然而,在我国大部分地区的保护设施中,正午40℃以上的高温经常出现,高温热害已经成为黄瓜夏秋露地与保护地栽培的主要限制因子。多胺(Polyamines, PAs)是生物代谢过程中产生的一类具有生物活性的低分子量脂肪族含氮碱,广泛作用于植物生长、形态建成、衰老和对逆境胁迫的响应。多胺的种类主要包括二胺类的腐胺(Putrescine, Put)、三胺类的亚精胺(Spermidine, Spd)和四胺类的精胺(Spermine, Spm)。近年来,通过使用外源多胺类物质来调节和介导植物各种胁迫耐性的研究越来越多。然而,关于多胺调节蔬菜作物高温胁迫的生理研究比较少见,尤其是蛋白质组学方面的研究尚为空白。
     本研究以黄瓜品种‘津春4号’为试材,在人工气候箱内,采用营养钵内石英砂浇灌营养液栽培的方式,通过叶面喷施外源1mM Spd,测定了高温胁迫(42℃/32℃)下黄瓜植株生长、光合与荧光特性、叶绿体超微结构、膜脂过氧化程度、活性氧清除酶活性和同工酶表达、抗坏血酸-谷胱甘肽循环、氮素吸收代谢等方面的变化,研究了黄瓜叶片可溶性蛋白变化和蛋白质组功能、mRNA转录水平的变化,探讨了外源Spd提高黄瓜植株耐热性的生理和分子生物学机制。主要研究结果如下:
     1.外源Spd对高温胁迫下黄瓜幼苗生长和内源多胺含量的影响:高温胁迫下,黄瓜幼苗生长受到明显抑制,株高、茎粗、地上部干鲜重、地下部干鲜重及主要功能叶的叶面积均显著降低,外源Spd处理可明显缓解高温胁迫对黄瓜幼苗生长的抑制,提高植株生物量的积累。高温胁迫下,黄瓜幼苗叶片中游离态、结合态和束缚态Put含量显著降低,而游离态、结合态和束缚态Spd和Spm含量显著升高。从多胺种类上来看,黄瓜幼苗体内三种形态Put均向Spd和Spm的转化可能是黄瓜幼苗(至少是该品种)对高温胁迫的一种适应性反应。喷施外源Spd处理促进叶片中Put和Spd含量的升高,而Spm含量略有下降,由于Put是Spd的上游产物而Spm是Spd的下游产物,外源Spd的作用即趋向于维持高水平的内源Spd含量。
     2.外源Spd保护高温胁迫下黄瓜幼苗的光合能力:与常温对照相比,高温胁迫下叶绿素含量和净光合速率显著下降,气孔导度和蒸腾速率升高,PS Ⅱ潜在最大光化学效率及实际光化学效率亦明显下降;高温胁迫下施用外源Spd有助于提高叶片光合色素的含量,维持较高的净光合速率及PS Ⅱ光化学效率。单纯高温胁迫下,叶绿体内淀粉粒膨大并大量积累、基粒片层受到挤压且数目相对减少,嗜锇体大量出现;高温胁迫下喷施外源Spd,叶绿体超微结构几乎未受到影响。Spd对叶绿体结构与功能的维持和保护,可能是其改善黄瓜幼苗在高温胁迫下光合能力的主要原因,由此而增强植株对高温逆境的适应性。外源Spd可有效抑制高温胁迫下淀粉的水解,使糖分趋于向合成方向,积累更多的干物质。
     3.外源Spd增强高温胁迫下黄瓜幼苗的抗氧化能力:高温胁迫下,黄瓜幼苗叶片膜脂过氧化程度显著加剧,表现为叶片相对电导率、MDA含量及脂氧合酶(LOX)活性以及ROS水平(包括O2和H202含量)均显著上升;而外源Spd处理可明显抑制高温胁迫下幼苗叶片的膜脂过氧化损伤,降低ROS水平,减少电解质渗漏和MDA积累。高温胁迫下,SOD活性大幅下降,POD和APX活性先升高后降低,CAT活性先降低后升高,这些酶的同工酶也发生明显的变化;外源Spd显著增强了高温胁迫下SOD活性,POD、CAT和APX活性也有不同程度的提高,除对POD同工酶影响较小外,外源Spd明显促进了其他保护酶同工酶的表达。AsA-GSH循环中,高温胁迫诱导MDAR.DHAR和GR活性升高,还原型抗氧化剂AsA和GSH含量上升且氧化还原比例发生变化;外源Spd处理进一步提高MDAR.DHAR和GR活性,在促进还原型抗氧化剂AsA和GSH绝对含量升高的同时,还提高了还原型抗氧化剂所占比例(AsA/DHA、GSH/GSSG)。黄瓜幼苗在高温胁迫下启动自身的抗氧化系统以抵御高温造成的氧化伤害,但随着胁迫时间的延长,这种抵御逐渐减弱,而外源Spd能显著降低高温胁迫造成的膜脂过氧化伤害,提高抗氧化酶活性并增强同工酶表达,活化AsA-GSH循环,促进了黄瓜幼苗整体抗氧化能力的提高。
     4.外源Spd对高温胁迫下黄瓜幼苗氮素和其他代谢的影响:高温胁迫下,幼苗根系中N03--N含量升高但随胁迫处理时间的延长向地上部运输受阻,根系中硝酸还原酶(NR)钝化,叶片中NR活性升高,根系和叶片中NH4+-N含量大幅上升;外源Spd能有效调节高温胁迫下氮素代谢的平衡,促硝抑铵,提高NR活性。脯氨酸是一种重要的含氮化合物,逆境条件下较高的脯氨酸水平可增强植株的渗透调节能力,有助于维持植株体内的水分平衡。高温胁迫下,黄瓜幼苗叶片内脯氨酸含量升高,外源Spd进一步促进其含量的升高,从而为黄瓜幼苗在高温胁迫下生长发育提供额外的渗透调节能力。高温胁迫下,质膜蛋白含量降低而液泡膜蛋白含量升高,质子泵活性略有升高;外源Spd可进一步提高高温胁迫下黄瓜幼苗叶片质膜和液泡膜H+-ATPase,而液泡膜H+-PPase活性略有下降。外源Spd促进H+-ATPase的活性,从而稳定膜结构,建立跨膜质子推动力△pH,促进ATP的产生和维持细胞质酸碱平衡,缓解了高温胁迫对黄瓜幼苗生长的抑制。
     5.外源Spdd对高温胁迫下黄瓜幼苗叶片蛋白质组和基因表达的影响:高温胁迫初时,幼苗叶片可溶性蛋白含量升高,随胁迫时间延长至5d后,叶片可溶性蛋白含量开始下降,外源Spd可显著提高叶片可溶性蛋白的含量。利用双向电泳(2-DE)和质谱分析(LC-ESI-MS/MS)的技术,比较常温对照和高温胁迫及外源Spd处理的幼苗叶片2-DE图谱,共发现62个差异表达蛋白点,其中有60个蛋白点成功得以MS鉴定。经功能分类后显示,25个蛋白点与光合作用有关,16个蛋白点涉及能量与物质代谢,6个蛋白点为分子伴侣,6个蛋白点与胁迫防御有关,7个蛋白点与蛋白质或核酸的生物合成相关,另有2个蛋白点因MS鉴定得分较低或EST功能尚不明确而被归为功能未知蛋白。主要差异蛋白有Rubisco大/小亚基、Rubisco活化酶(RCA)、转酮醇酶(TK)、磷酸核酮糖激酶(PRK)、热激蛋白70(HSP7)、分子伴侣60(CPN60)、Cu/Zn-SOD、类胡萝卜素相关蛋白、蛋白翻译延长因子(EF-Ts和EF-G)等。高温胁迫对光合作用、能量和物质代谢相关蛋白的影响最为明显,而外源Spd处理在蛋白质水平上表现出积极的保护作用,尤其是显著提高了部分高温下调蛋白(如Rubisco大/小亚基和Cu/Zn-SOD)的表达。光合相关基因(RbcL、RbcS、RCA、OEC23和OEC33等)、抗氧化相关基因(SOD、POD和Car等)和分子伴侣(Hsp70、Cpn60和Hsp20)都在nRNA水平对高温胁迫做出明显反应;外源Spd处理对部分基因的表达表现出明显的调控作用。除PRK、CPN60和sHSP外,大多数重要的功能蛋白受高温影响和受外源Spd诱导的mRNA转录特性与蛋白积累特性相一致。
Heat stress due to increased temperature is an agricultural problem in many areas in the world, which seriously affects plant growth and development and may lead to a drastic reduction in economic yield. Cucumber (Cucumis sativus L.) is one of the important vegetable crops worldwide, and also is the main type of vegetables cultivated in protected condition in China. However, in most parts of our protection facilities, the midday temperatures often above40℃, heat injury has become a main limiting factor in summer-autumn cucumber cultivation in open and protected field. Polyamines (PAs) are low molecular weight aliphatic amines with biological activity produced during metabolism, necessary for normal cell growth, morphogenesis, aging and stress response, mainly including putrescine (Put), spermidine (Spd) and spermine (Spm). In recent years, growing interest has focused on the subject that using exogenous PAs to regulate and mediate a variety of stress tolerance of plants. The information between PAs and high temperature stress in plant physiology is very limited; especially proteomics study is still blank.
     In the present study, the more heat-resistant cucumber cultivar cv.'Jinchun No.4'is used in climate chambers and hydroponics. By using exogenous Spd (1mM) foliar spray, we determined the effects of high temperature stress (42℃/32℃) on the plant growth, photosynthesis and chlorophyll fluorescence, chloroplast ultrastructure, membrane lipid peroxidation, antioxidant enzymes activity and isozymes, ascorbate-glutathione cycle, nitrogen metabolism and so on. We also investigated on changes of soluble protein, proteomics and mRNA transcription level in leaves of cucumber seedlings to explore the molecular mechanism why exogenous Spd increased the heat resistance of cucumber seedlings. The main results are as follows:
     1. Effects of exogenous Spd on growth and endogenous poyamines contents of cucumber seedlings under high temperature stress:under high temperature stress, seedling growth was inhibited, plant height, stem diameter, fresh and dry weight, and leaf area are significantly decreased, exogenous Spd could availably alleviate the heat damage on growth, increase plant biomass accumulation. Upon high temperature stress, the content of free, soluble conjugated and insoluble bound Put was significantly decreased, and the the content of free, soluble conjugated and insoluble bound Spd and Spm were significantly increased by high temperature stress. From the species of PAs, the conversion from Put to Spd and Spm was likely a kind of adaptive response to heat stress for cucumber seedlings. Exogenous Spd promoted the contents of Put and Spd, but a slight inhibitory effect on Spm content. That is means higher level of Spd, because Put is the precursor of Spd and Spm is the downstream product of Spd. Exogenous Spd promoted high levels of endogenous Spd may contribute to enhanced heat tolerance of cucumber seedlings.
     2. Exogenous Spd increased the photosynthetic characteristics of cucumber seedlings under high temperature stress:Compared with normal temperature, pigment contents and net photosynthetic rate were decline, stomatal conductance and transpiration rate were increased under high temperature, PS Ⅱ photochemical efficiency was also decreased significantly; application of exogenous Spd under high temperature was helpful to improve the pigment contents, maintain a higher photosynthetic rate and photochemical efficiency. Without application of Spd, high temperature stress induced the accumulation of swollen starch grains in chloroplasts, the extrusion and reduction of grana lamellae, and the ubiquitous appearance of osmiophilic granules. However, the chloroplast ultrastructure of seedlings treated with spermidine was only very mildly affected by high temperatures. Spd protects the organelle structure and photochemical activity of chloroplasts, which is fairly important in the adaptation of cucumber seedlings against high temperature stress. Exogenous Spd also effectively inhibited the hydrolysis of starch under high temperature stress, so the sugars tend to synthesis and accumulated more dry matter.
     3-Exogenous Spd improved the antioxidant capacity for ROS cleaning in leaves of cucumber seedlings under high temperature stress:Under high temperature stress, membrane lipid peroxidation was significantly increased in leaves of cucumber seedlings, showing the relative conductivity, MDA content and lipoxygenase (LOX) activity were significantly increased, ROS levels (including O2production rate and H2O2content) were remarkably raised. Exogenous Spd treatment significantly inhibited the oxidative damage of membrane lipid in leaves under high temperature stress. Expose to high temperature, SOD activity decreased, POD and APX activity first increased and then decreased, CAT activity first decreased and then increased, the isozymes of these enzymes also changed accordingly; Exogenous Spd treatment significantly promoted the activities of SOD, and the POD, CAT and APX activities were also enhanced to varying degrees. Apart from Spd had little effect on POD isozymes, the expression of other kinds of protective isozymes were significantly enhanced by Spd. In AsA-GSH cycle, MDAR, DHAR and GR activity, and reduced form contents of AsA and GSH were increased under high temperature stress. Exogenous Spd treatment significantly promoted the activities of MDAR, DHAR and GR, and the contents of AsA and GSH under high temperature stress. In particular, the ratio of AsA/GSH and GSH/GSSG were also further increased. Cucumber seedlings have their own antioxidant system against oxidative stress caused by high temperatures, this resistance gradually weakened with the extension of stress time, but exogenous Spd could significantly reduce the lipid peroxidation caused by heat stress, improve antioxidant enzyme activity and enhance isozymes expression, activate the AsA-GSH cycle, so the total antioxidant capacity of cucumber seedlings for was totally improved.
     4-Effects of exogenous Spd on nitrogen and other metabolism in leaves of cucumber seedlings under high temperature stress:Under high temperature stress, the nitrate content in roots was increased but transport to leaves was blocked, nitrate reductase (NR) in roots was deactivated, the ammonium content in both roots and leaves was largely increased. The exogenous Spd upon high temperature were helpful to regulate the balance of nitrogen metabolism, promoting nitrate, suppressing ammonium and activating the NR. Spd could availably modulate nitrogen metabolism in cucumber seedlings under high temperature stress. Proline is also a kind of important nitrogen-containing compound, the higher level of proline can enhance the ability of osmotic adjustment to maintain the water balance in plants. Proline content in leaves was increased by high temperature treatment, exogenous Spd promoted the enhancement. High temperature induced plasma membrane protein content decreased and tonoplast membrane protein content increased, proton pumps activity were enhanced; exogenous Spd could further improve activity of H+-ATPase but not H+-PPase to stabilize the membrane structure and establish the transmembrane proton driver△pH, promote the generation of ATP and maintenance of cytoplasmic acid-base balance.
     5. Effects of exogenous Spd on proteomics changes and mRNA accumulation patterns in leaves of cucumber seedlings under high temperature stress:At the beginning of heat stress, the soluble protein content in leaves was increased, but with the stress time extended to5days, the soluble protein content started to decline, exogenous Spd increased soluble protein. By using the two-dimensional electrophoresis (2-DE) and mass spectrometry (LC-ESI-MS/MS) technology, compared the2-DE protein profiles of treatments of high temperature or exogenous Spd with control, we found62differentially expressed proteins,60spots were successfully been identified by MS. Functional classification revealed that25spots related to photosynthesis,16spots involved in energy and material metabolism,6spots for the molecular chaperone protein,6spots in defense and stress respond and7spots related to protein or nucleic acid biosynthesis, and another two spots identified by MS with too lower scores or EST function unknown protein. The main difference proteins such as Rubisco large/small subunit, Rubisco activase (RCA), Transketolase (TK), phosphate ribulose kinase (PRK), heat shock protein70(HSP70), chaperonin60(CPN60), Cu/Zn-SOD, carotenoids associated protein, protein translation elongation factor (EF-Ts and EF-G) and so on. These proteins related to photosynthesis, energy and metabolism were most seriously affected by high temperature stress. Exogenous Spd was helpful to inhibit parts of the down-regulated proteins under high temperature conditions, showing a positive protective role at protein level. Photosynthesis-related genes (RbcL, RbcS, RCA, OEC23and OEC3, etc.), antioxidant-related genes (SOD, POD and Car, etc.), molecular chaperones (Hsp70, Cpn60, and Hsp20) were prominently response to high temperature stress at mRNA level; exogenous Spd showed significant regulatory role on the expression of some genes. The mRNA transcriptional accumulation patterns of several important high-abundance proteins under high temperatures and/or treated with exogenous Spd were consistent with the proteomics accumulation patterns.
引文
1. 白春礼,王琛,林璋.阳离子诱导DNA有序凝聚体的精细结构的研究.中国科学基金,1999,5:309-312
    2. 陈坤明,宫海军,王锁民.植物谷胱甘肽代谢与环境胁迫.西北植物学报,2004,24(6):1119-1130
    3. 陈立松,刘星辉.水分胁迫对荔枝叶片糖代谢的影响及其与抗旱性的关系.热带作物学报,1999,20(2):31-36
    4. 陈因,方大惟.外源脯氨酸对受短期高温胁迫的蓝藻固氮活性的影响.南京农业大学学报,1993,16(2):42-46
    5. 陈因.现代植物生理学试验指南.北京:科学出版社,1999
    6. 程华,闫静辉.蛋白质芯片技术研究进展.生物技术通报,2006,5:54-57
    7.程智慧,孟焕文,Julie DS, Stephen A.水分胁迫对番茄幼苗转化酶表达及糖代谢的影响.园艺学报,2002,29(3):278-279
    8. 戴尧仁.多胺及其在植物体内的生理作用.植物学通报,1988,5(2):69-76
    9. 丁鸿,邱东萍.蛋白质组学研究技术综述.江西农业学报,2008,20(8):88-90
    10.杜永臣.园艺作物高温逆境生理的研究进展.园艺学年评,1996,2:1-14
    11.段九菊.外源亚精胺提高黄瓜幼苗耐盐性的生理调节功能研究.博士学位论文.南京农业大学,2008
    12.范海延,李楠,苗青,郭海.植物应答生物胁迫的蛋白质组学研究进展.湖北农业科学,2009,48(12):3167-3171
    13.范华,冯双庆,赵玉梅.黄瓜、番茄冷害以及黄瓜温度预处理与多胺的相关性.中国农业大学学报,1996,1:108-112
    14.付振书,赵世杰,孟庆伟.高温强光下耐热性不同的两个甘蓝品种幼苗光合作用差异的研究.园艺学报,2005,32(1):25-29
    15.高俊杰,秦爱国,于贤昌.低温胁迫对嫁接黄瓜叶片抗坏血酸-谷胱甘肽循环的影响.园艺学报,2009,36(2):215-220
    16.高世杰,窦永喜,田波.基因组及蛋白质组学研究.动物医学进展,2005,26(4):107-110
    17.龚映雪.植物响应温度胁迫蛋白质组学研究进展.安徽农业科学,2010,38(32):18038-18040
    18.龚月桦,高俊凤.干旱胁迫下植物质膜功能蛋白研究现状.西北植物学报,2002,22(3):682-692
    19.郭丽红,陈善娜,龚明.钙对玉米幼苗谷胱甘肽还原酶活性的影响.植物生理学通讯,2002,38(2):115-117
    20.韩飞,王高.真核生物mRNA稳定性的控制机制.安徽农学通报,2007,13(11):27-29
    21.何晓明,林毓娥,陈清华.高温对黄瓜幼苗生长、脯氨酸含量及SOD酶活性的影响.上海交通大学学报(农业版),2002,20(1):30-33
    22.黄维玉,王亚来,袁林江.多胺对小麦离体叶片衰老的调节.植物学报,1990,32(2):125-132
    23.黄雪梅,宋松泉,傅家瑞.在蔗糖预培养诱导耐脱水性过程中黄皮胚轴的水分状态和可溶性蛋白含量的变化.植物生理与分子生物学报,2006,32(2):245-251
    24.贾永霞.外源亚精胺提高黄瓜幼苗低氧耐性胁迫的生理调节功能.博士学位论文.南京农业大学,2009:108-109
    25.简令成,孙龙华,孙德兰.小麦质膜及液泡膜的ATP酶活性在抗寒锻炼中的变化.实验生物学报,1983,16(2):133-145
    26.蒋琳,沈曾佑,张志良,颜季琼.多胺对裸大麦离体叶片活性氧代谢的影响.植物生理与分子生物学学报,1993,35(1):367-371
    27.李建建,郁继华,常雅君,徐晓昀,聂书明.高温胁迫对黄瓜幼苗叶片质膜透性及保护酶活性的影响.长江蔬菜,2007,9:59-61
    28.李建勇,卢钢,任彦.多胺在果实生长发育中的作用研究进展.果树学报,2005,22(3):256-260
    29.李健健,常雅君,郁继华.高温胁迫下黄瓜幼苗的某些光合特性和PSⅡ光化学活性的变化.植物生理学通讯,2007,43(6):1085-1088
    30.李太盛.多胺与植物激素.亚热带植物通讯,1999,28(2):66-69
    31.李文学,王震宇,张福锁,韩晓日.低温对缺钼冬小麦幼苗生长的影响Ⅱ对氮代谢的影响.植物营养与肥料学报,2001,7(1):88-92
    32.李应迪,李和平,肖冬林.高温胁迫下藓类植物游离脯氨酸含量的变化.吉首大学学报(自然科学版),2001,22(1):1-3
    33.李志亮,王刚.脯氨酸与植物抗渗透胁迫基因工程改良研究进展.河北师范大学学报,2005,29(4):403-407
    34.李忠光,郭颖,杨双梅,张陆启,余艳,赵义霞.热激诱导的玉米幼苗耐热性及其与脯氨酸的关系.广西植物,2010,30(3):403-406
    35.林定波,刘祖祺,张石城.多胺对柑桔抗寒力的效应.园艺学报,1994,3:222-226
    36.林振武,孙慧珍.亚精胺和低pH对小麦叶片硝酸还原酶活力的影响.植物生理学通讯,1986,4:37-39
    37.刘东焕,赵世伟,高荣孚,张佐双,姜闯道,刘玉军.植物光合作用对高温的响应.植物研究,2002,22(2):205-212
    38.刘惠芬,高玉葆,张强,李欣,李长林.不同种群草幼苗对土壤干早胁迫的生理生态响应.南开大学学报,2004,12(4):105-110
    39.刘俊,刘友良.盐胁迫下大麦幼苗多胺的种类和状态与多胺氧化酶活性的关系.植物生理与分子生物学学报,2004,30(2):141-146
    40.刘鹏,杨玉爱.硼钼胁迫对大豆叶片硝酸还原酶与硝态氮的影响.浙江大学学报(农业与生命科学版),2000,26(2):151-154
    41.刘书仁,郭世荣,程玉静,刘超杰,王丽萍,束胜.外源脯氨酸对高温胁迫下黄瓜幼苗叶片AsA-GSH循环和光合荧光特性的影响.西北植物学报,2010,30(2):309-316
    42.刘书仁.外源脯氨酸对高温胁迫下黄瓜幼苗生理代谢的影响.硕士学位论文.南京农业大学,2009:48-49
    43.刘小林.蛋白质组学及其研究进展.安徽农业科学,2007,35(31):9810-9812
    44.刘洋,刘琳,晏月明.蛋白质组学在农业生物科学研究中的应用.生物技术通报,2008,3:1-7
    45.吕金印,高俊凤.水分胁迫对小麦根质膜H+-ATPase活性与H+分泌的影响.西北植物学报,1996,16(2):101-106
    46.罗群,唐自慧,李路娥,马丹炜.干旱胁迫对9种菊科杂草可溶性蛋白的影响.四川师范大学学报(自然科学版),2006,29(3):356-359
    47.马德华,庞金安,霍振荣,李淑菊.高温对黄瓜幼苗膜脂过氧化作用的影响.西北植物学报,2000,20(1):141-144
    48.马德华,庞金安,霍振荣.黄瓜对不同温度逆境的抗性研究.中国农业科学,1999,32(5):28-35
    49.马德华,孙其信.温度逆境对不同品种黄瓜幼苗膜保护系统的影响.西北植物学报,2001,21(4):656-661
    50.马玉华,王永红,王荔,万明长,邹养军.高温胁迫对苹果叶片膜脂过氧化及抗坏血酸的影响.贵州农业科学,2010,38(8):176-178
    51.毛伟华,龚亚明,宋兴舜,夏晓剑,师恺,周艳虹,喻景权.黄瓜cDNA芯片的构建及其在黄瓜缺镁胁迫下基因差异表达研究中的应用.园艺学报,2006,33(4):767-772
    52.孟令波,李淑敏.高温胁迫对黄瓜生理生化过程的影响.哈尔滨学院学报,2003,24(10):121-125
    53.孟令波,秦智伟,李淑敏.高温胁迫对黄瓜产量和品质的影响.中国蔬菜,2004,5:4-6
    54.孟庆芳,张养军,王京兰,蔡耘,钱小红.复杂生物体系中蛋白质高效分离分析技术的新进展.色谱,2005,23(1):26-31
    55.缪曼珉.黄瓜(Cucumis sativus L.)热伤害与热适应生理机制及耐热栽培技术研究.博士学位论文.南京农业大学,2000
    56.潘秋红,郑艳军,刘艳艳,张艳芳,黄卫东.在耐热性诱导中豌豆叶片过氧化氢和水杨酸含量与质膜ATP酶活性的变化及相互关系.植物生理与分子生物学学报,2007,33(5):425-434
    57.潘瑞炽.植物生理学(第6版).北京:高等教育出版社,2008
    58.庞金安,马德华,张延军.高温处理对黄瓜幼苗蛋白质含量的影响.天津农业科学,2001,3:10-13
    59.彭永宏,章文才.林猴桃叶片耐热性指标研究.武汉植物学研究,1995,13(1):70-74
    60.任彩虹,张丽萍,闫桂琴,郜刚.高温胁迫对马铃薯幼苗抗氧化酶系统和叶绿素含量的影响.科技情报开发与经济,2007,17(14):181-183
    61.阮松林,童建新,赵杭苹.植物响应逆境胁迫蛋白质组学研究进展.杭州农业科技,2007,2:15-18
    62.上海植物生理学会.植物生理学实验手册.上海:上海科学技术出版社,1985:181-182
    63.沈伟其.测定水稻叶片叶绿素含量的混合液提取法.植物生理学通迅,1988,3:62-64
    64.生吉萍,申琳,罗云波.果蔬成熟和衰老中的重要酶-脂氧合酶.果树科学,1999,16(1):72-77
    65.石庆华,李木英,许锦彪,谭雪明.高温胁迫对早稻根系质膜TPase活性及NH4+吸收的影响.作物学报,2006,32(7):1044-1048
    66.宋子健,李良霞,李建龙.高温胁迫对高羊茅草坪草氮代谢的影响.贵州农业科学,2007,35(6):15-18
    67.孙存华,杜伟,陈湘玲,徐新娜,张亚红,孙东,施剑杰.聚乙二醇渗透胁迫对藜幼苗叶片干旱诱导蛋白和可溶性蛋白的影响.安徽农业科学,2009,37(10):4373-4374,4408
    68.孙艳,徐伟君,范爱丽.高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响.应用生态学报,2006,17(3):399-402
    69.孙艳,徐伟君.高温胁迫对不同黄瓜品种幼苗中抗坏血酸代谢的影响.西北农业学报,2007,16(6):164-169
    70.谭巍巍,李凤山,张玉霞,王艳树,杜晓艳,唐艳梅.氯化钠和碳酸钠对芦笋的胁迫效应比较.中国农学通报,2006,22(7):322-25
    71.汤章城.逆境条件下植物脯氨酸的累积及其可能的意义.植物生理学通讯,1984,1:15-21
    72.田福平,王锁民,郭正刚.紫花苜蓿脯氨酸含量和含水量、单株干质量与抗早性的相关性研究.草业科学,2004,21(1):3-6
    73.田敏,饶龙兵,李纪元.植物细胞中的活性氧及其生理作用.植物生理学通迅,2005,41(2):235-241
    74.田寿乐,周俊义.不同贮藏温度与鲜枣果实中保护酶及脂氧合酶活性变化的关系.河北农业大学学报,2006,29(1):36-49
    75.涂三思,秦天才.高温胁迫对黄姜叶片脯氨酸、可溶性糖和丙二醛含量的影响.湖北农业科学,2004,4:98-100
    76.汪俏梅,郭得平.植物激素与蔬菜的生长发育.北京:农业出版社,2002
    77.汪天,李娟,郭世荣,高洪波,王素平.外源多胺对低氧胁迫下黄瓜幼苗根系生长及H+-ATP酶和H+-焦磷酸酶活性的影响.植物生理与分子生物学学报,2005,31(6):637-642
    78.王爱国,罗广华.植物的超氧白由基与羟胺反应的定量关系.植物生理学通讯,1990,26(6):55-57
    79.王宝山.植物生理学.北京:科学出版社,2003:275-279
    80.王玮,邹琦.水分胁迫下外源ABA对玉米幼苗根叶渗透调节的影响.植物生理学通讯,2000,36:523-526
    81.王学,施国新,马广岳,徐勤松,Rafeek K,胡金朝.外源亚精胺对荇菜(Nymphoides peltatum)抗Hg2+胁迫能力的影响.植物生理与分子生物学学报,2004,30(1):69-74
    82.王学,施国新,徐勤松,马广岳,拉非克,张小兰,周红卫.外源亚精胺缓解荇菜(Nymphoides peltatum)Cr6+毒害的生理研究.环境科学学报,2003,23(5):689-693
    83.王延书,王学义,郁松林,孟凤,肖年湘,王春飞.水杨酸与热锻炼对葡萄幼苗可溶性糖、游离氨基酸和叶绿素荧光参数的影响.西北农业学报,2007,16(4):29-33
    84.王颖,何生根,伍春莲,孙敏.多胺代谢和种子萌发.种子,2003,128(2):53-56
    85.王忠.植物生理学(第1版).北京:中国农业出版社,2000
    86.韦建玉,王军,顾明华,廖江雄,邹凯.硼对烤烟碳氮代谢的影响研究.广西烟草学会2006年度学术年会论文集,2007,1:30-33
    87.翁晓燕,蒋德安,毛伟华.Rubiseo活化酶及其对Rubiseo的调节作用.植物生理学通讯,1998,34(1):69-73
    88.吴韩英,寿森炎,朱祝军.高温胁迫对甜椒光合作用和叶绿素荧光的影响.园艺学报,2001,28(6):517-521
    89.萧顺元,赵大中.柑桔叶片性生理生化指标初探.果树科学,1990,7(4):217-220
    90.谢锦云,李小兰,陈平,曹梦林.温敏核不育水稻花药蛋白质组初步分析.中国生物化学与分子生物学报,2003,19(2):215-221
    91.徐克章.保护地黄瓜叶片光合作用温度特性的研究.园艺学报,1993,20(1):51-55
    92.许锦彪,曹云英,石庆华,李木英.高温胁迫对早稻根系质膜ATPase活性及NH4+吸收速率的影响.种子,2006,25(10):6-8,12
    93.许祥明,叶和春,李国凤.脯氨酸代谢与植物抗渗透胁迫的研究进展.植物学通报,2000,17(6):536-542
    94.许兴,杨涓,郑国琦,徐兆桢,魏玉清.盐胁迫对枸杞叶片糖代谢及相关酶活性的影响研究.中国生态农业学报,2006,14(2):46-48
    95.杨运英,杨暹.温度对芥蓝幼苗叶片内源多胺含量的影响.华南农业大学学报,2002,3:9-12
    96.于方明,刘可慧,荣湘民,刘强,朱红梅,彭建伟,谢桂先.生长调节剂对春玉米氮素代谢关键酶活性的影响.生态环境,2007,16(4):1253-1256
    97.曾斌,王飞娟,朱诚,孙宗修.AsA-GSH循环对水稻突变体耐汞性的作用.作物学报,2008,34(5):823-830
    98.张国,王玮,邹琦.Rubisco活化酶的分子生物学.植物生理学通讯,2004,40(5):633-637
    99.张宏一.蛋白质组学研究技术及其进展.生物技术通报,2005,4:31-35
    100.张润花,郭世荣,樊怀福.外源亚精胺对盐胁迫下黄瓜植株氮化合物含量和硝酸还原酶活性的影响.武汉植物学研究,2006,24(4):381-384
    101.张显强,罗在柒,唐金刚,卢文芸,乙引.高温和干旱胁迫对鳞叶藓游离脯氨酸和可溶性糖含量的影响.广西植物,2004,24(6):570-573
    102.张振贤,艾希珍,张福墁.蔬菜作物光合作用研究进展.园艺学报,2001,28(增刊):627-632
    103.赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展.植物学通报,1999,16(5):540-546
    104.赵江涛,李晓峰,李航,徐睿忞.可溶性糖在高等植物代谢调节中的生理作用.安徽农业科学,2006,34(24):5423-6425,6427
    105.赵晋锋,余爱丽,朱晶莹,王高鸿,赵根友.玉米s-腺苷甲硫氨酸合成酶基因(SAMS)逆境胁迫下的表达分析.河北农业大学学报,2010,33(5):13-16
    106.郑永华,李三玉,席芳,苏新国,易云波.多胺与枇杷果实冷害的关系.植物学报,2000,8:824-827
    107.中国科学院上海植物生理研究所.现代植物生理学实验指南.北京:科学出版社,1999:303
    108.周莉娟,叶陈亮.高温胁迫对黄瓜幼苗N素及C素代谢的影响.福建农业大学学报,1999,28(3):289-293
    109. Aebi H. Catalase in vitro. Methods in enzymology, New York:Academic Press,1984,105:121-126
    110. Agrawal GK, Rakwal R, Yonekura M, Kubo A, Saji H. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics,2002,2:947-959
    111. Ahn IP, Kim S, Choi WB, Lee YH. Calcium restores prepenetration morphogenesis abolished by polyamines in colletotrichum gloeosporioides infecting red pepper. FEMS microbiology letters, 2003,227:237-241
    112. Ahsan N, Lee DG, Lee SH, Kang KY, Kim JS, Lee BH. Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere,2007,67:1182-1193
    113. Ait B E. Protective enzymes against reactive oxygen species during ripening of tomato fruits in response to low amounts of UV-C. Functional Plant Biology,2001,28:785-791
    114. Alcazar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF. Polyamines:molecules with regulatory functions in plant abiotic stress tolerance. Planta,2010,231: 1327-1249
    115. Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP. Protective role of antioxidant enzymes under high temperature stress. Plant Science,2006,171:382-388
    116. Amme S, Matros A, Schlesier B, Mock HP. Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology. Journal of Experimental Botany,2006,57: 1537-1543
    117. An L, Liu G, Zhang M, Chen T, Liu Y, Feng H, Xu S, Qiang W, Wang X. Effect of enhanced UV-B radiation on polyamine content and membrane permeability in cucumber leaves. Russian Journal of Plant Physiology,2004,51:658-662
    118. Anderson M, Prasad T, Stewart C. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant physiology,1995,109:1247-1254
    119. Anguillesi M, Floris C, Grilli I, Meletti P. Metabolism in wheat seed dormancy:polyamine content during early germination. Biochem Physiol Pflanzen,1978,173:340-346
    120. Antony T, Thomas T, Shirahata A. Selectivity of polyamines on the stability of RNA-DNA hybrids containing phosphodiester and phosphorothioate oligo deoxyribonucleotides. Biochemistry,1999, 38:10775-10784
    121. Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annual review of plant biology,2004,55:373-399
    122. Apse M, Aharon G, Snedden W, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science,1999,285:1256-1262
    123. Arakawa N, Tsutsumi, Sanceda NG, Kurata T. A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-1,10-phenanthroline. Agricultural and Biological Chemistry,1981, 45(5):1289-1290
    124. Astolfi S, Zuchi S, Passera C. Effect of cadmium on H+-ATPase activity of plasma membrane vesicles isolated from roots of different S-supplied maize (Zea mays L.) plants. Plant Science,2005, 169:361-368
    125. Athwal GS, Huber SC. Divalent cations and polyamines bind to loop 8 of 14-3-3 proteins, modulating their interaction with phosphorylated nitrate reductase. The Plant Journal,2002,29: 119-130
    126. Axelrod, Cheesbrough BT, Laakso S. Lipoxygenase from soybeans. Methods Enzymol.1981,71: 441-451
    127. Baier M, Dietz KJ. Protective function of chloroplast 2-cysteine peroxiredoxin in photosynthesis. Evidence from transgenic Arabidopsis. Plant physiology,1999,119:1407-1412
    128. Baier M, Dietz KJ. The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein: its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants. The Plant Journal,1997,12:179-190
    129. Baniwal S, Bharti K, Chan K, Fauth M, Ganguli A, Kotak S, Mishra S, Nover L, Port M, Scharf K. Heat stress response in plants:a complex game with chaperones and more than twenty heat stress transcription factors. Journal of biosciences,2004,29:471-487
    130. Bartoli CG, Pastori GM, Foyer CH. Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes Ⅲ and Ⅳ. Plant physiology,2000,123:335-342
    131. Beauchamp C, Fridovich I. Superoxide dismutase:improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry,1971,44(1):276-287
    132. Benavides MP, Gallego SM, Comba ME, Tomaro ML. Relationship between polyamines and paraquat toxicity in sunflower leaf discs. Plant Growth Regulation,2000,31:215-224
    133. Berggren K, Chernokalskaya E, Steinberg TH, Kemper C, Lopez MF, Haugland RP, Patton WF. Background-free, high sensitivity staining of proteins in one-and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis,2000,21: 2509-2521
    134. Blum A, Klueva N, Nguyen H. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica,2001,117:117-123
    135. Blumwald E, Poole R. Salt tolerance in suspension cultures of sugar beet:induction of Na+/H+ antiport activity at the tonoplast by growth in salt. Plant physiology,1987,83:884-892
    136. Bogeat-Triboulot MB, Brosche M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, Vinocur B, Witters E, Laukens K, Teichmann T. Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant physiology,2007,143:876-884
    137. Bouchereau A, Aziz A, Larher F, Martin TJ. Polyamines and environmental challenges:recent development. Plant Science,1999,140:103-125
    138. Boussiba S. Carotenogenesis in the green alga Haematococcus pluvialis:cellular physiology and stress response. Physiologia Plantarum,2000,108:111-117
    139. Bouvier F, Backhaus RA, Camara B. Induction and control of chromoplast-specific carotenoid genes by oxidative stress. Journal of Biological Chemistry,1998,273:30651-30662
    140. Bowler C, Montagu MV, Inze D. Superoxide dismutase and stress tolerance. Annual Review of Plant Biology.1992,43:83-116
    141. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry,1976,72:248-254
    142. Cabane M, Calvet P, Vincens P, Boudet AM. Characterization of chilling-acclimation-related proteins in soybean and identification of one as a member of the heat shock protein (HSP 70) family. Planta,1993,190:346-353
    143. Camacho-Cristobal JJ, Maldonado JM, Gonzalez-Fontes A. Boron deficiency increases putrescine levels in tobacco plants. Journal of Plant Physiology,2005,162:921-928
    144. Capell T, Bassie L, Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proceedings of the National Academy of Sciences of the United States of America,2004,101:99-109
    145. Chalker-Scott L. Do anthocyanins function as osmoregulators in leaf tissues. Advances in Botanical Research,2002,37:103-106
    146. Chang WP, Huang L, Shen M, Webster C, Burlingame AL, Roberts J K M. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant physiology,2000,122: 295-303
    147. Chattopadhayay MK, Tiwari BS, Chattopadhyay G, Bose A, Sengupta DN, Ghosh B. Protective role of exogenous polyamines on salinity-stressed rice(Oryza sativa L.) plants. Physiologia Plantarum, 2002,116:192-199
    148. Chen H H, Shen Z Y, Li P. Adaptability of crop plants to high temperature stress. Crop Science, 1982,22:719-724
    149. Cheng L, Zou Y, Ding S, Zhang J, Yu X, Cao J, Lu G. Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. Journal of Integrative Plant Biology,2009, 51:489-499
    150. Chourey K, Ramani S, Apte SK. Accumulation of LEA proteins in salt (NaCl) stressed young seedlings of rice (Oryza sativa L.) cultivar Bura Rata and their degradation during recovery from salinity stress. Journal of Plant Physiology,2003,160:1165-1174
    151. Cowley T, Walters DR. Local and systemic changes in arginine decarboxylase activity, putrescine levels and putrescine catabolism in wounded oilseed rape. New phytologist,2005,165:807-811
    152. Crafts-Brandner SJ, Salvucci ME. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proceedings of the National Academy of Sciences of the United States of America,2000,97:13430-13441
    153. Crafts-Brandner SJ, Salvucci ME. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant physiology,2002,129:1773-1784
    154. Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J. A proteomic analysis of cold stress responses in rice seedlings. Proteomics,2005,5:3162-3172
    155. DeRidder BP, Salvucci ME. Modulation of Rubisco activase gene expression during heat stress in cotton (Gossypium hirsutum L.) involves post-transcriptional mechanisms. Plant Science,2007,172: 246-254
    156. Deronde JA, Cress WA, Kruger GHJ, Strassern RJ, Vanstaden J. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. Journal of plant physiology,2004,161:1211-1224
    157. Deruere J, Romer S, Harlingue A, Backhaus RA, Kuntz M, Camara B. Fibril assembly and carotenoid overaccumulation in chromoplasts:a model for supramolecular lipoprotein structures. The Plant Cell Online,1994,6:119-126
    158. Dhaubhadel S, Chaudhary S, Dobinson KF, Krishna P. Treatment with 24-epibrassinolide, a brassinosteroid increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant molecular biology,1999,40:333-342
    159. Drolet G, Dumbroff E, Legge R, Thompson J. Radical scavenging properties of polyamines. Phytochemistry,1986,25:367-371
    160. Du CX, Fan HF, Guo SR, Tezuka T. Applying spermidine for differential responses of antioxidant enzymes in cucumber subjected to short-term salinity. Journal of the American Society for Horticultural Science,2010,135:18-24
    161. Duan HG, Yuan S, Liu WJ, Xi DH, Qing DH, Liang HG, Lin HH. Effects of exogenous spermidine on photosystem Ⅱ of wheat seedlings under water stress. Journal of Integrative Plant Biology,2006, 48:920-927
    162. Duan JJ, Li J, Guo SR, Kang YY. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. Journal of Plant Physiology,2008,165:1620-1635
    163. Fang J, Chai C, Qian Q, Li C, Tang J, Sun L, Huang Z, Guo X, Sun C, Liu M. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. The Plant Journal,2008,54:177-189
    164. Felix H, Harr J. Association of polyamines to different parts of various plant species. Physiologia Plantarum,1987,71:245-250
    165. Ferreira SL, Hjern K, Larsen M, Wingsle G, Larsen P, Fey S, Roepstorff P. Proteome profiling of Populus euphratica Oliv. upon heat stress. Annals of Botany,2006,98:361-372
    166. Flores H. Changes in polyamine metabolism in response to abiotic stress. Biochemistry and Physiology of Polyamines in Plants, Florida:CRC Press Inc.,1991:213-228
    167. Foolad M. Breeding for abiotic stress tolerances in tomato. Abiotic Stresses:Plant Resistance Through Breeding and Molecular Approaches. (New York):The Haworth Press Inc.,2005:613-684
    168. Foyer CH, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts:a proposed role in ascorbic acidmetabolism. Planta,1976,133:21-25
    169. Fridovich I. The biology of oxygen radicals. Science,1978,201:875-886
    170. Fukao Y, Hayashi M, Nishimura M. Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana. Plant and Cell Physiology,2002,43:689-697
    171. Gamejo JM, Camejo D, Jimenez A, Alarc6n JJ, Torres W, Sevilla F. Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Functional Plant Biology,2006,33:177-187
    172. Gao YS, Chen JS. Effects of La3+ on antioxidant system in wheat seedling leaves under salt stress. Journal of The Chinese Rare Earth Society,2005,23(4):490-495
    173. Giannopolitis C, Ries S. Superoxide dismutases Ⅱ Purification and quantitative relationship with water-soluble protein in seedlings. Plant physiology,1977,59:315-324
    174. Giavalisco P, Nordhoff E, Kreitler T, Klppel K D, Lehrach H, Klose J, Gobom J. Proteome analysis of Arabidopsis thaliana by two-dimensional gel electrophoresis and matrix-assisted laser desorption ionisation-time of flight mass spectrometry. Proteomics,2005,5:1902-1913
    175. Gong M, Chen, SN, Song, YQ, Li ZG. Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Australian journal of plant physiology,1997, 24:371-379
    176. Gong M, Li Y, Chen S. Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. Journal of Plant Physiology.1998,153:488-496
    177. Gottesman S. Proteases and their targets in Escherichia coli. Annual review of genetics,1996,30: 465-472
    178. Griffiths OW. Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry,1980,106:207-212
    179. Groppa MD, Benavides MP, Tomaro M L. Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress. Plant Science,2003,164:293-299
    180. Groppa MD, Benavides MP. Polyamines and abiotic stress:recent advances. Amino Acids,2008, 34(1):35-45
    181. Groppa MD, Tomaro ML, Benavides MP. Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Science,2001,161:481-488
    182. Guilioni L, Lecoeur J, Wry J. High temperature and water deficit may reduce seed number in field pea purely by decreasing plant growth rate. Functional Plant Biology,2003,30:1151-1164
    183. Guy CL, Haskell D. Detection of polypeptides associated with the cold acclimation process in spinach. Electrophoresis,1988,9:787-796
    184. Guye M, Vigh L, Wilson J. Polyamine titre in relation to chill-sensitivity in Phaseolus sp. Journal of Experimental Botany,1986,37:1036
    185. Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA. The natural polyamine spermine functions directly as a free radical scavenger. Proceedings of the National Academy of Sciences of the United States of America,1998,95:11140
    186. Han F, Chen H, Li X, Yang M, Liu G, Shen S. A comparative proteomic analysis of rice seedlings under various high-temperature stresses. Biochimica and Biophysica Acta (BBA)-Proteins and Proteomics,2009,1794:1625-1634
    187. Hare PD, Cress WA, Van Staden J. Dissecting the roles of osmolyte accumulation during stress. Plant Cell and Environment,1998,21:535-553
    188. Hare PD, Cress WA. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulator,1997,21:79-102
    189. Hashimoto M, Komatsu S. Proteomic analysis of rice seedlings during cold stress. Proteomics, 2007,7:1293-1302
    190. Havaux M. Carotenoids as membrane stabilizers in chloroplasts. Trends in Plant Science,1998,3: 147-151
    191. He L, Nada K, Tachibana S. Effects of spermidine pretreatment through the roots on growth and photosynthesis of chilled cucumber plants (Cucumis sativus L.). Journal-Japanese Society for Horticultural Science,2002,71:490-498
    192. Heckathorn SA, Downs CA, Coleman JS. Nuclear-encoded chloroplast proteins accumulate in the cytosol during severe heat stress. International Journal of Plant Sciences,1998,159:39-45
    193. Henkes S, Sonnewald U, Badur R, Flachmann R, Stitt M. A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. The Plant Cell Online,2001,13:535
    194. Hodges D, DeLong J, Forney C, Prange R. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta,1999,207:604-611
    195. Hossain MA, Asada K. Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiology,1984,25(1):85-92
    196. Howarth CJ.2005. Genetic improvements of tolerance to high temperature. Abiotic Stresses:Plant Resistance Through Breeding and Molecular Approaches, New York:Howarth Press Inc.,2005
    197. Howarth CJ. Abiotic stresses:plant resistance through breeding and molecular approaches. New York:Howarth Press Inc..
    198. Huang H, Villanueva V R. Inhibition of polyamine biosynthesis and seed germination in Picea abies. Phytochemistry,1992,31:3353-3356
    199. Huh GH, Lee SJ, Bae YS, Liu J, Kwak SS. Molecular cloning and characterization of cDNAs for anionic and neutral peroxidases from suspensioncultured-cells of sweet potato and their differential expression in response to stress. Molecular and General Genetics,1997,255:382-391
    200. Iba K. Acclimative response to temperature stress in higher plants:approaches of gene engineering for temperature tolerance. Plant Biology,2002,53:225-234
    201.Igarashi K, Ito K, Sakai Y, Ogasawara T, Kashiwagi K. Regulation of protein synthesis by polyamines. Advances in experimental medicine and biology.1988,250:315-323
    202. Imai KS, Hino K, Yagi K, Satoh N, Satou Y. Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo:towards a comprehensive understanding of gene networks. Development,2004,131:4047-4052
    203. Ishikawa A, Tanaka H, Nakai M, Asahi T. Deletion of a chaperonin 60 beta gene leads to cell death in the Arabidopsis lesion initiation 1 mutant. Plant and Cell Physiology,2003,44:255-263
    204. Jones PD, Wigley TML. Estimation of global temperature trends:what is important and what isn't. Climatic Change,2010,100:59-69
    205. Junesch U, Graber P. Influence of the redox state and the activation of the chloroplast ATP synthase on proton-transport-coupled ATP synthesis/hydrolysis. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1987,893:275-288
    206. Kacperska A, Kubacka-Z, Balska M. Formation of stress ethylene depends both on ACC synthesis and on the activity of free radical-generating system. Physiologia Plantarum,1989,77:231-237
    207. Karim M, Fracheboud Y, Stamp P. Heat tolerance of maize with reference of some physiological characteristics. Ann. Bangladesh Agriculture,1997,7:27-33
    208. Kasukabe Y, He LX, Nada K, Misawa S, Ihara I, Tachibana S. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiology,2004,45: 712-722
    209. Kaur-Sawhney R, Flores HE, Galston AW. Polyamine-induced DNA synthesis and mitosis in oat leaf protoplasts. Plant physiology,1980,65:368-375
    210. Kaur-Sawhney R, Tiburcio A, Altabella T, Galston A. Polyamines in plants:an overview. American journal of respiratory cell and molecular biology,2003,2:1-12
    211.Kawsar HI, Ohtani K, Okumura K, Hayashi H, Shimizu T. Organization and transcriptional regulation of myo-inositol operon in Clostridium perfringens. FEMS microbiology letters,2005, 235:289-295
    212. Kim DW, Rakwal R, Agrawal GK, Jung YH, Shibato J, Jwa NS, Iwahashi Y, Iwahashi H, Kim DH, Shim IS. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis,2005,26:4521-4539
    213. Kim ST, Cho KS, Yu S, Kim SG, Hong JC, Han C, Bae DW, Nam MH, Kang KY. Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells. Proteomics,2003,3:2368-2378
    214. Kinnersley AM, Turano FJ. Gamma aminobutyric acid (GABA) and plant responses to stress. Critical Reviews in Plant Sciences,2000,19:479-509
    215. Kochba J, Lavee S, Spiegel-Roy P. Differences in peroxidase activity and isoenzymes in embryogenic ane non-embryogenic'Shamouti'orange ovular callus lines. Plant and Cell Physiology. 1977,18:463-472
    216. Koenig H, Goldstone A, Lu CY. Polyamines regulate calcium fluxes in a rapid plasma membrane response. Nature,1983,305:530-534
    217. Komatsu S, Zang X, Tanaka N. Comparison of two proteomics techniques used to identify proteins regulated by gibberellin in rice. J. Proteome Res,2006,5:270-276
    218. Konig J, Baier M, Horling F, Kahmann U, Harris G, Schurmann P, Dietz KJ. The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proceedings of the National Academy of Sciences of the United States of America,2002,99:5738-5746
    219. Konigshofer H, Lechner S. Are polyamines involved in the synthesis of heat-shock proteins in cell suspension cultures of tobacco and alfalfa in response to high-temperature stress? Plant Physiology and Biochemistry,2002,40:51-59
    220. Kosmala A, Bocian A, Rapacz M, Jurczyk B, Zwierzykowski Z. Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance. Journal of Experimental Botany,2009,60:3595-3603
    221. Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD. Complexity of the heat stress response in plants. Current Opinion in Plant Biology,2007,10:310-316
    222. Kramer GF, Norman HA, Krizek DT, Mirecki RM. Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipid in cucumber. Phytochemistry,1991,30:2101-2108
    223. Krishnamurthy R, Bhagwat K. Polyamines as modulators of salt tolerance in rice cultivars. Plant physiology,1989,91:500-512
    224. Kruft V, Eubel H, Jansch L, Werhahn W, Braun HP. Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant physiology,2001,127:1694-1702
    225. Kubis J. Exogenous spermidine differentially alters activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water-stressed cucumber leaves. Journal of Plant Physiology, 2008,165:397-403
    226. Kusano T, Yamaguchi K, Berberich T, Takahashi Y. Advances in polyamine research in 2007. Journal of Plant Research,2007,120:345-350
    227. Kuthanova A, Gemperlova L, Zelenkova S, Eder J, Machakova I, Opatrn Z, Cvikrova M. Cytological changes and alterations in polyamine contents induced by cadmium in tobacco BY-2 cells. Plant Physiology and Biochemistry,2004,42:149-156
    228. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature,1970,227:680-685
    229. Langebartels C, Kerner K, Leonardi S, Schraudner M, Trost M, Heller W, Sandermann JH. Biochemical plant responses to ozone:I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant physiology,1991,95:882-894
    230. Larkindale J, Knight MR. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant physiology,2002,128:682-691
    231. Law DR, Crafts-Brandner SJ. Heat stress induces the synthesis of a new form of ribulose-1, 5-bisphosphate carboxylase/oxygenase activase in cotton leaves. Planta,2001,214:117-125
    232. Lee BH, Won SH, Lee HS, Miyao M, Chung WI, Jo J. Expression of the chloroplast-Iocalized small heat shock protein by oxidative stress in rice. Gene,2000,245:283-290
    233. Lee D, Ahsan N, Lee S, Kang K, Bahk J, Lee I, Lee B. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics,2007,7:3369-3383
    234. Li ZY, Chen SY. Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stresses. Theoretical and Applied Genetics,2000,100: 782-788
    235. Lin CC, Kao CH. Excess copper induces an accumulation of putrescine in rice leaves. Botanical Bulletin of Academia Sinica,1999,40:213-218
    236. Liu K, Fu H, Bei Q, Luan S. Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant physiology,2000,124:1315-1321
    237. Liu N, Ko S, Yeh KC, Charng Y. Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Science,2006,170:976-985
    238. Liu X, Huang B. Photosynthetic acclimation to high temperatures associated with heat tolerance in creeping bentgrass. Journal of Plant Physiology,2008,165:1947-1953
    239. Llusi J, Peuelas J, Munn. Sustained accumulation of methyl salicylate alters antioxidant protection and reduces tolerance of holm oak to heat stress. Physiologia Plantarum,2005,124:353-361
    240. Lutz C, Navakoudis E, Seidlitz H, Kotzabasis K. Simulated solar irradiation with enhanced UV-B adjust plastid-and thylakoid-associated polyamine changes for UV-B protection. Biochimica et Biophysica Acta-Bioenergetics,2005,1710:24-33
    241. Ma YH, Ma FW, Zhang JK, Li MJ, Wang YH, Liang D. Effects of high temperature on activities and gene expression of enzymes involved in ascorbate-glutathione cycle in apple leaves. Plant Science,2008,175:761-766
    242. Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant molecular biology,2002,48:667-681
    243. Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressan RA. Does proline accumulation play an active role in stress-induced growth reduction. Plant Journal,2002,31:699-712
    244. Majeran W, Cai Y, Sun Q, van Wijk KJ. Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. The Plant Cell Online,2005,17: 3111-3119
    245. Majoul T, Bancel E, Tribo E, Ben Hamida J, Branlard G. Proteomic analysis of the effect of heat stress on hexaploid wheat grain:Characterization of heat-responsive proteins from total endosperm. Proteomics,2003,3:175-183
    246. Majoul T, Bancel E, Tribo E, Ben-Hamida J, Branlard G. Proteomic analysis of the effect of heat stress on hexaploid wheat grain:Characterization of heat-responsive proteins from non-prolamins fraction. Proteomics,2004,4:505-513
    247. Majumder AL, Johnson MD, Henry SA.1-myo-Inositol-l-phosphate synthase. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism,1997,1348:245-256
    248. Makino A, Mae T, Ohira K. Purification and storage of ribulose-1,5-bisphosphatecarboxylase from rice leaves. Plant Cell Physiol,1983,24:1169-1173
    249. Malepszy S. Cucumber(Cucumis sativus L.). Biotechnology in agriculture and forestry.1988,6: 277-293
    250. Markides K, Graslund A. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) applied to biological macromolecules. Advanced Information on the Nobel Prize in Chemistry 2002.
    251. Matters GL, Scandalios JG. Changes in plant gene expressing during stress. Developmental Genetics,1986,7(4):167-175
    252. Meyer AJ. The integration of glutathione homeostasis and redox signaling. Journal of Plant Physiology,2008,165:1390-1403
    253. Meza-Basso L, Alberdi M, Raynal M, Ferrero-Cadinanos ML, Delseny M. Changes in protein synthesis in rapeseed(Brassica napus) seedlings during a low temperature treatment. Plant physiology,1986,82:733-741
    254. Miflin BJ, Lea PJ. Ammonia assimilation. The biochemistry of plants. A comprehensive treatise. Volume 5. Amino acids and derivatives. New York:Academic Press,1980:169-202
    255. Millar AH, Trend AE, Heazlewood JL. Changes in the mitochondrial proteome during the anoxia to air transition in rice focus around cytochrome-containing respiratory complexes. Journal of Biological Chemistry,2004,279:39471-39478
    256. Mittler R, Zilinskas B. Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Analytical biochemistry,1993,212:540-541
    257. Mizrahi V, Lazarus GM, Miles LM, Meyers CA, Debouck C. Recombinant HIV-1 reverse transcriptase:purification, primary structure, and polymerase/ribonuclease H activities. Archives of biochemistry and biophysics,1989,273:347-358
    258. Momcilovic I, Ristic Z. Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development. Journal of Plant Physiology,2007,164:90-99
    259. Munne-Bosch S, Lopez-Carbonell M, Alegre L, Van O H A. Effect of drought and high solar radiation on 1-aminocyclopropane-l-carboxylic acid and abscisic acid concentrations in Rosmarinus officinal is plants. Physiologia Plantarum,2002,114:380-386
    260. Murkowski A. Heat stress and spermidine:effect on chlorophyll fluorescence in tomato plants. Biologia Plantarum,2001,44:53-57
    261. Mutlu F, Bozcuk S. Salinity-induced changes of free and bound polyamine levels in sunflower (Helianthus annuus L.) roots differing in salt tolerance. Pakistan Journal of Botany,2007,39: 1097-1106
    262. Nakano Y, Asada K. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant and Cell Physiology,1987,28:131-139
    263. Nayyar H, Bains T, Kumar S. Chilling stressed chickpea seedlings:effect of cold acclimation, calcium and abscisic acid on cryoprotective solutes and oxidative damage. Environmental and Experimental Botany,2005,54:275-285
    264. Nayyar H, Chander S. Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. Journal of Agronomy and Crop Science,2004,190:355-365
    265. Nayyar H, Kaur S, Singh K, Dhir K, Bains T. Water stress-induced injury to reproductive phase in chickpea:evaluation of stress sensitivity in wild and cultivated species in relation to abscisic acid and polyamines. Journal of Agronomy and Crop Science,2005,191:450-457
    266. Nelson RJ, Ziegelhoffer T, Nicolet C, Werner-Washburne M, Craig EA. The translation machinery and 70 kd heat shock protein cooperate in protein synthesis. Cell,1992,71:97-105
    267. Niemi K, Hggman H, Sarjala T. Effects of exogenous diamines on the interaction between ectomycorrhizal fungi and adventitious root formation in Scots pine in vitro. Tree physiology,2002, 22:373-382
    268. Nieto-Sotelo J, Ho T H D. Effect of heat shock on the metabolism of glutathione in maize roots. Plant physiology,1986,82:1031-1039
    269. Ogawa K. Glutathione-associated regulation of plant growth and stress responses. Antioxidants and Redox Signaling,2005,7:973-981
    270. Pal BH, Ravishankar G. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant cell, tissue and organ culture,2002,69:1-34
    271. Pan Z, Liu Q, Yun Z, Guan R, Zeng W, Xu Q, Deng X. Comparative proteomics of a lycopene-accumulating mutant reveals the important role of oxidative stress on carotenogenesis in sweet orange (Citrus sinensis [L.] osbeck). Proteomics,2009,9:5455-5470
    272. Panchuk Ⅱ, Volkov RA, Schoffl F. Heat stress and heat shock transcription factor dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant physiology,2002,129:838-853
    273. Papadakis Ⅰ, Giannakoula A, Therios I, Bosabalidis A, Moustakas M, Nastou A. Mn-induced changes in leaf structure and chloroplast ultrastructure of Citrus volkameriana L. plants. Journal of Plant Physiology,2007,164:100-103
    274. Patterson B, MacRae E, Ferguson I. Estimation of hydrogen peroxide in plant extracts using titanium (IV). Analytical biochemistry,1984,139:487-492
    275. Patterson SD, Aebersold RH. Proteomics:the first decade and beyond. Nature Genetics,2003,33: 311-323
    276. Peltier JB, Friso G, Kalume D E, Roepstorff P, Nilsson F, Adamska I, Van Wijk KJ. Proteomics of the chloroplast:systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. The Plant Cell Online,2000,12:319-327
    277. Peng Q, Zhou Q. Influence of lanthanum on chloroplast ultrastructure of soybean leaves under ultraviolet-B stress. Journal of Rare Earths,2009,27:304-307
    278. Perez-Amador MA, Leon J, Green PJ, Carbonell J. Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant physiology,2002,130:1454-1465
    279. Pessarakli M. Soil salinity and sodicity as particular plant/crop stress factors. Handbook of plant and crop stress. (New York):1999,399-416
    280. Phizicky E, Bastiaens PIH, Zhu H, Snyder M, Fields S. Protein analysis on a proteomic scale. Nature,2003,422:208-215
    281. Porter J R.Rising temperatures are likely to reduce crop yields. Nature,2005,436:174-179
    282. Prime TA, Sherrier DJ, Mahon P, Packman LC, Dupree P. A proteomic analysis of organelles from Arabidopsis thaliana. Electrophoresis,2000,21:3488-3499
    283. Prochazkova D, Sairam R, Srivastava G, Singh D. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Science,2001,161:765-771
    284. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant physiology,2003,133: 1755-1767
    285. Ramagopal S. Salinity stress induced tissue-specific proteins in barley seedlings. Plant physiology, 1987,84:324-336
    286. Rao D, Momcilovic I, Kobayashi S. Chaperone activity of recombinant maize chloroplast protein synthesis elongation factor, EF-Tu. European Journal of Biochemistry,2004,271:3684-3692
    287. Rao MV, Koch JR, Davis KR. Ozone:a tool for probing programmed cell death in plants. Plant molecular biology,2000,44:345-358
    288. Rea G, Metoui O, Infantino A, Federico R, Angelini R. Copper amine oxidase expression in defense responses to wounding and Ascochyta rabiei invasion. Plant physiology,2002,128:865-874
    289. Renaut J, Hoffmann L. Biochemical and physiological mechanisms related to cold acclimation and enhanced freezing tolerance in poplar plantlets. Physiologia Plantarum,2005,125:82-94
    290. Ristic Z, Momcilovic I, Fu J, Callegari E, DeRidder BP. Chloroplast protein synthesis elongation factor, EF-Tu, reduces thermal aggregation of rubisco activase. Journal of Plant Physiology,2007, 164:1564-1571
    291. Rivero RM, Ruiz JM, Garca PC, Lrpez-Lefebre LR, Scnchez E, Romero L. Resistance to cold and heat stress:accumulation of phenolic compounds in tomato and watermelon plants. Plant Science, 2001,160:315-321
    292. Roberts D, Dumbroff E, Thompson J. Exogenous polyamines alter membrane fluidity in bean leavesja basis for potential misinterpretation of their true physiological role. Planta,1986,167: 395-401
    293. Robertson D, Mitchell GP, Gilroy JS, Gerrish C, Bolwell GP, Slabas AR. Differential extraction and protein sequencing reveals major differences in patterns of primary cell wall proteins from plants. Journal of Biological Chemistry,1997,272:15841-15857
    294. Rojas A, Almoguera C, Jordano J. Transcriptional activation of a heat shock gene promoter in sunflower embryos:synergism between ABI3 and heat shock factors. The Plant Journal,1999,20: 601-610
    295. Rokka A, Zhang L, Aro EM. Rubisco activase:an enzyme with a temperature-dependent dual function? The Plant Journal,2001,25:463-471
    296. Rouhier N, Gelhaye E, Sautiere PE, Brun A, Laurent P, Tagu D, Gerard J, De Fa E, Meyer Y, Jacquot JP. Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. Plant physiology,2001,127:1299-1306
    297. Roupakias D, McMillin D, Scandalios J. Chromosomal location of the catalase structural genes in Zea mays using BA translocations. Theoretical and Applied Genetics,1980,58:211-218
    298. Roussos PA, Pontikis CA. Changes of free, soluble conjugated and bound polyamine titers of jojoba explants under sodium chloride salinity in vitro. Journal of Plant Physiology,2007,164:895-903
    299. Roy H. Rubisco assembly:a model system for studying the mechanism of chaperonin action. The Plant Cell,1989,1:1035-1046
    300. Roy M, Ghosh B. Polyamines, both common and uncommon, under heat stress in rice (Oryza sativa) callus. Physiologia Plantarum,1996,98:196-200
    301. Roy M, Wu R. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Science,2001,160:869-875
    302. Roy P, Niyogi K, SenGupta DN, Ghosh B. Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt-sensitive rice cultivars. Plant Science,2005,168:583-591
    303. Sabehat A, Lurie S, Weiss D. Expression of small heat-shock proteins at low temperatures. Plant physiology,1998,117:651-662
    304. Sachan A, Ghosh S, Mitra A. An efficient isocratic separation of hydroxycinnamates and their corresponding benzoates from microbial and plant sources by HPLC. Biotechnology and applied biochemistry,2004,40:197-200
    305. Sairam R, Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci, 2004,86:407-421
    306. Sakamoto A, Murata N. The role of glycine betaine in the protection of plants from stress:clues from transgenic plants. Plant Cell & Environment,2002,25:163-171
    307. Salvucci ME. Association of Rubisco activase with chaperonin-60beta:a possible mechanism for protecting photosynthesis during heat stress, Journal of Experimental Botany,2008,59:1923-1933
    308. Sanchez DH, Cuevas JC, Chiesa MA, Ruiz OA. Free spermidine and spermine content in Lotus glaber under long-term salt stress. Plant Science,2005,168:541-546
    309. Sangwan V, Dhindsa RS. In vivo and in vitro activation of temperature-responsive plant map kinases. FEBS letters,2002,531:561-564
    310. Sanmiya K, Suzuki K, Egawa Y, Shono M. Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS letters,2004,557:265-268
    311.Santoni G, Lucciarini R, Amantini C, Jacobelli J, Spreghini E, Gismondi A. Candida albicans expresses a focal adhesion kinase-like protein that undergoes increased tyrosine phosphorylation upon yeast cell adhesion to vitronectin. Infection and immunity,2002,70:3804-3812
    312. Scandalios JG, Acevedo A, Ruzsa S. Catalase gene expression in response to chronic high temperature stress in maize. Plant Science,2000,156:103-110
    313. Scandalios JG. Oxygen stress and superoxide dismutases. Plant physiology,1993,101:7-9
    314. Scoccianti V, Torrigiani P, Bagni N. Distribution of diamine oxidase activity and polyamine pattern in bean and soybean seedlings at different stages of germination. Physiologia Plantarum,1990,80: 515-519
    315. Seiler N. Polyamine oxidase, properties and functions. Progress in brain research,1995,106:333-344
    316. Serafini-Fracassini D, Del DS, Beninati S. Plant transglutaminases. Phytochemistry,1995,40:355-365
    317. Shabala S, Cuin TA, Pottosin I. Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Letters,2007,581:1993-1999
    318. Shanahan J, Edwards I, Quick J, Fenwick J. Membrane thermostability and heat tolerance of spring wheat. Crop Science,1990,30:247-251
    319. Shao W, Lai Z, Huang Q, Guo Y. Changes of APX isozymes under high-temperature stress and cloning of an APX functional fragment in embryogenic callus of litchi. Acta horticulturae (ISHS), 2008,863:183-187
    320. Sharkey TD. Effects of moderate heat stress on photosynthesis:importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell and Environment,2005,28:269-277
    321. Shen W, Nada K, Tachibana S. Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant physiology,2000,124:431-443
    322. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany,2002,53: 1305-1312
    323. Shin SY, Lee HS, Kwon SY, Kwon ST, Kwak SS. Molecular characterization of a cDNA encoding copper/zinc superoxide dismutase from cultured cells of Manihot esculenta. Plant Physiology and Biochemistry,2005,43:55-60
    324. Siddique K, Loss S, Regan K, Jettner R. Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Australian Journal of Agricultural Research,1999,50:375-388
    325. Siedow JN. Plant lipoxygenase:structure and funtion. Annu Rev Plant Physiol Plant Mol Biol,1991, 1:101-109
    326. Silva EN, Ferreira-Silva SL, Fontenele AV, Ribeiro RV, Vigas RA, Silveira JAG. Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. Journal of Plant Physiology,2010,167: 1157-1164
    327. Smirnoff N, Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry,1989,28:1057-1060
    328. Smith J, Burritt D, Bannister P. Ultraviolet-B radiation leads to a reduction in free polyamines in Phaseolus vulgaris L. Plant Growth Regulation,2001,35:289-294
    329. Smyth W, Brooks P. A critical evaluation of HPLC-ESI-MS and CE-ESI-MS for the detection and determination of small molecules of significance in clinical and forensic science. Electrophoresis, 2004,25:1413-1446
    330. Somerville C. Plant lipids:metabolism, mutants, and membranes. Science,1991,252:80-85
    331. Song LL, Ding W, Zhao MQ Zhang LX. Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Science,2006,171:449-458
    332. Soyka S, Heyer AG. Arabidopsis knockout mutation of ADC2 gene reveals inducibility by osmotic stress. FEBS letters,1999,458:219-223
    333. Stone P. The effects of heat stress on cereal yield and quality. Crop responses and adaptations to temperature stress,2001:243-291
    334. Su Y, Chen H, Wang Z, Lv Y. Recent advances in chemiluminescence. Applied Spectroscopy Reviews,2007,42:139-176
    335. Sun W, Van Montagu M, Verbruggen N. Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,2002,1577:1-9
    336. Tachibana S, Konishi N, Kanda H. Diurnal variation of in vivo and in vitro nitrate reductase activity in cucumber plants. Journal of the Japanese Society for Horticultural Science,1991,60: 593-599
    337. Tadolini B. Polyamine inhibition of lipoperoxidation:the influence of polyamines on iron oxidation in the presence of compounds mimicking phospholipid polar heads. Biochemical Journal,1988, 249:33-39
    338. Tang W, Newton RJ. Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regulation, 2005,46:31-43
    339. Tassoni A, Buuren M, Franceschetti M, Fornal S, Bagni N. Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. Plant Physiology and Biochemistry,2000,38:383-393
    340. Tewari AK, Tripathy BC. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol,1998,117:851-860
    341. Thebud R, Santarius K A. Effects of high-temperature stress on various biomembranes of leaf cells in situ and in vitro. Plant physiology,1982,70:200-209
    342. Tiburcio A, Campos J, Besford R. Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regulation,1993,12:331-340
    343. Tiburcio AF, Besford RT, Capell T, Borrell A, Testillano PS, Risueno MC. Mechanisms of polyamine action during senescence responses induced by osmotic stress. Journal of Experimental Botany,1994,4512:1789-1800
    344. Tsugita A, Kawakami T, Uchiyama Y, Kamo M, Miyatake N, Nozu Y. Separation and characterization of rice proteins. Electrophoresis,1994,15:708-720
    345. Tsukaguchi T, Kawamitsu Y, Takeda H, Suzuki K, Egawa Y. Water status of flower buds and leaves as affected by high temperature in heat-tolerant and heat-sensitive cultivars of snap bean(Phaseolus vulgaris L.). Plant Production Science,2003,6:24-27
    346. Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi K, Shinozaki K. Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochemical and biophysical research communications,2004,313:369-375
    347. Vanden BD, Van DSD, Van MM, Caplan A. A group of chromosomal proteins is specifically released by spermine and loses DNA-binding activity upon phosphorylation. Plant Physiology, 1994,106(2):559-566
    348. Ventelon-Debout M, Delalande F, Brizard JP, Diemer H, Brugidou C. Proteome analysis of cultivar-specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection. Proteomics,2004,4:216-225
    349. Vierling E. The roles of heat shock proteins in plants. Annual Review of Plant Biology,1991,42: 579-620
    350. Von WD, Gough S, Kannangara CG. Chlorophyll biosynthesis. Plant Cell,1995,7:1039-1042
    351. Vu JCV, Gesch RW, Pennanen AH, Allen HL. Soybean photosynthesis Rubisco and carbohydrate enzymes function at supraoptimal temperatures in elevated CO2. Journal of Plant Physiology,2001, 158:295-307
    352. Wahid A, Close T. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biologia Plantarum,2007,51:104-109
    353. Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants:An overview. Environmental and Experimental Botany,2007,61:199-223
    354. Wahid A, Shabbir A. Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regulation,2005,46:133-141
    355. Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J. Proteomics of curcurbit phloem exudate reveals a network of defence proteins. Phytochemistry,2004,65:1795-1804 Wang J, Li R. Changes of Ca2+ distribution in mesophyll cells of pepper under heat stress. Acta Horticulturae Sinica,1999,26:57-58
    356. Wang LJ, Li SH. Thermo tolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Regulation,2006,48: 137-144
    357. Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta,2003,218:1-14
    358. Wang X, Shi GX, Xu QS, Hu JZ. Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. Journal of Plant Physiology,2007,164:1062-1070
    359. Wardlaw I. Temperature control of translocation. Mechanisms of regulation of plant growth,1974: 533-538
    360. Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophores,1995,16:1090-1094
    361. Waters ER, Lee GJ, Vierling E. Evolution, structure and function of the small heat shock proteins in plants. Journal of Experimental Botany,1996,47:325-334
    362. Watson MB, almberg RL. Regulation of Arabidopsis thaliana (L.) Heynh arginine decarboxylase by potassium deficiency stress. Plant physiology,1996,111:1077-1083
    363. Weeden NF, Wendel JF. Genetics of plant isozymes. Isozymes In Plant Biology,1989,46:72-79
    364. Willekens H, Inz D, Van MM, Van CW. Catalases in plants. Molecular Breeding,1995,1:207-228
    365. Willits D, Peet M. The effect of night temperature on greenhouse grown tomato yields in warm climates. Agricultural and Forest Meteorology,1998,92:191-202
    366. Wingate VPM, Lawton MA, Lamb CJ. Glutathione causes a massive and selective induction of plant defense genes. Plant physiology,1988,87:206-212
    367. Wise R, Olson A, Schrader S, Sharkey T. Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell & Environment, 2004,27:717-724
    368. Woodbury W, Spencer A, Stahman M. An improved procedure using ferricyanide for detecting catalase isozymes. Analytical biochemistry,1971,44:301-308
    369. Xu S, Li J, Zhang X, Cui L. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environmental and Experimental Botany,2006,56:274-285
    370. Yan S, Tang Z, Su W, Sun W. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics,2005,5:235-244
    371. Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Molecular & Cellular Proteomics,2006,5:484-491
    372. Yang K, Lim CJ, Hong JK, Park CY, Cheong YH, Chung WS, Lee KO, Lee SY, Cho MJ, Lim CO. Identification of cell wall genes modified by a permissive high temperature in chinese cabbage. Plant Science,2006,171:175-182
    373. Yang X, Liang Z, Lu C. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant physiology,2005, 138:2299-2307
    374. Zacchini M, Rea E, Tullio M, Agazio M. Increased antioxidative capacity in maize calli during and after oxidative stress induced by a long lead treatment. Plant Physiology and Biochemistry,2003, 41:49-54
    375. Zapata PJ, Serrano M, Pretel MT, Amoras A. Polyamines and ethylene changes during germination of different plant species under salinity. Plant Science,2004,167:781-788
    376. Zhang JH, Huang WD, Liu YP, Pan QH. Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L.) under cross-temperature stresses. Journal of Integrative Plant Biology,2005,47:959-970
    377. Zhang M, Li G, Huang W, Bi T, Chen G, Tang Z, Su W, Sun W. Proteomic study of Carissa spinarum in response to combined heat and drought stress. Proteomics,2010,10 (17):3117-3129
    378. Zhang RH, Li J, Guo SR, Tezuka T. Effects of exogenous putrescine on gas-exchange characteristics and chlorophyll fluorescence of NaCl-stressed cucumber seedlings. Photosynthesis Research,2009,100:155-162
    379. Zhang WH, Liu YL. Relationship between tonoplast H+-ATPase activity, ion uptake and calcium in barley roots under NaC1 stress. Acta Botanica Sinica,2002,44 (6):667-672
    380. Zhao FG, Sun C, Liu YL, Liu ZP. Effects of salinity stress on the levels of convalently and nonconvalently conjugated polyamines in plasma membrane and tonoplast isolated from barely seedlings. Acta Botanica Sinica,2000,42 (9):920-926

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700