海洋平台基于结构碰撞损伤的风险评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋平台在复杂恶劣的环境中工作,除正常的工作荷载、环境荷载的作用外,还受到偶然荷载威胁,如船舶的撞击、平台上部落物的撞击。偶然荷载引发的事故不但会造成人员伤亡和重大的经济损失,而且会对近海周边环境和海洋生态造成严重的污染和破坏。在我国工程应用领域中,海洋平台风险评估工作开展相对较少,现有海洋平台设计,大多没考虑到偶然荷载的作用,通常的做法是在平台交付使用后再进行修改,这样势必造成人力和财力浪费。因此对平台进行偶然荷载作用下的风险评估十分必要。但是,对于刚刚兴起不久海洋工程领域,关于海洋平台风险的统计数据很少,这给风险定量计算带来了很大的困难。另外就由碰撞引起的海洋结构损伤分析本身而言,其力学机理复杂,再加上海洋环境复杂,开展试验研究的成本过高,且不确定因素颇多,在这种情况下有限元数值仿真在碰撞分析领域越来越受到重视。
     本文是在中海石油(中国)有限公司委托的《LD32-2PSP定量指数评价及重大危险源辨识安全分析》项目的基础上展开的。研究注重理论与工程实践相结合,在较深入研究风险分析理论及平台结构碰撞损伤的基础上,对海洋平台碰撞风险建立定量评估系统。以实现海洋平台的风险预测由传统经验型向科学预测型转变。本文的主要内容和研究成果包括如下几点:
     1.大量查阅国内外文献,了解分析国内外海洋结构物碰撞风险评估的研究现状,探究各种风险分析方法的适用范围及优缺点,为海洋平台碰撞风险分析奠定基础。
     2.对海洋平台结构物碰撞损伤经验公式法、能量法和有限元法进行介绍。建立LD32-2PSP平台结构显式动态有限元模型,系统分析吊机落物引起的平台结构甲板设备以及海底管线的损伤。计算分析船舶以不同的速度撞击平台结构及立管引起的结构动力响应,对平台整体结构的损伤程度进行了评估。
     3.结合风险评估方法,建立海洋平台在偶然荷载作用下的风险分析框架。根据偶然灾害的发生概率和平台暴露级别来划分灾害事件的风险水平,并依据风险水平结合LD32-2PSP平台结构开展定量风险评估,在对落物碰撞风险、船舶撞击风险的发生频率,结构损伤程度加以分析判断的基础上完成了平台落物风险和船舶撞击风险的定量评估,为保障海洋平台结构在偶然灾害下的整体安全性提供了分析方法和理论依据。
     4.在风险评估的基础上,提出了降低落物风险和船舶撞击风险的措施。
Offshore platforms work in complex and harsh environments, in addition to normal work load, environment loads, also threatened by accidental loads, such as the impact of ships, impact of dropped objects. Major disaster caused by accidental loading will not only result in casualties and major economic losses, but also the surrounding coastal environment and marine ecosystem caused by pollution and destruction. The offshore platform risk assessment carried out relatively small In Engineering applications of China, the current offshore platform design, the accidental loads most did not take into account. The most common practice is to maintain after be delivery platform, it will certainly waste a lot of manpower and financial resources. So it is essential to analyze and assess the behaviors of platform subjected to the accidental loading. However, very little statistical data on the disaster of offshore platform for the nascent field of ocean engineering, it has made it difficult to Quantitate the risk, In addition to the complex mechanical mechanism of the ocean structures damage caused by the collision, coupled with the complexity of the marine environment, high cost of pilot studies, and does not identify many factors, in this case, finite element numerical simulation has more and more attention In the field of collision analysis.
     This paper started on the basis of the project of "LD32-2PSP quantitative index for assessing and recognizing the safety of major hazard" entrusted by China National Offshore Oil Corporation (CNOOC) (China) Co., Ltd. Research focus on combining theory and engineering practice, on the basis of the in-depth research on the risk analysis method and on structural collision damage, offshore platform collision risk quantitative assessment system to achieve the risk assessment of offshore platforms from the traditional experience to scientific prediction type. The main contents and findings include the following:
     1. Based on Searching and Reviewing a large number of both Domestic and foreign Literature high-risk industries research data, it is to analyze domestic and foreign marine structure impact of risk assessment status, and is to explore the various risk analysis methods and the advantages and disadvantages of the application for further risk quantitative assessment of offshore platform subjected to collision.
     2. The methods to analyze offshore platform structure collision damage are introduced, including the empirical formula, energy method and the finite element method. The finite element model of LD32-2 PSP Platform is established by explicit dynamic. Dynamic Response and damage of the offshore platforms structure, Deck equipment pipeline caused by falling objects. Dynamic Response and damage of the offshore structure and the riser due to the ship impact at different speeds, and the overall damage of the platform structure was assessed.
     3. The analysis framework of offshore platforms in the risk of accidental loads is established, using the risk assessment methods. According to the probability of accidental disasters and platform exposure level to divide the risk levels of disaster. The risk analysis of LD32-2PSP Platform was carried out according to the risk levels. The structural quantitative risk assessments from the falling objects and ship impacts are carried out based on the calculated risk of collision frequency and the extent analyzed Structural damage. The result can provide the analysis method and the theoretical basis for the protection the overall security of offshore platform structures in the occasional hazards.
     4. On the basis of risk assessment, measures are proposed to reduce the risk of falling objects and ship collision risk.
引文
[1] Tebbett,最近五年钢质平台的修理经验.海上结构物检测、维护与修理技术文集第1集,[c],渤海石油海上工程公司
    [2] Jorgen Amdahl, Ernst Eberg. Ship collision with offshore structures. Structural Dynamics-EURODYN’93, Moan et al,1993:495-504
    [3]张圣坤,白勇,唐文勇,船舶与海洋工程风险评估[M],国防工业出版社,2003
    [4]汪海成,海底管线系统偶然性荷载作用下的风险评估:[硕士学位论文],天津大学,2004
    [5]李玉刚,林焰,纪卓尚,海洋平台评估的发展历史和现状[J],中国海洋平台,2003(2):4-8
    [6] Bjфrn Skallerud, Jфrgen Amdahl. Nonlinear Analysis of Offshore Structures [M].Norway: Research studies press Ltd, 2002
    [7] Andrew Nyakaana Blair, Bilal M Ayyub, William J Bender. Prevention and suppression of explosions in gas-air and dust-air mixtures using powder aerosol-inhibitor[J], Journal of Loss Prevention in the Process Industries 2006, 19: 729-735
    [8] Torgeir Moan. Accidental Actions [R], Institute for Marine Konstruksjoner Department of Marine Structures, 2000
    [9] DNV Software Conference 2006[C].2006-11-10
    [10]胡云昌,系统失效树定量分析的新方法[J],天津大学学报,1989
    [11]罗桦槟,张世英,事件树的贝叶斯分析[J],系统工程与电子技术,1999,121(9):78-80
    [12]张圣坤,固定式海洋平台的可靠性分析[J],海洋工程,1985,3(2):24-33
    [13]秦炳军,张圣坤,动态过程评估方法[J],上海交通大学学报,1998,132(11)
    [14]张圣坤,白勇,唐文勇,船舶与海洋工程风险评估[M],国防工业出版社,2003
    [15]欧进萍,段忠东,肖仪清,海洋平台结构安全评定——理论、方法与应用[M],北京:科学出版社,2002
    [16]吕秀艳,固定式海洋平台结构风险评估及应用[D],青岛:中国海洋大学硕士学位论文,2005
    [17]李玉刚,综合安全评估方法(FSA)在海洋平台上的应用[D],大连理工大学,2002
    [18]李强,海洋平台风险评估技术及应用:[硕士学位论文],中国海洋大学,2006
    [19] Det Norske Veritas. Submarine pipeline system (DNV-OS-F101) [S], Oslo: Det Norske Veritas, 2000
    [20] Fujii,Yet al. Some Factors Affecting the Frequency of Accidents in Marine Traffic, Journal of Navigation, 1974, Vol.27:235-252
    [21] T. Macduff. The Probability of Vessel Collisions. Ocean Industry. 1974, September, pp 144-148
    [22] Det Norske Veritas. Risk Assessment of Pipelines Protection, DNV-RP-F107
    [23] Health & Safety Executive (HSE). Ship/platform collision incident database (2001), 2003
    [24] N.Ellis, G.R.Perret, K.Rae. The design of an impact resistant roof for platform wellhead modules. In Proc. Offshore Technology Conf., OTE 3907, 1980, pp 523-526
    [25] A. Wenger, G. Edvardsen, S. Olafsson and T.Alvested, Design for impact of dropped objects. In Proc.Offshore Technology Conf.,October, 1983, pp 241-245
    [26] G. Lu, C.R. Calladine. On the Cutting of a Plate by a Wedge, Int J. of Mechanical Sciences, 1990, Vol.32(4), pp 293-313
    [27] Paik J.K. Cutting of a Longitudinally stiffened Plate by a Wedge, Journal of ship Reseacrh,1994,Vol.38(4), pp 340-348
    [28] Y.F. AL-Obaid, Automated analysis of topside platform hatch covers subject to drill collar impact, [J] Computers &structures Vol:59, No, 4, pp 665-689,1996
    [29] Ling Zhu, D.Faulkner. Dynamic inelastic behavior of plates in minor ship collision. [J], International Journal of impact engineering 1994,15(2), pp 165-178
    [30] Ling Zhu, D. Faulkner, A.G. Atkins. The impact of rectangular plates made from strain-rate sensitive materials[J], International of Impact Engineering 1994, 15(3), pp 245-255
    [31] Ling Zhu, D. Faulkner. Damage estimate for plating of ships and platforms under repeated impacts. [J].Marine Structure, 1996, 9(7), pp 697-720
    [32] Andrew Palmer, Martin Touhey, Si Holder. Full-scale impact tests on pipelines, International [J], Journal of Impact Engineering 32(2006) , pp 1267-1283
    [33] Minorsky V. U. An analysis of ship collision to protection of nuclear powered plant, [J], Journal of Ship Research, 1959(1) , pp 1-4
    [34] Chang P.Y., Seibold F., Thasanatorn C. A Rational Methodology for the Prediction of Structural Response due to Collisions of Ships, SNAME Transactions, 1980,Vol 88,pp 173-193
    [35] P. T. Pedersen, S. Valsgard, D. Olsen et. Ship impacts: Bow collisions[J], International Journal of Impact Engineering, 1993,13(2), pp 163-187
    [36] Pedersen P. T. Ship grounding and hull-girder strength [J].Marine Structure, 1994,7(1), pp 1-29
    [37] Pedersen P T, Zhang S. On impact mechanics in ship collisions[J], Marine Structures, 1998, 11(5), pp 429-449
    [38] Petersen M.J, Pedersen P. T. Collision between ships and offshore platform[A]. Proceedings of 13th annual offshore technology conference, OTC 4134,1981, pp 163-171
    [39] Joao G., De oliveria. The behavior of steel offshore structures under accidental collision[A], Proceeding of 13th annual offshore technology conference[C],OTC 4136,1981, pp 187-198
    [40] Jorgen Amdahl, Energy absorption in ship-platform impacts, The Norwegian Institute of Technology, The University of Trondheim, September 1983
    [41] Jorgen Amdahl, Johansen A. High-Energy Ship Collision with Jacket Legs, International Conf-Offshore Mechanics and Arctic Engineering, Rio de Janeiro, June 2001
    [42] Bai Yong, P T Pederson. Elastic-plastic behavior of offshore steel structures under impact loads[J], International Journal of Impact Engineering, 1993,13(1), pp 99-115
    [43] Ellinas C P, Walker A C. Damage on offshore tubular bracing members, IBASE Colloquium, Copenhagen,1983
    [44] Ellinas C P, et al. PARLCO-Pipeline and riser loss of containment north sea experience[A], Proc. Conf. ISOPE 95[C], The Hague,1995
    [45] Erik Pettersen, Kaare R. Johnsen. New nonlinear methods for estimation of collision resistance of mobile offshore unites[A], Proceeding of 13th annual offshore technology conference[C], OTC 4135, pp 173-186
    [46] Gjerde P, Parsons S J, Igbenabor S C. Assessment of jack-up boat impact analysis methodology[J], Marine Structures,1999,12(4), pp 371-401
    [47]陈铁云,朱正宏,海洋平台碰撞和损伤分析的进展.力学进展,1989,19(4):454-463
    [48]李润培,陈伟刚,顾永宁,船舶与海洋平台碰撞的动力响应分析[J],上海交通大学学报,1996,Vol30(3):40-47
    [49]鲍莹斌,李润培,顾永宁.船舶与海洋平台碰撞的动塑性分析[J].上海交通大学学报,1997,Vol31(7):40-44
    [50]王自力,蒋志勇,顾永宁,船舶碰撞数值仿真的附加质量模型,爆炸与冲击,2002,(04):321-326
    [51]王自力,顾永宁,船舶碰撞数值仿真的一种组合模型,华东船舶工业学院学报(自然科学版),2001,(06):1-5
    [52]王自力,船舶碰撞损伤机理与结构耐撞性研究[D],上海:上海交通大学,2000
    [53]金伟良,龚顺风,宋剑,大型船舶碰撞引起的海洋导管架平台结构损伤分析,海洋工程,2003,Vo 1.21(2):20-25
    [54]金伟良,宋剑,龚顺风,船舶与海洋平台碰撞的荷载模拟,计算力学学报,2004,Vol.21, No.1, pp 26-32
    [55]龚顺风,海洋平台结构碰撞损伤及可靠性与疲劳寿命评估研究,博士学位论文,浙江大学,2003
    [56]宋剑,海洋平台结构在偶然灾害作用下的可靠性研究,博士学位论文,浙江大学,2005
    [57] Det Norske Veritas, DNV Recommended Practice RP-F101, Corroded Pipelines, 1999
    [58]俞庆,肖熙,海洋平台结构风险评估,海洋工程vol.15, NO.3, 1997
    [59] M.Torhaug. Use of Risk Analysis in the Offshore Industry, DNV
    [60]海上平台状态评定指南,2005,中国船级社
    [61] American Petroleum Institute. API recommended practice 2A-WSD (RP-2A-WSD) Twenty-First Edition[S], Washington, D C, American Petroleum Institute, 2000
    [62]胡志强,崔维成.船舶碰撞机理与耐撞性结构设计研究综述,船舶力学2005,vol9(2):131-142
    [63]刘建成,顾永宁,基于整船整桥模型的船桥碰撞数值仿真,工程力学,2003,20(5):155-162
    [64] Eike Lehmann, Jorg Peschmann. Energy absorption by the steel structure of ships in the event of collisions, Marine Structures[J]2002,15, pp 429-441
    [65]王学蕾,张延昌,王自力,海洋导管架平台K形节点碰撞性能研究[J],江苏科技大学学报,2007,21(4):1-6
    [66] M. Y. H. Bangash, Impact and Explosion- Analysis and Design, pp 860, Blackwell, Oxford, 1993
    [67]张善元,雷建平,薄壁钢管经受侧向撞击实验研究和理论分析,工程力学增刊,1996:284-288
    [68] M. Zeinoddini, J. E. Harding. Effect of impact damage on the capacity of tubularsteel members of offshore structures, marine structures 11(1998) pp 141-157
    [69] O. Furnes and J. Amdahl. Ship Collisions with Offshore Platforms, Intermaric 80, September 1980
    [70]秦庆华,程国强,刚塑性圆管经受侧向撞击时变形与损伤的研究,太原理工大学学报2003,1,34:8-10
    [71]张善元,路国运,程国强,圆管及内充压力介质管道撞击大变形与破坏[J],力学进展,2004,34(1):23-31
    [72]王德禹,带有局部凹陷的固支圆管受横向碰撞时的动力响应,中国海洋平台,1997,12 (4):153-155
    [73]程国强,雷建平,张善元,经受侧向撞击圆管的大变形分析[J],固体力学学报,2000,21(1):57-60
    [74] Sherman, D. R.. Tests of Circular Steel Tubes in Bending, ASCE [J], Struct. Div., Vol. 102, No.ST11, pp 2181-2195, 1976
    [75] American Petroleum Institute, Supplement 1 to recommended practice for planning, designing and constructing Fixed offshore platforms-load and resistance factor design, API RP 2A, 2002
    [76] Thomas S G. et.al. Int, [J], Mechanical Sciences, 18(1976):325-333, 387-397, 501-509
    [77] Ellinas C.P, Walker A.C. Proc. IABSE Colloquium of Ship Collision with Bridges and Offshore Structures, Preliminary Report, Copenhagen (1983):253-261
    [78] Smith C.S. Assessment of damage in offshore steel platforms. The international Conference to Celebrate the Centenary of the Department of Naval Architecture and Ocean Engineering, University of Glasgow, Sept,1983
    [79] Ueda Y, Rashed S M H. Behavior of damaged tubular structural members [A], 4th international symposium on Offshore Mechanics and Arctic Engineering (OMAE)[C],Dallas Texas, Vol. 1,1985
    [80] S?reide, T.H. , Amdahl, J., Energy Absorption in Bracings, Norwegian Maritime, Research, 2(1982):3-12
    [81] Saul R and Svensson H. Means of reducing consequences of ship collisions with bridge and offshore structures[C]. IABSE Colloquium on Ship Collision with Bridge and Offshore Structures, Copenhagen, 1983
    [82] AASHTO. LRFD bridge design specifications and commentary[M]. American Association of State Highway and Transportation Officials, 1994
    [83]铁路桥涵设计基本规范,中华人民共和国铁道部部标准,TB10002.1-99,铁路桥梁设计基本规范[S],北京:中国铁道出版社,1999
    [84]公路桥涵设计通用规范,中华人民共和国交通部部标准,JTGD60-2004,公路桥涵设计通用规范[S],北京:中国交通出版社,2004
    [85]陈铁云,朱正宏,海洋平台碰撞和损伤分析的进展,力学进展,1989,19(4):454-463
    [86] Glykas, A and Das, P. K. Energy conservation during a tanker collision[J], Journal of Ocean Engineering, 1998, 28(4):361-374
    [87] J. G. de Oliverira, Design of steel offshore structures against impact loads due to dropped objects, Report no. 81-6, Massachusetts Institute of Technology, USA, 1981, pp 465-481
    [88] Wierzbicki T, Suh M S. Indentation of tubes under combined loading[J], Int J Mechanical Sciences, 1988
    [89] Wierzbicki T, Suh Myung Sung. Denting analysis of tube under combined loading, Report MITSG 86-5, MIT Sea Grant College Program, Massachusetts Institute of Technology, 1986
    [90] P. T. Pedersen, Shengming Zhang. On impact mechanics in ship collisions, Marine Structures-2(1998), pp 429-449
    [91]王自力,船舶碰撞损伤机理与结构耐撞性研究[D],上海:上海交通大学,2000
    [92] CHEN Zhijian, YUAN Jianhong, ZHAO Yao. Impact Experiment Study of Ship Building Steel at 450 MPa Level and Constitutive Model of Cowper-Symonds[J]. Journal of Ship Mechanics, 2007,11(6), pp 933-941
    [93]朱新阳,吴梵,加筋板在横向撞击下的吸能特性研究,海军工程大学学报[J],2008,vol20(3):25-30
    [94]薛毅,陈立萍编著,统计建模与R软件[M],北京:清华大学出版社,2006
    [95]石亦平,周玉蓉,ABAQUS有限元分析实例详解[M],北京:机械工业出版社,2006
    [96] PT Pedersen, JJ Jensen. Ship impact analysis for bottom supported offshore structures. Advances in marine struetures-2, Elsveier Applied Sciences, Amrsetdrma, 1991, 276-95.
    [97] Sherman D R. Proceeding of the ASCE, Structural Division, 102, STII.1975.
    [98] American Petroleum Institute(API).Planning, Designing and Constructing Fixed offshore Platforms, API RP2A, Thirteenth Edition, Washington, D.C., 1982
    [99]朱孟巍,船舶与海洋平台碰撞的动力特性研究,[硕士学位论文],武汉:武汉理工大学,2006
    [100] Yongning Gu, Zili Wang. An Inertia Equivalent Model for Numerical Simulation of ship-ship collisions[R], 2nd International Conference on Collision and Grounding of Ships ICCGS 2001, Copenhagen, Denmark, July1-3, 2001:155-160
    [101]邵怀海,海底管道立管系统模拟中的约束处理,石油工程建设, 2005,31(3):30-31
    [102] TEBBETT E. The last five year’s experience in steel platform repairs[C], Proceeding of 19th Annual Offshore Technology Conference, 1987
    [103]郝红伟,MATLAB 6实例教程[M],北京:中国电力出版社,2001
    [104]尚涛,石端伟,安宁等编著.工程技术可视化与MATLAB实现[M],武汉:武汉大学出版社,2002.1
    [105]余建新,郭振邦.船舶与海洋结构物可靠性原理[M],天津:天津大学出版社,2001
    [106] J.P. Kenny. Protection of offshore Installations Against Impact offshore Technology Report OTI,1991
    [107] Fujii. Y., Yamanouchi. H., Matui T. Survey of Traffic Management Systems and brief Introduction to Marine Traffic Studies, Electronic Navigation Research Institute Paper no. 45,1984.Japan
    [108] Technica. Ship-Modu Collision Frequency, Report no.3, RABL Project, London, July 1987
    [109] C. P. Ellinas. Mechanics of Ship/Jack-up Collisions. [J].Construct Steel Research, 1995,33:283-305
    [110] J. P. Kenny, Protection of offshore Installations Against Impact offshore Technology Report OTI, 1991
    [111] HMSO Guidance Notes. Offshore installations, guidance on design, construction and certification, 4th Ed., London: HMSO, 1990
    [112]陈养厚,陈团海,海洋平台受力改善及能量耗散疲劳延寿方案[J],石油机械,2008,36(9):163-166
    [113]龚顺风,金伟良,王全增,海上固定平台受损构件的修理与评估[J],中国海洋平台,2001,16(2):37-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700