巨型艾美耳球虫早熟株生物学特性及其相关基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡球虫病是由艾美耳球虫引起的一种危害极为严重的全球性寄生虫病,目前仍以药物防治为主。由于球虫耐药性的普遍存在及畜禽产品药物残留等问题,免疫预防在球虫病防控中的作用与地位日显突出。球虫早熟株具有潜在期明显缩短、致病性减弱、繁殖能力降低、免疫原性较好等独特的生物学特性。由早熟株卵囊研制成的球虫弱毒活苗是当前球虫病免疫预防的主要手段,在鸡球虫病的控制中发挥了重要作用。过去对早熟株的研究主要集中在对其致病性、免疫原性、繁殖能力等基本生物学特性及免疫应用方面,而在基因、蛋白质水平上的研究极其有限。
     本文以鸡场中普遍存在的、危害严重的、免疫原性最强的巨型艾美耳球虫为对象,经早熟株选育获得了一遗传特性稳定的E. maxima早熟株,并对其生物学特性进行了系统研究;首次构建了E. maxima早熟株与母株孢子化卵囊消减cDNA文库,并采用cDNA微阵列技术筛选早熟株与母株孢子化卵囊的差异表达基因,发现一批球虫早熟株差异表达新基因的信息,分析显示一些差异表达基因可能与球虫的入侵、表型等相关。
     1 E. maxima早熟株的选育及其生物学特性研究
     经过连续17代的早熟株选育,E. maxima的潜在期由母株的142h缩短至107h,缩短了35h。早熟株卵囊的长、宽及大小均比母株的小,且差异显著(P<0.05);卵囊指数比母株的稍大,但差异不显著( P>0.05)。早熟株的卵囊繁殖能力较母株的低,排卵囊高峰出现在接种后第6 d,较母株提前1d。在同等剂量之下,早熟株的致病性低于母株,但免疫保护力和免疫原性与母株的相当。早熟株经5代放松选择传代后,其致病性、卵囊繁殖能力、排卵囊规律等没有出现“返强”现象,表明该早熟株具有较好的遗传稳定性。早熟株的选育成功,为球虫早熟株弱毒疫苗的研制以及早熟株相关基因的筛选提供重要材料。
     2早熟株与母株孢子化卵囊消减cDNA文库的构建
     利用SSH技术,分别以早熟株与母株孢子化卵囊cDNA为tester或driver,进行正向和反向消减,首次构建了2个E. maxima早熟株与母株的消减cDNA文库。从2个文库中随机挑取100个克隆,经PCR鉴定,2个文库的重组率分别为98%和97%,大部分克隆的插入片段都在500 bp以上,大小不一,表明成功构建了消减cDNA文库,为进一步的球虫早熟株相关差异表达基因的筛选提供了条件。
     3 cDNA微阵列技术筛选早熟株与母株孢子化卵囊差异表达基因
     首次应用cDNA微阵列技术从消减cDNA文库中筛选早熟株与母株差异表达基因。从构建的正向和反向消减cDNA文库中,随机挑取3164个克隆制成cDNA微阵列,每个克隆重复点样三次。早熟株和母株各取2份样本进行生物学重复杂交分析,每份样本进行正反标记,共制作了4张芯片。芯片杂交结果显示,第一批样本正反标都同时呈现表达差异的基因克隆共726个,第二批样本差异表达共519个,两批样本中正反标同时呈现表达差异的克隆共426个,以母株为对照,早熟株表达下调克隆314个,上调有112个。
     对所有426个差异表达克隆进行测序,结果获得了360个有效的ESTs。对这360个ESTs进行UniGene基因归并,得到54条clusters,包括15条contigs和39条singletons。对获得的54个clusters进行BLASTX同源比对,有16个与已知蛋白有较高的同源性,其中包括5个球虫蛋白、4个其它顶复器门原虫蛋白、3个病毒蛋白以及4个其他物种蛋白。同源蛋白主要包括丝氨酸蛋白酶抑制剂(serpin)、阳离子转运ATP酶( cation-transporting ATPase )、菱形蛋白( rhomboid-like protein)、衣壳蛋白、核心蛋白、反转录转座子蛋白、晶状体相关蛋白、斑联蛋白、红血球凝聚素酯酶等。生物信息学功能分析提示这些clusters所编码的蛋白可能与球虫的入侵、致病性、耐药性、细胞内外离子浓度调节等相关。另38个clusters未发现有同源蛋白,可能是球虫的新基因,它们在球虫中的作用有待深入研究。为验证芯片杂交结果,选择8个基因进行实时定量PCR分析,结果与芯片一致。本研究分析了E. maxima早熟株和母株孢子化卵囊的差异表达基因,获得一批重要差异表达基因的信息,为进一步开展差异表达基因的克隆、鉴定及生物学功能分析等奠定了基础。
     4早熟株与母株孢子化卵囊差异表达新基因全长cDNA的克隆与分析
     根据差异表达基因的ESTs序列设计引物,利用RACE技术扩增,获得了5个E. maxima早熟株差异表达新基因的全长cDNA,其中早熟株表达上调基因1个,下调基因4个。利用生物信息学分析软件对新基因编码蛋白的理化性质、信号肽、跨膜结构、疏水性、保守功能域及同源性等进行了分析预测。A29基因编码的蛋白分子量约为18 kDa,有1个信号肽、2个疏水区以及2个跨膜结构,与E. acervulina阳离子转运ATP酶(cation- transporting ATPase)在1~83位氨基酸具有81%的相似性,推测该基因与细胞内外阳离子浓度的调节、球虫耐药性等相关。A41基因编码的蛋白分子量约为28 kDa,具有6个疏水区、1个信号肽、6个跨膜结构及1个rhomboid superfamily保守结构域,与E. tenella菱形样蛋白(rhomboid-like protein)有91%的相似性,推测该基因与球虫的入侵、毒力等相关。A74基因编码的蛋白分子量约为22 kDa,有1个疏水区和1个SERPIN superfamily功能结构域,与E. acervulina serpin和E. tenella SERPIN1protein precursor分别有91%和82%的相似性,推测该基因与球虫的入侵相关。A78基因编码的蛋白有1个信号肽和2个疏水区,无跨膜结构;B71基因编码的蛋白蛋白有1个疏水区,无信号肽和跨膜结构;BLASTp比对均未发现有同源蛋白,提示它们可能是球虫的新基因,其在球虫生长发育中的作用有待深入探讨。
     5早熟株差异表达基因serpin在大肠杆菌中的表达
     将获得的E. maxima早熟株差异表达新基因A74全长cDNA连接到原核表达载体pGEX-4T-2中,成功构建了重组表达质粒pGEX-4T-A74,并在大肠杆菌BL21中成功诱导表达,重组蛋白以包涵体形式存在,用GST resin对该重组融合蛋白进行了纯化,Western-blot分析表明该重组蛋白都具较好的抗原性。Serpin基因的克隆、表达为开展该基因的生物学功能等研究提供了基础。
     综上,本文选育的E. maxima早熟株为球虫弱毒疫苗的研制提供了重要材料,早熟株与母株孢子化卵囊差异表达基因的研究为分离、鉴定与球虫早熟株独特特性相关的关键分子、从分子水平上阐明球虫早熟株独特特性的遗传学基础提供了重要基础,为探讨顶复器门原虫生活史的调控机制提供了重要思路。
Coccidiosis caused by protozoan parasites of the genus Eimeria has a severe economic impact on commercial poultry production worldwide. Courrent control of the Eimeria species is based primarily on the use of medication. But the extensive use of anticoccidial drugs over the years has led to the emergence drug resistance in the field, and there are concerns about drug residues in poultry products, and there are strong desires of consumers to ban drugs from animal feeds. There is, therefore, a pressing need to move away from chemotherapeutic control of coccidiosis towards vaccination. Immunization with attenuated vaccines is increasingly playing an important role in the control of coccidiosis in the poultry industry.
     The precocious line of Eimeria was obtained by repeated passages of oocysts first collected from feces of previously infected chickens. Compared with the parent strain, the precocious line had a reduced prepatent period, markedly less pathogenicity, and much lower reproductive potential, but retained immunogenicity. Despite this variety of changes, few clearly discernible differences between the DNA of the parent strain and the precocious line have been identified. Indeed, the limited genetic variability might correspond to significant changes in the genome that affect the biological features of the parasite.
     Our research focused on analysis gene expressed changes with biochemical and morphological alterations in sporulated oocysts between the precocious line E. maxima and its parent strain using high throughput and high sensitivity approaches. It will help to understand the genetic basis of precocious phenotype in Eimeria and contribute to investigate the mechanism that regulate the life cycles of apicomplexan parasites.
     1 Selection and Characteristics of a Precocious Line of E. maxima
     A precocious line of E. maxima was selected by repeated passages of oocysts first collected from feces of previously infected chickens. The prepatent period of parasite was reduced from 142 h to 107 h. The size of sporulated oocysts of precocious strain was remarkably smaller than that of the parent strain. The peak of oocyst production was advanced by 1 day in comparison with the parent strain. Compared with the parent strain, the precocious line had a markedly less pathogenicity, and much lower reproductive potential, but retained immunogenicity. The precocious line of E. maxima was passaged in chickens with 5 generations without selection pressure. Its pathogenicity was significant less than the parent strain, showing the characteristics of precocious line were genetically stable.
     2 Construction of sporulated oocysts Subtractive cDNA Libraries of the precocious line E. maxima and its parent strain.
     A forward subtractive cDNA library was constructed by Suppression Subtractive Hybridization, using the sporulated oocysts cDNA of the precocious line as tester and the cDNA of parent strain as driver. A reverse subtractive cDNA library was constructed, using parent strain as tester and precocious line as driver. PCR amplification revealed that the two subtractive cDNA libraries contained approximated 98% and 97% recombinant clones. The size of most insert cDNA was about 500bp. These results indicated the subtractive cDNA libraries could be used to screen differentially expressed genes.
     3 Identification and analysis the differentially expressed genes of sporulated oocysts between the precocious line E. maxima and its parent strain by cDNA microarray technique
     In order to screen differentially expressed genes from 2 subtractive cDNA libraries in large scale, 3164 clones were selected to fabricate cDNA microarrays. Each clone repeated 3 times. Microarray hybridization results suggested that 426 clones were identified from 2 subtractive cDNA libraries. Of which, 314 clones down regulated, 112 up regulated. A total of 426 clones were selected and sequenced. 360 valid ESTs were obtained. The results of sequence analysis indicated that these clones represented 54 clusters. Blast searches showed that some proteins encoded by 16 differentially expressed genes of sporulated oocysts shared significant identity with previously described proteins, including Eimeria acervulina serpin and cation-transporting ATPase, Eimeria tenella rhomboid-like protein and transhydrogenase, precore/core protein, tegument protein, retrotransposon protein, zyxin protein, alpha-crystallin-related protein, hemagglutinin esterase, etc. These results suggested that these differentially expressed genes would be related to host cell attachment, invasion and pathogenicity. The others 38 clusters had no homologues to the reported proteins in GenBank, which may be novel genes in Eimeria.
     4 Cloning and bioinformatics analysis differentially expressed novel genes of the sporoluated oocysts of the precocious line of E maxima and its parent srtain
     Based on ESTs of differentially expressed genes of sporulated oocysts received by SSH and cDNA microarray, the complete sequences of five novel genes including a complete open reading frame were obtained with RACE technique. Among these novel genes, one new gene was up-regulated in precocious line of E. maxima and four were down-regulated. Bioinformatics analysis showed A29 protein had 18 kDa molecular weight,a signal peptide, two hydrophobic regions and two trans-membrane structures. Blast searches show that this protein was homologous with E. acervulina cation-transporting ATPase. These results showed that this gene was related to cation regulation and drug-resistance. A43 protein had 28 kDa molecular weight, a signal peptide, six hydrophobic regions, six trans-membrane structures and a rhomboid superfamily conserved domain. It had 91% identity with E. tenella rhomboid-like protein. This gene was related to invasion or pathogenicity. A74 protein had 22 kDa molecular weight, one hydrophobic region and a SERPIN superfamily conserved domain. It had 91% identity with E. acervulina serpin. This gene was related to invasion.A78 protein had a signal peptide and two hydrophobic region. B71 protein had a signal peptide. These two proteins had no homolog to the reported proteins in GenBank, which suggested they would be novel genes.
     5 Expression of serpin genes of E. maxima in E.coli
     One differentially expressed novel gene was ligated to prokaryotic expression vector pGEX-4T-2 and constructed a recombinant plasmid 4T-A74. This recombinant plasmid was transformed into BL21for expression. After induction by IPTG, The fusion protein was expressed in the form of inclusion bodies. The fusion protein was purified successfully with GST resin. Western-blot revealed that this protein was a native antigen.
引文
1.艾军魁,张志文,辛殿祺,等.抑制消减杂交结合cDNA微阵列技术鉴定人肾癌组织高表达基因谱.中国科学(C辑),2003,33(5):436~445.
    2.曹振夫,王美红,古少鹏,郑明学.柔嫩艾美耳球虫早熟株的初步选育及免疫原性的测定.中国兽药杂志,2008,12:5~8.
    3.陈汉忠,王中田,苏勇,蒋荣华,唐倩迪,苏文伟,莫昆云,钟谢飞.广西鸡球虫虫株早熟系的初步选育及繁殖力的研究.西南农业学报,2005,2:199~201.
    4.陈忠斌,杨静,王华,等.应用抑制性消减杂交筛选流感病毒感染宿主应答基因.中国生物化学与分子生物学杂志,2003,19(2):156~161.
    5.段嘉树,张翠红,郭荣华,等.柔嫩艾美耳球虫和毒害艾美耳球虫早熟弱毒株的致病性和免疫原性研究初报.当代畜牧,1993,4:21~23.
    6.段嘉树.用柔嫩艾美耳早熟致虫株及其毒株对初生雏鸡和幼雏的免疫实验.中国兽医杂志, 1991,17(3):14~15.
    7.范保星,张开泰,李刚,等.α粒子诱发BEP2D细胞转化过程中肺癌相关基因表达的cDNA microarray研究.癌症,2001,20:704~708.
    8.付劲蓉,刘文励,周剑锋,等.多药耐药相关基因HV126的电子克隆及在化疗前后白血病细胞中的表达.中华医学遗传学杂志,2005,22(2):158~163.
    9.付劲蓉,刘文励,周剑锋,等.急性髓系白血病细胞多药耐药相关基因的筛选.华中科技大学学报(医学版),2005(6):659~661.
    10.韩静芳,黄兵,董辉,;俞纯方,韩红玉,赵其平,姜连连,王鑫.柔嫩艾美耳球虫早熟株选育及相关生物学特性.复旦学报(自然科学版),2008,3:380~386.
    11.何天霖,吴志勇,罗蒙,邱江锋.联合应用SSH和cDNA表达谱芯片筛选肝星状细胞早期活化的相关基因.消化外科,2006,5(5):350~354.
    12.胡景辉,邹仁明,乔美花,等.布氏早熟弱毒虫株的选育.畜牧兽医学报,1999,30(1):86~90.
    13.李玉焕,苏华伟,吴兆敏,朱顺海.巨型艾美耳球虫免疫对其它几种球虫的血清学反应和临诊抗感染交叉保护力的研究.中国兽医寄生虫病,1998,6(4):11~13.
    14.刘芳,陈树宝,刘晓青,等.心脏圆锥动脉干发育相关基因的筛选研究.上海第二医科大学学报,2005,25(5):478~482.
    15.刘群,陈宏武,索占伟,等.堆型艾美耳球虫(E. acervulina)早熟株与毒株的繁殖力和致病性比较实验.中国兽医学报,2004,24(1):24~25.
    16.刘群,蒋金书.不同种、株鸡球虫DNA多态性的比较研究.畜牧兽医学报.2000,31(4):360~365.
    17.刘群,肖海红,潘林英.巨型艾美耳球虫(E. maxima)早熟弱毒株的选育.中国兽医杂志, 2001, 37(5):18~19.
    18.刘群.柔嫩艾美耳球虫早熟选育及RAPD在鸡球虫虫种和株鉴定上的应用. [博士学位论文].北京:中国农业大学,1998,14~27.
    19.明庆磊,程超,吴鉴三,胡孝忠,蒋金书.应用间接酶联免疫吸附试验检测鸡抗球虫早熟株三价苗抗体.中国兽医科技,2000,30(2):7~9.
    20.秦建华,李德昌,张勤,等.堆型艾美耳球虫早熟减毒株的选育.兽医大学学报,1992,12(2): 174~178.
    21.孙洪波,王国英,孙振元,古润泽,赵梁军.应用抑制差减杂交.法分离粗枝大叶黄杨幼苗的冷诱导表达基因.中国农业科学,2005,38(1):135~139
    22.孙秀菊,孙开来,郑志红,等.肠型胃癌不同发展阶段基因表达谱分析.中华医学遗传学杂志,2006,23(2):142~146.
    23.索勋.和缓艾美耳球虫早熟系选育及其生物学特性研究.畜牧兽医学报,2005,36(6): 602~605.
    24.王江清,李德昌,张勤,等.巨型艾美耳球虫早熟减毒株的选育.兽医大学学报,1991,11(3): 266~269.
    25.王金惠,善亚君,从玉文,等.人体肝癌细胞急性低氧及低氧习服差异表达基因分析.生理学报,2003,55(3):324~330. 
    26.王时伟.布氏艾美尔球虫及其早熟株生物学特性的研究. [硕士学位论文].乌鲁木齐:新疆农业大学.2004.
    27.徐存拴,袁金云,韩鸿鹏,等.大规模鉴定大鼠0,4,36,72,96 h短间隔连续部分肝切除中再生肝差异表达的基因.中国科学(C辑),2005,35(2):153~163.
    28.曾勇,陆承平,朱建中. cDNA芯片结合抑制性差减杂交技术构建对虾白斑综合征病毒表达基因和螯虾免疫相关基因文库.水产学报,2006,30(5):690~694.
    29.曾勇,陆承平. cDNA微阵列结合抑制性差减杂交研究对虾白斑综合征病毒部分表达基因,病毒学报,2004,20(3):255~260.
    30.张必成,周洁,朱诗国等.鼻咽癌上皮细胞株HNE1差异表达基因的分离与鉴定.中国生物化学与分子生物学报,2003,19(6):743~750.
    31.张志敏,于三科,林青,等.陕西省杨凌区柔嫩艾美耳球虫早熟株选育及致病性研究.家畜生态学报,2005,26(1):57~60.
    32.朱彦鹏华兰英.脆弱艾美耳球早的早熟培育及其免疫原性试验.中国兽医科技,1991,21(3):24~26.
    33.邹丰才,吴绍强,林瑞庆,等.抑制消减杂交结合cDNA微阵列芯片技术筛选猪蛔虫性别特异表达基因的研究.中国畜牧兽医学会第一届中国养猪生产和疾病控制技术大,2005,26~30
    34. Allen PC,Jenkins MC,Miska KB. Cross protection studies with Eimeria maxima strains. Parasitology Research. 2005, 97: 179~185.
    35. Bae JW, Rhee SK, Nam YD, Park YH. Generation of subspecies level-specific microbial diagnostic microarrays using genes amplified from subtractive suppression hybridization as microarray probes. Nucleic Acids Res. 2005, 33(13):e113.
    36. Barta JR,Coles BA,Schito ML,et al. Analysis of infraspecific variation among five strains of Eimeria maxima from North America.Int J Parasitol. 1998,28( 3):485~492.
    37. Barta JR,Martin DS,Liberator PA,et al. Phylogenetic relationships among eight Eimeria species infecting domestic fowl inferred using complete small subunit ribosomal DNA sequences. J Parasitol. 1997, 83( 2): 262~271.
    38. Bedrnik P, Kucera J, Jurkovic P & Firmanova A. Results of experiments on pathogenicity and immunization with selected lines of E. tenella. In L.R. McDougald, L.P. Joyner & P.L. Long ( eds), Research in Avian Coccidiosis,Proceedings of the Georgia Coccidiosis Conference, 1985( pp. 510~525) . University of Georgia, Athens, Georgia.
    39. Belli SI,Lee M,Thebo P,et al. Biochemical characterisation of the 56 and 82 kDa immunodominant gametocyte antigens from Eimeria maxima . Int J Parasitol. 2002, 32( 7): 805~816.
    40. Belli SI, Wallach MG, Smith NC. Cloning and characterization of the 82 kDa tyrosine-rich sexual stage glycoprotein, GAM82, and its role in oocyst wall formation in the apicomplexan parasite, Eimeria maxima . Gene, 2003, 307:201~212.
    41. Belli SI,Witcombe D,Wallach MG,Smith NC. Functional genomics of gam56:characterisation of the role of a 56 kilodalton sexual stage antigen in oocyst wall formation in Eimeria maxima . Int J Parasitol. 2002, 32( 14): 1727~1737.
    42. Bhogal BS,Miller GA, Andeerson AC, et al. Potential of a recombinant antigen as a prophylctic vaccine for day-old broiler chicken against Eimeria acervulina and Eimeria tenella. Vet Immunol Immunopatho, 1992, 31: 323~335.
    43. Chiang YY,Tsai MH,Lin TY,Chiang IP. Expression profile of metastasis-related genes in invasive oral cancers. Histol Histopathol,2008,23( 10):1213~1222.
    44. Choi JJ, Alkharouf NW, Schneider KT, et al. Expression patterns in soybean resistant to Phakopsora pachyrhizi reveal the importance of peroxidases and lipoxygenases. Funct Integr Genomics, 2008, 8( 4): 341~59.
    45. Cottee PA, Nisbet AJ, Abs El-Osta YG, et al. Construction of gender-enriched cDNA archives for adult Oesophagostomum dentatum by suppressive-subtractive hybridization and a microarray analysis of expressed sequence tags.Parasitology, 2006 132( Pt 5): 691~708.
    46. Datu BJ , Gasser RB , Nagaraj SH , et al. Transcriptional Changes in the Hookworm, Ancylostoma caninum, during the Transition from a Free-Living to a Parasitic Larva. PLoS Negl Trop Dis, 2008, 2( 1): e130.
    47. del Cacho E,Gallego M,López-Bernad F,Quílez J,Sánchez-Acedo C. Differences in Hsp70 expression in the sporozoites of the original strain and precocious lines of Eimeria tenella. J Parasitol. 2005, 91( 5): 1127~1131.
    48. Diatchenko L , Lau YC , Campbell AP , et al. Suppression subtractive hybridization: a method for generating differential regulated or tissue specific cDNA probes and libraries . Proc. Natl. Acad. Sci USA, 1996, 93: 6025~6030.
    49. Dunn PP, Billington K, Bumstead JM, Tomley FM. Isolation and sequences of cDNA clones for cytosolic and organellar hsp70 species in Eimeria spp. Mol Biochem Parasitol. 1995, 70( 1-2): 211~215.
    50. Dunn PP, Bumstead JM, Tomley FM. Sequence, expression and localization of calmodulin- domain protein kinases in Eimeria tenella and Eimeria maxima. Parasitology. 1996, 113( Pt 5): 439~448.
    51. Feng HC, Tsao SW, Ngan HY, et al. Differential gene expression identified in complete hydatidiform mole by combining suppression subtractive hybridization and cDNA microarray.Placenta, 2006 27( 4-5): 521~526.
    52. Ferguson DJ , Belli SI , Smith NC , Wallach MG. The development of the macrogamete and oocyst wall in Eimeria maxima: immuno-light and electron microscopy . Int J Parasitol. 2003, 33( 12): 1329~1340.
    53. Fried M,Mencher D,Sar-Shalom O,Wallach M. Developmental gene expression of a 230-kilodalton macrogamete-specific protein of the avian coccidial parasite,Eimeria maxima . Mol Biochem Parasitol. 1992, 51( 2): 251~262.
    54. Ghorbel MT,Sharman G,Hindmarch C,et al. Microarray screening of suppression subtractive hybridization-PCR cDNA libraries identifies novel RNAs regulated by dehydration in the rat supraoptic nucleus. Physiol Genomics,2006,24( 2):163~172.
    55. Hagenaars A,Knapen D,Meyer IJ,et al. Toxicity evaluation of perfluorooctane sulfonate ( PFOS)in the liver of common carp( Cyprinus carpio). Aquat Toxicol,2008, 88( 3): 155~163.
    56. He J, Chang LJ. Functional characterization of hepatoma-specific stem cell antigen-2.Mol Carcinog, 2004, 40( 2): 90~103.
    57. Healy ZR, Lee NH, Gao X, et al. Divergent responses of chondrocytes and endothelial cells to shear stress:Cross-talk among COX-2,the phase 2 response, and apoptosis. Proc Natl Acad Sci, 2005, 102: 14010~14015.
    58. Hein H. Observation on the level and duration of resistance to re-infectionconferred by the different numbers of infection and doses of oocysts of Eimeria maxima and Eimeria necatrix in young chickens. Proceedings of 4th European Poultry Conference, London. UK.1973: 131~135.
    59. Higo M, Uzawa K, Kouzu Y, et al. Identification of candidate radio resistant genes in human squamous cell through gene expression analysis using DNA microarrays.Oncol Rep, 2005, 14( 5): 1293~1298.
    60. Huang CQ, Gasser RB, Cantacessi C, et al. Genomic Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum. PLoS Negl Trop Dis, 2008, 2( 6): e246.
    61. Huff CG, Marchbank DF, Shiroishi T. Changes in infectiousness of malaria gametocytes :Ⅱ. Analysis of the possible causative factors. Experimental Parasitology, 1958, 7: 399~417.
    62. Jeffers TK. Anticoccidial drug resistance : a review with emphasis on the polyether ionophores in coccidian and intestinal coccidiomorphs. Proceedings of the Vth International Coccidiosis Conference , Paris , France. INRA Publications.1989: 295~308.
    63. Jeffers TK. Genetic recombination of precociousness and anticoccidial drug resistance in Eimeria tenella. Z Parasitenkd. 1976, 50( 3): 251~255.
    64. Jeffers TK. Attenuation of Eimeria tenella through selection for precociousness. J. Parasitol.1975, 61: 1083~1090.
    65. Jenkins MC, Seferian PG, Augustine PC, Danforth HD. Protective immunity against coccidiosis elicited by radiation-attenuated Eimeria maxima sporozoites that are incapable of asexual development. Avian Dis. 1993, 37( 1): 74~82.
    66. Jorgensen WK,Anderson GR,Jeston PJ, Blight GW, Molloy JB. Selection and characterisation of two attenuated vaccine lines of Eimeria tenella in Australia. Aust Vet J. 2006, 84( 3): 89~94.
    67. Joyner LP & Norton CC. The immunity arising from continuous low-level infection with Eimeria maxima and Eimeria acervulina. Parasitolgy, 1976, 72:115~125.
    68. Kalujnaia S, McWilliam IS, Zaguinaiko VA, et al. Salinity adaptation and gene profiling analysis in the European eel( Anguilla anguilla) using microarray technology. Gen Comp Endocrinol, 2007, 152( 2-3): 274~280.
    69. Kawaguchi H, Konishi T, Nakamura T. Characteristics of a precocious line of Eimeria tenella: pathogenicity and endogenous development . Nippon Juigaku Zasshi. 1988, 50( 2): 445~452.
    70. Kawazoe U , Bordin EL , de Lima CA , Dias LA. Characterisation and histopathological observations of a selected Brazilian precocious line of Eimeria acervulina.Vet Parasitol. 2005, 131( 1-2): 5~14.
    71. Kucera J. & Bedrnik P. Pokus o oslabeni patogenity kokcidie Eimeria maxima metodou postupn′eho zkracov′aniv′yvojov′eho cyklu .Biologizace a Chemizace Veterinaria, 1987, 23, 353~359.
    72. Lee EH,Fernando MA. Immunogenicity of a single sporocyst of Eimeria maxima. J Parasitol. 1978, 64( 3): 483~485.
    73. Lee EH. Live coccidiosis vaccines and a field immune variant of Eimeria maxima:a case report. In J.R. Barta & M.A. Fernando( Eds.),Proceedings VIth International Coccidiosis Conference, Guelph Guelph, Canada. 1993: 118~121.
    74. Li GQ, Kanu S, Xiang FY, Xiao SM, Zhang L, Chen HW, Ye HJ. Isolation and selection of ionophore-tolerant Eimeria precocious lines: E. tenella, E. maxima and E. acervulina . Vet Parasitol. 2004, 119( 4): 261~276.
    75. Licois D, Coudert P , Boivin M , Drouet-Viard F , Prov?t F. Selection and characterization of a precocious line of Eimeria intestinalis, an intestinal rabbit coccidium. Parasitol Res. 1990, 76( 3): 192~198.
    76. Licois D,Coudert P,Drouet-Viard F,Boivin M. Eimeria magna:pathogenicity, immunogenicity and selection of a precocious line . Vet Parasitol. 1995,60( 1-2):27~35.
    77. Licois D, Coudert P, Drouet-Viard F, Boivin M. Eimeria media: selection and characterization of a precocious line . Parasitol Res. 1994, 80( 1): 48~52.
    78. Liu Y, Zhu X, Zhu J, et al. Identification of differential expression of genes in hepatocellular carcinoma by suppression subtractive hybridization combined cDNA microarray. Oncol Rep, 2007, 18( 4): 943~951.
    79. Lockyer AE, Spinks J, Kane RA, et al. Biomphalaria glabrata transcriptome: cDNA microarray profiling identifies resistant- and susceptible-specific gene expression in haemocytes from snail strains exposed to Schistosoma mansoni. BMC Genomics, 2008, 9: 634.
    80. Long PL, Millard BJ.Eimeria: immunity of young chickens kept in litter pens. Avian Pathology, 1977, 6: 77~92.
    81. Long PL. Experimental infection of chickens with two species of Eimeria isolated from Malaysian jungle fowl. Parasitology, 1974, 69: 337~347.
    82. Mahalingam R, Fedoroff N. Screening insertion libraries for mutations in many genes simultaneously using DNA microarrays. Proc Natl Acad Sci USA, 2001,98( 13): 7420~7425.
    83. Martin AG,Danforth HD, Barta JR, Fernando MA. Analysis of immunological cross-protection and sensitivities to anticoccidial drugs among five geographical and temporal strains of Eimeria maxima. Int J Parasitol, 1997, 27( 5): 527~533.
    84. Matsler PL, Chapman HD. Characterization of a strain of Eimeria meleagridis from the turkey. Avian Dis. 2006, 50: 599~604.
    85. Matsui T,Fujino T,Kobayashi F,Tsutsumi Y,Tsuji M. Attenuation of Eimeria caviae by selection for precocious development. Int J Parasitol. 1996, 26( 11):1243~1248.
    86. McDonald V and Ballingall S. Attenuation of Eimeria mivati ( =mitis ) by selection for precocious development. Parasitology, 1983, 86: 371~379.
    87. McDonald V, Ballingall S, Shirley MW. A preliminary study of the nature of infection and immunity in chickens given an attenuated line of Eimeria acervulina. Parasitology, 1982, 84( 1): 21~30.
    88. McDonald V, Rose ME, Jeffers TK. Eimeria tenella: immunogenicity of the first generation of schizogony. Parasitology. 1986, 93( Pt 1): 1~7.
    89. McDonald V, Shirley MW, Bellatti MA. Eimeria maxima: characteristics of attenuated lines obtained by selection for precocious development in the chicken . Exp Parasitol, 1986, 61( 2): 192~200.
    90. McDonald V, Shirley MW. Eimeria mitis: a comparison of the endogenous developmental stages of a line selected for early maturation and the parent strain. Parasitology. 1984, 88( Pt 1): 37~44.
    91. McDonald V, Shirley MW. The asexual development of precocious lines of Eimeria spp. in the chicken. In L.R. McDougald, L.P. Joyner & P.L. Long( eds),Research in Avian Coccidiosis , Proceedings of the Georgia Coccidiosis Conference, 1985( pp. 510~525) . University of Georgia, Athens, Georgia
    92. McDonald V, Shirley MW. The endogenous development of virulent strains and attenuated precocious lines of Eimeria tenella and E. necatrix. J Parasitol. 1987,73( 5): 993~997.
    93. McDougald LR and Jeffers TK. Eimeria tenella:( Sporozoa: Coccidia): gametogony following a single asexual generation. Science, 1976, 192: 258~259.
    94. Michael A. The practical use of a maternal vaccine against coccidiosis. World poultry, 2003, 19( 2): 24~26.
    95. Mikus T, Poplstein M, Sigutova L. et al. DNA microarray gene expression analyses in attenuated and virulent E. tenella. Proceedings of The IXth International Coccidiosis Conference. 2005, p152.
    96. Millard BJ, Bradley JWA, Long PL. The schizogony of Eimeria maxima in the chicken. Zeitschrift fur Parasitenkunde, 1972, 38: 77~81.
    97. Montes C,Rojo F,Hidalgo R,Ferre I,Badiola C. Selection and development of a Spanish precocious strain of Eimeria necatrix. Vet Parasitol. 1998, 78( 3):169~183.
    98. Ouyang B,Yang T,Li H,et al. Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis.J Exp Bot, 2007, 58( 3): 507~520.
    99. Pakandl M, Eid Ahmed N, Licois D, Coudert P. Eimeria magna Pérard, 1925:study of the endogenous development of parental and precocious strains. Vet Parasitol. 1996, 65( 3-4): 213~222.
    100. Pakandl M, Gaca K, Licois D, Coudert P. Eimeria media Kessel 1929:comparative study of endogenous development between precocious and parental strains. Vet Res. 1996, 27( 4-5): 465~472.
    101. Pakandl M,JelínkováA. The rabbit coccidium Eimeria piriformis:Selection of a precocious line and life cycle study. Vet Parasitol. 2006, 137( 3-4): 351~354.
    102. Pakandl M, Licois D, Coudert P. Electron microscopic study on sporocysts and sporozoites of parental strains and precocious lines of rabbit coccidia Eimeria intestinalis, E. media and E. magna. Parasitol Res. 2001,87( 1):63~66.
    103. Pakandl M. Selection of a precocious line of the rabbit coccidium Eimeria flavescens Marotel and Guilhon( 1941) and characterisation of its endogenous cycle. Parasitol Res. 2005, 97( 2): 150-5.
    104. Pan YS, Lee YS, Lee YL, et al. Differentially profiling the low-expression transcriptomes of human hepatoma using a novel SSH/microarray approach.BMC Genomics, 2006, 7: 131.
    105. Pasamontes L, Hug D, Hümbelin M, Weber G. Sequence of a major Eimeria maxima antigen homologous to the Eimeria tenella microneme protein Etp100. Mol Biochem Parasitol, 1993, 57( 1): 171~174
    106. Pittlo RM, Ball SJ. The fine structure of the developing macrogamete of Eimeria maxima. Parasitology, 1979, 79( 2): 259~265.
    107. Rho J,Altmann CR,Socci ND,et al. Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization( SSH) and cDNA microarray analysis. DNA Cell Biol. 2002, 21( 8): 541~549.
    108. Rishi AS,Munir S,Kapur V,Nelson ND,Goyal A. Identification and analysis of safener-inducible expressed sequence tags in Populus using a cDNA microarray.Planta, 2004, 220( 2): 296~306.
    109. Rose M E & Long P L. Immunity to four species of Eimeria in fowls. Immunology, 1962, 5: 79~92
    110. Rose ME. Immunity to coccidiosis: protective effect of transferred serum in Eimeria maxima infections . Parasitology, 1971, 62( 1): 11~25.
    111. Rose ME. Immunity to Eimeria brunetti and Eimeria maxima infection in thefowl. Parasitology, 1967, 57: 363~370.
    112. Schena M,Shalon D,Davis RW,Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science,1995,270:467~470.
    113. Seo EY,Namkung JH,Lee KM, et al. Analysis of calcium-inducible genes in keratinocytes using suppression subtractive hybridization and cDNA microarray.Genomics, 2005, 86( 5): 528~538.
    114. Shirley MW, Bellatti MA. Eimeria necatrix: selection and characteristics of a precocious ( and attenuated)line. Avian Pathol. 1984,13( 4):657~668.
    115. Shirley MW, Bellatti MA. Live attenuated coccidiosis vaccine: selection of a second precocious line of Eimeria maxima . Res Vet Sci. 1988,44( 1):25~28.
    116. Shirley MW, Bumstead N. Intra-specific variation within Eimeria tenella detected by the random amplification of polymorphic DNA . Parasitol Res. 1994,80( 4): 346~351.
    117. Shirley MW , Harvey DA. A genetic linkage map of the apicomplexan protozoan parasite Eimeria tenella. Genome Res. 2000, 10( 10): 1587~1593.
    118. Shirley MW, Hoyle SR. The antigenicity of Eimeria maxima populations obtained from commercial farms. J Parasitol. 1981, 67( 4): 587~588.
    119. Shirley MW, McDonald V, Bellatti MA. Eimeria brunetti: selection and characteristics of a precocious ( and attenuated) line. Avian Pathol. 1986, 15(4):705~717.
    120. Shirley MW, McDonald V, Chapman HD, Millard BJ. Eimeria praecox:selection and characteristics of precocious lines. Avian Pathol. 1984, 13( 4):669~682.
    121. Shou J,Dotson C,Qian HR,et al. Optimized blood cell profiling method for genomic biomarker discovery using high-density microarray.Biomarkers, 2005,10( 4): 310~320.
    122. Smith NC,Wallach M, Miller CM,et al. Maternal transmission of immunity to Eimeria maxima: western blot analysis of protective antibodies induced by infection. Infect Immun. 1994b, 62( 11): 4811~4817.
    123. Smith NC,Wallach M, Petracca M, Braun R, Eckert J. Maternal transfer of antibodies induced by infection with Eimeria maxima partially protects chickens against challenge with Eimeria tenella. Parasitology. 1994,109( Pt 5):551~557.
    124. Smith NC,Wallach M,Miller CM,et al. Maternal transmission of immunity to Eimeria maxima: enzyme-linked immunosorbent assay analysis of protective antibodies induced by infection. Infect Immun. 1994a, 62( 4): 1348~1357.
    125. Sutton CA, Shirley MW and McDonald V. Genetic recombination of markers for precocious development arprinocid resistance, and isoenzymes of glucose phosphate isomerase in Eimeria acervulina. J. Parasitol.1986, 72: 965~967.
    126. Tyzzer EE. Coccidiosis in gallinaceous birds. Am Hyg, 1929,( 10): 269~383.
    127. Voiblet C , Duplessis S , Encelot N , Martin F. Identification of symbiosis-regulated genes in Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs.Plant Journal,2001, 25( 2): 181~191.
    128. Wallach M , Halabi A , Pillemer G , et al. Maternal immunization with gametocyte antigens as a means of providing protective immunity against Eimeria maxima in chickens. Infect Immun. 1992, 60( 5): 2036~2039.
    129. Wallach M, Pillemer G, Yarus S, et al. Passive immunization of chickens against Eimeria maxima infection with a monoclonal antibody developed against a gametocyte antigen. Infect Immun. 1990, 58( 2): 557~562.
    130. Wallach M, Smith NC, Braun R& Echert J. Potential control of chicken coccidiosis by maternal immunization. Parasitology Today,1995,11:262~265.
    131. Wallach M, Smith NC, Petracca M, et al. Eimeria maxima gametocyte antigens: potential use in a subunit maternal vaccine against coccidiosis in chickens. Vaccine, 1995, 13( 4): 347~354.
    132. Wallach M. The importance of transmission-blocking immunity in the control of infections by apicomplexan parasites. Int J Parasitol. 1997, 27( 10): 1159~1167
    133. Wallach M.The development of a novel vaccine against coccidiosic.World poultry, 2003, 19( 2): 24~26.
    134. Wallach MG,Mencher D,Yarus S,et al. Eimeria maxima:identification of gametocyte protein antigens. Exp Parasitol. 1989, 68( 1): 49~56.
    135. Wang B,Li F,Dong B,et al. Discovery of the genes in response to white spot syndrome virus ( WSSV) infection in Fenneropenaeus chinensis through cDNA microarray. Mar Biotechnol, 2006, 8( 5): 491~500.
    136. Wang H, Zhang H, Gao F, et al. Comparison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray. Theor Appl Genet. 2007, 115( 8): 1109~1126.
    137. Wang X, Zhou D, Qin L, et al. Genomic comparison of Yersinia pestis and Yersinia pseudotuberculosis by combination of suppression subtractive hybridization and DNA microarray . Arch Microbiol,2006,186( 2):151~159.
    138. Witcombe DM,Ferguson DJ, Belli SI, Wallach MG, Smith NC. Eimeria maxima TRAP family protein EmTFP250: subcellular localisation and inductionof immune responses by immunisation with a recombinant C-terminal derivative . Int J Parasitol. 2004, 34( 7): 861~872.
    139. Wu Z,Soliman KM,Bolton JJ,et al. Identification of differentially expressed genes associated with cotton fiber development in a chromosomal substitution line( CS-B22sh) . Funct Integr Genomics, 2008, 8( 2): 165~174.
    140. Xu BY,Su W,Liu JH,Wang JB,Jin ZQ. Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray. Planta, 2007, 226( 2): 529~539.
    141. Xu J, Stolk JA, Zhang X, et al. Identification of differentially expressed gengs in human prostate cancer using subtraction and microarray.Cancer Res,2000, 60: 1677~1682.
    142. Yang GP,Ross DT,Kuang WW,et al. Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes. Nucleic Acids Res,1999, 27( 6): 1517~1523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700