汽车尾气处理用铈锆基催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车尾气污染的日益严重,尾气净化成为时势所趋。本论文的主要目的就是合成具有大比表面积、较好热稳定性和储氧性能的铈锆固溶体,并以其为载体制备汽车尾气净化催化剂,为新型汽车尾气净化催化剂的开发奠定基础。
     分别采用固相反应法、共沉淀法和水热晶化法合成了铈锆固溶体,并考察了各因素对固溶体结构和性能的影响。结果表明,固相反应法铈锆固溶体表面缺陷多、稳定性差,焙烧后孔结构坍塌、比表面积较小、孔径分布较宽;而水热晶化法铈锆固溶体表面缺陷少、结构稳定性高、比表面积大、孔径分布单一;与表面缺陷相对应,固相反应铈锆固溶体具有较大的储氧量和较低的还原温度,而水热晶化铈锆固溶体具有相对较低的储氧量和较高的还原温度;共沉淀法固溶体介于两者之间。在对合成条件的优化过程中发现,Taguchi设计法是一种优化功能材料结构设计方案的有效方法,由此可以方便地获得材料设计过程中的主导因素和最佳的设计条件。通过向固溶体结构中引入过渡金属元素可以有效地改善其热稳定性,其中Pr是最佳的结构稳定剂。
     采用浸渍法制得铈锆固溶体负载的Pd基尾气净化催化剂,发现以共沉淀法合成的固溶体为载体制得的催化剂有着较低的起燃温度,而水热晶化法的有着最高的转化率,固相反应法的反应性能最差。对于CO转化,催化剂的起燃温度随着Pd负载量的增大而升高,而对于CH4却呈现出相反的规律。关联固溶体结构和性能之间的关系,发现具有较大比表面积、均一孔径分布的固溶体显示了较高的催化反应性能。
It is essential to innovate the catalyst for purification of vehicle exhaust gas because air pollution is even serious with increase of vehicles. In this paper, ceria-zirconia solid solution with larger specific surface area, well thermal stability and oxygen storage capacity were prepared to act as support for such purifying catalysts. This work will be benefit to develop a novel catalyst for exhaust gas treatment.
     Ceria-zirconia solid solution was respectively synthesized via solid state reaction, coprecipitation and hydrothermal methods. The effect of different factors on the structure and performance of solid solution was systematically investigated. The results showed that ceria-zirconia solid solution synthesized by solid state reaction exhibited more surface defective sites and lower stability. It resulted in the lower surface area and wider pore diameter distribution after cacination. While the samples prepared by hydrothermal method bear higher thermal stability, lager surface area and narrow pore diameter distribution. The more surface defective sites contribute the better oxygen storage capacity. It means that the solid solution prepared by solid state reaction possesses the optimum oxygen storage capacity among the three preparation methods, and simultaneously bear the lowest reduction temperature. On the contrary, the samples synthesized by hydrothermal method showed poor oxygen storage capacity and higher reduced temperature. The performance of the ceria-zirconia solid solution synthesized by coprecipitation was in the middle of the others. The research showed that Taguchi design was reasonable method to investigate optimal synthesis conditions. The main effect factor was also obtained using this design method. In order to improve the thermal stability of ceria-zirconia solid solution, transitional metal oxides was introduced. Pr was good stabilizer to improve the structure of solid solution.
     The catalysts for exhaust gas treatment were prepared by impregnation method. The results showed that the catalyst supported by ceria-zirconia solid solution synthesized via coprecipitation method possessed lower ignition temperature, via hydrothermal method bear the highest conversion. While the solid solution prepared with solid state reaction exhibited the poor catalytic performance compared with others. For the conversion of CO, the ignition temperature was increased with increase of Pd supported. For the conversion of CH4, the rule was opposite. Moreover, the investigation showed that there is intimate relationship between the structure of solid solution and catalyst performance. The support with larger specific surface area, uniform pore diameter distribution showed better catalytic reaction performance
引文
[1] 曾佩兰,黄可龙,刘素琴等.汽车尾气催化剂的研究现状及其进展.材料导报,2003;17(3):48~51
    [2] 伍利群.汽车尾气污染及其净化处理技术.安全与环境工程,2002(19):20~24
    [3] 叶青,金钧等. 汽车尾气三效催化剂的现状、发展及动向. 北京工业大学学报,2003;26(1):112~117
    [4] 黄学辉,尚福亮,薛红亮. 汽车尾气催化处理的现状与发展趋势.新材料产业,2002(12):27~32
    [5] 朱保伟,陈宏德,田群. 汽车尾气催化剂的发展. 中国环保产业,2003(7):35~38
    [6] 熊家齐.全球稀土市场现状及发展趋势.稀土,2006;27(3):98~101
    [7] 王亚军, 彭希, 冯长根.汽车催化剂技术发展及研究概况.工业催化,2000;8(2):3~10
    [8] 张大庆,孙作霖.汽车尾气净化催化剂的发展、现状及展望.上海环境科学,1994;13(9):35~37
    [9] R G Silver, J C Summers and W B Williamson. Design and performance evolution of automotive emission control catalysts.Acrucq (editor), Catalysis and automotive pollution control(Ⅱ),1991 Elsevier science publishers B V, Amsterdam, Elsevier,1991,167~180
    [10] 蔡胜有,黄勇. Al2O3基涂层技术在汽车尾气催化净化装置中的应用与开发.功能材料,1998;29 (3):225~228
    [11] Amato I, et al. In 4th International Conference on Sintering and Related Phenomena, M at Sci Rev, Vol. 10, New York, Plenum Press∶1975
    [12] Beguin B, et al. Stabilization of alumina toward thermal sintering by silicon addition. Journal of Catalysis, 1991, 127∶595~604
    [13] 倪哲明,周春晖,葛忠华.几类汽车尾气净化催化剂的催化原理与特性.浙江工业大学学报,2002;30(4):382~387
    [14] 王亚军,曾庆轩, 冯长根. 汽车尾气净化催化剂载体.工业催化,1999 (6):3~7
    [15] 邹运湖. 汽车尾气净化用三效催化剂.化学工业与工程技术,1999;20(4):21~26
    [16] 李强,陈祥,李言祥. 汽车尾气净化器载体及涂层的研究进展.表面技术,2001;30(4):23~27
    [17] Cooper, BJ.et al. Catalysis and Automotive Pollution Control, 1987: 117~141
    [18] 彭生寿,等.中国专利:1033455A,1989-6-21.
    [19] 孙俊赛,资文华,缪松兰等. 汽车尾气用催化剂载体研究现状及展望. 中国陶瓷,2003;39(5):19~21
    [20] 孙履厚. 精细化工新材料与技术. 北京:中国石化出版社,1999. 599~602
    [21] 沃尔夫冈·毛斯等.中国专利:1041292A,1990-4-18
    [22] C.steve chang, Awadh Pandey, et al. Aluninum clad ferritic stainless steel for metallic catalytic converter sustrate application. SAE Transacions 1996(105):237~244
    [23] 林培琰等. Cu,Pd-ZSM-5上NO分解和CO氧化的催化作用.分子催化,1996;10(4):245~250
    [24] 李玉敏. 工业催化原理.天津:天津大学出版社, 1992.
    [25] Amiridis, M D. et al. Selective catalytic reduction of nitric oxide by hydrocarbons. Applied Catalysis B 1996;10(123):203~227
    [26] 魏伟,魏坤霞,史庆南等.稀土在汽车尾气三元净化催化剂中的应用现状与展望.稀土,2002;23(6):50~53
    [27] 田久英,袁书华,林之恩等.添加稀土氧化物助剂的CeO2-ZrO2固溶体的储氧性及热稳定性研究.化学研究与应用,2002;12(5):543~546
    [28] 俞守耕.贵金属催化净化汽车尾气中稀土氧化物的助催化和稳定化.贵金属,2002;23(2):66~70
    [29] Kumthekar M.W. Ozken U.S. Activity and temperature Programmed Adsorption Behavior of Pd-TiO2 Catalysis in NO/CH4 Reduction and NO Decomposition Reactions. Catalysis Today, 1997(35):107~112.
    [30] 王亚军,冯长根,王丽琼等. 稀土在汽车排气催化净化中的应用.工业催化,2000;8(5):3~8
    [31] 李佩珩,魏众,刘伟等.稀土催化材料-铈锆固熔体的研究与应用.中国稀土学报,2003(21):26~29
    [32] 胡玉才,冯长根,王丽琼.新一代三效催化剂的关键材料-CexZr1-xO2固溶体研究进展.环境科学与技术,2002;25(4):42~46
    [33] Colon G, Valdivieso V, Pijolat M, et al. Textural and phase stability of CexZr1-xO2 mixed oxides under high temperarure oxidizing conditions. Catalysis Today 1999, 50: 271~284
    [34] 赵建军,刘源.汽车尾气净化催化剂用 CZ 固溶体的研究进展.稀土,2002;23(6):52~57
    [35] Putna E S, Bunluesin T, Fan X L, et al. Ceria films on Zirconia substrate: models for understanding oxygen storage properties. Catalysis Today,1999; 50:343~352
    [36] 冯长根,胡玉才,王丽琼.铈锆氧化物固溶体对全钯三效催化剂性能的影响.应用化学,2003;20 (2):59~92
    [37] 杨志柏,林培琰,肖莉等.改进的溶胶凝胶法制备CeO2-ZrO2固溶体以及其物性表征.功能材料,2003;31(6):657~659
    [38] 冯长根,张江山,王亚军.高分子凝胶法合成纳米铈锆氧化物固溶体及其热稳定性研究.北京理工大学学报,2005;25(1):82~86
    [39] 万李,吴晓东,樊俊等.制备方法对钯-铈锆固溶体催化剂结构与性能的影响.中国稀土学报,2004;22(4):522~526
    [40] Zhang J S, Chen H J, L in J H. On the synthesis of intermetallic compounds containing a volatile component:Ln2Fe17- xSbx (Ln =Nd, Sm). Journal of A lloys and Compounds, 2000;311:109~113
    [41] 张江山,陈宏基,林建华.Sm2Fe17-xSbx的化学合成与磁性质.高等学校化学学报,2000;21(8):1171~1173
    [42] Matina T, et al.Catalytic activity of CeO2-ZrO2 mixed oxide catalysts prepared via sol–gel technique: CO oxidation.Catalysis Today, 68 (2001): 53~61
    [43] S.H.Overbury, D.R.Huntley, D.R.Mullins.XANES studies of the reduction behavior of (Ce1-yZry)O2 and Rh/(Ce1-yZry)O2.Catalysis Letter, 1998; 51:133~138
    [44] 冯长根,胡玉才,王丽琼.铈锆氧化物固溶体对全钯三效催化剂性能的影响.应用化学,2003;20 (2):59~92
    [45] 张磊,刘源,白雪.大比表面积铈锆氧化物固溶体的制备. 中国稀土学报,2002(20):99~104
    [46] 张顺海,蒋平平等.氧化共沉淀法制备纳米级铈锆固溶体.中国稀土学报, 2003(21):64~66
    [47] 杜玉成,张久兴,何洪.高比表面积纳米结构Ce0. 7Zr0. 3O2固溶体的模板组装.中国稀土学报, 2003(21):44~47
    [48] 郑育英,黄慧民,邓淑华等.水热法制备高纯超细CeO2-ZrO2复合氧化物.无机化学学报,2005;21(8):1227~1231
    [49] M.奥博特, T.伯彻姆等.基于氧化锆和氧化铈的组合物、其制备方法及其催化用途:法国:FR97195463 [P] (或中国:CN1222127). 1999-7-7
    [50] M.奥博特, T.伯彻姆.G.布兰查德等. 基于氧化锆和氧化铈的组合物、其制备方法和用途:法国:FRP 9619505[P](或中国:CN1193948A).1998-9-23
    [51] 许大鹏,王权泳,张弓木等.Ce0.5Zr0.5O2立方相固溶体的高压高温合成.高等学校化学学报,2001;22(4):524~530
    [52] Trovarelli A, Zamar F, Liorca J ,et al. Nanophase Fluorite-Structured CeO–ZrO Catalysts Prepared by High-Energy Mechanical Milling2 2 . Journal of Catalysis, 1997, 169(2):490~502
    [53] 王芙蓉,孙凤礼,高山. 汽车尾气净化用蜂窝状催化剂的研究.材料工程,2003(2):41~43
    [54] Jermim Noh, O-Bong Yang, et al. Characteristics of the Pd-only three-way catalysts prepared by sol–gel method. Catalysis Today, 1999 (53): 575~582
    [55] Aruna S T, Patil K C. Combustion synthesis and properties of nanostructured ceria-zirconia solid solutions.Nanostuctured Materials, 1998, 10:955~964
    [56] Masui T, Ozaki T,Machida K, et al. Preparation of ceria-zirconia sub-catalysts for motomotive exhaust cleaning. Journal of Alloys and Compounds, 2000,303~304:49~55
    [57] Hori C E, Permana H, Simon K Y, et al. Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system. Applied Catalysis B: Environmental, 1998, 16: 105~117.
    [58] Arias A M, Garcia M F, Hungria A B, et al. Surface properties of CeZrO4-based materials employed as catalysts supports. Journal of Alloys and Compounds, 2001, 323~324: 605~609
    [59] 谭宇新,黄传荣,甘世凡等.新型汽车尾气净化催化剂的研究.环境科学,1998;5 (3):9~23
    [60] 蒋平平,卢冠忠等.在CeO2-ZrO2中加入La2O3对改善单Pd三效催化剂性能的作用.无机化学学报,2004;20(12):1390~1396
    [61] 李燕秋,李阳,段启伟.镧、铈在贵金属型汽车尾气净化催化剂中的作用.石油炼制与化工,2004;35(2):18~21
    [62] 汪文栋,林培炎等. 用Pr修饰的(Ce-Zr)O2固溶体在三效催化剂中的作用. 中国稀土学报,2002;20(3):265~269
    [63] 汪文栋,林培炎. 镨在三效催化剂中的作用.稀土,2000;21(4):34~37
    [64] 冯长根,樊国栋.铽改性铈锆固溶体.应用化学, 2005;22(7):703~708
    [65] 杨志柏,林培琰等,俞寿明.以Nd改性CeO2-ZrO2固溶体助剂的研究.催化学报,2001;22(4):365~369
    [66] 洪维民.三效催化剂用CexZr1-xO2固溶体合成技术与储放氧性能研究进展.稀土,2004;25(2):59~64
    [67] 陈颖,聂祚仁等.汽车尾气净化器用金属载体研究进展. 材料导报,1999(2):22~24
    [68] 杨彧,贾殿赠,葛炜炜等. 低热固相反应制备无机纳米材料的方法.无机化学学报,2004;20(8):881~888
    [69] 周益明,忻新泉.低热固相合成化学.无机化学学报,1999;15(5): 273~292
    [70] 陶颖,王零森,陈振华.ZrO2陶瓷的离子导电性及其应用.中国陶瓷,1999; 35 (5):12~14
    [71] 尹双凤,李莉,王恒秀等. 碱液回流老化ZrO(OH)2制备纳米晶ZrO2的影响因素.化学学报,2003(61):869~877
    [72] 马磊,韩立峰,罗孟飞等.Ce Zr O 复合氧化物负载PdO催化剂的CO和CH 氧化性能研究.x (1-x) 24 分子催化,2000;14(3):175~178
    [73] 宋凌雁,李永丹,吴东方. Taguchi 试验方法在CO氧化整体催化剂制备中的应用.化学通报,2003(10);665~668
    [74] S.H. Tang, Y.J. Tan, S.M. Sapuan, et al. The use of Taguchi method in the design of plastic injection mould for reducing warpage. Journal of Materials Processing Technology. 182 (2007): 418~426
    [75] Zhaoxia Song, Wei Liu, Hiroyasu Nishiguchi. Quantitative analyses of oxygen release/storage and CO2 adsorption on ceria and Pt–Rh/ceria. Catalysis Communications. 8 (2007): 725~730
    [76] Julie Z. Zhang, Joseph C. Chen, E. Daniel Kirby. Surface roughness optimization in an end-milling operation using the Taguchi design method. Journal of Materials Processing Technology.184 (2007): 233~239
    [77] 胡玉才.汽车尾气净化三效催化剂的制备与性能研究. 材料·工艺·设备2005(6):35~37
    [78] 孔德良, 白玉兰,叶庆国.汽车尾气净化催化剂的研究进展.青岛科技大学学报,2003;24(2):132~137
    [79] 杨玉霞,肖利华,徐贤伦.负载型钯催化剂上甲烷催化燃烧的研究进展.工业催化,2004;12(3):1~5
    [80] 杨小毛,罗来涛.低温-氧化碳催化氧化研究进展.现代化工,2002; 22(8):22~25
    [81] Grunwaldt J D, Maciejewski M, Becker O S, et al. Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low temperature CO oxidation. Journal of Catalysis, 1999;186:458~469

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700