球形气泡载荷作用下船体结构的动态响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下爆炸对军用舰船的毁伤在国防上一直是极为关注的问题,也是我国海军急需解决的问题。水下爆炸载荷对军用舰船构成最主要威胁,是在战争中造成舰船失效和毁伤的主要原因。舰船结构在水下爆炸载荷作用下的动态响应则是一个非常复杂的问题,需要涉及水下爆炸载荷的模拟,爆炸载荷的动力学特性,流体-结构耦合分析及水中结构的动态响应等多项研究内容。
     水下爆炸载荷主要有水中冲击波和气泡脉动载荷两种。近年来,各国进行的实船试验和实验室模型实验均表明,和水中冲击波相比,非接触水下爆炸中的气泡载荷有时会对舰船结构造成更为严重的总体毁伤,严重威胁舰船的生命力。目前,对于气泡载荷作用下舰船结构的动态响应问题尽管进行了许多研究,但是关于这一问题的许多破坏机理与本质仍未被揭示。
     本文主要针对中场非接触球形气泡脉动载荷作用下的船体结构的动态响应问题进行了研究。着重从气泡作用下船体结构的水弹性响应、刚体运动、水弹塑性响应和三维全船结构的动态响应等几个方面进行了研究,旨在揭示舰船结构在气泡脉动载荷作用下的一些响应机理和特征。
     首先,基于势流理论,介绍了一个考虑了气泡迁移效应,自由表面效应和气泡阻力的球形气泡数值模型,对气泡的运动特征和主要参数的影响进行了分析,并对数值结果进行了验证。
     其次,对球形气泡载荷作用下船体梁的刚体运动及其对弹性振动的影响进行了研究。船体梁的响应通常由两部分组成:刚体运动和弹性变形。然而,目前的研究中,学者们通常只考虑弹性变形而忽略刚体运动。本文给出了气泡载荷与船体梁之间的流体-结构耦合理论和数值算法,建立了弹性船体梁与气泡之间的包含刚体运动的流体-结构耦合模型。以不同船型的两条实船作为算例,分别计算了两船在气泡载荷作用下包含刚体运动和不包含刚体运动的动态响应,讨论了气泡作用下船体梁的水弹性响应特征,详细分析了船体梁在气泡脉动载荷作用下产生的共振破坏的机理。通过比较不同情况下的船体梁位移和弯矩时程变化,详细分析了刚体运动对于船体梁弹性响应的影响,得到了刚体运动会减弱船体总纵弯矩的幅值和振动周期的结论;刚体运动对船长较大的船体的影响可以忽略,但对船长较小的船体的总纵强度影响很大,必须加以考虑。
     然后,进一步将船体梁的水弹性响应扩展到水弹塑性,建立了球形气泡载荷作用下船体梁的水弹塑性响应模型。将船体梁的水弹塑性响应分为三个阶段:1.刚体运动与弹性变形,直到梁内的某一点处的弯矩增加到极限弯矩。2.塑性变形,并不断积累,直到破坏点的塑性变形率为0时,塑性变形停止。3.梁的塑性变形形成,船体梁重新开始进行弹性变形和刚体运动。推导了各阶段的流体-结构耦合理论和计算算法。并通过实船算例,分析了船体梁的弹塑性变形的机理和特征。通过研究发现船体梁的最大弯矩并不是由气泡压力峰值直接产生,而是由船体梁自身的鞭状振动所诱导产生;船体梁的塑性变形具有变形突增,持续时间短的特点。
     接着,基于双渐近(DAA)理论,将有限元方法与边界元方法相结合,研究了球形气泡载荷作用下三维全船结构的动态响应。分别探究了三维全船结构的总体响应和局部响应的特点。细节地推导和阐述了气泡作用下三维船体结构动态响应的流体-结构耦合理论。从结构响应方程,流体表面方程和流体-结构耦合方法三个方面介绍了相关的理论和数值计算方法。应用DAA方法,建立了一套有限元与边界元相结合的计算程序,以一艘三维船体模型作为算例,计算了气泡载荷作用下全船结构在垂向、横向和纵向的三个方向的位移、速度和加速度时程响应。详细分析和讨论了气泡载荷作用下船体结构的总体响应和局部响应的一些特征与机理。
     最后,基于本文所述的流体-结构耦合理论与数值算法,开发了“气泡作用下全船结构动响应计算”软件。从软件的功能模块,内嵌程序及使用流程等方面,对开发的“气泡作用下全船结构动响应计算”软件进行了介绍。
The damage of warships when subjected to underwater explosion has always been a concerned topic for national defense, on which a great many researchers have done extensive studies for years. Analyzing the underwater explosion problems requires understanding many different areas, including the simulation of underwater explosion loads, explosion gas bubble behavior, fluid-structure interaction phenomena and structure dynamic response.
     A ship hull structure immersed in the vicinity of an underwater explosion is affected by two types of time-dependent loads:the transient shock wave and pulsating bubble. Compare with the shock wave, the bubble pulsation load in the underwater explosion can cause more severe damage on the warships. It is a serious threat to the vitality of the warship. At present, the dynamic response of the ship structure subjected to the underwater explosion bubble load is an international research focus. However, a lot of failure mechanism and essence on this problem remain open today, due to their difficulties.
     The present thesis is mainly to describe the dynamic responses of the ship hull structure subjected to a mid-field underwater bubble. Our focus is on the study of the hydroelastic responses, rigid-body motions, hydro-elastic-plastic responses and3-D structure dynamic responses of the ship hull. Our study aims to reveal the mechanism and characteristics of the ship hull's dynamic responses to the underwater bubble pulsation loading.
     Firstly, based on the potential flow theory, we introduce a spherical underwater bubble model with the bubble migration, free surface effect and drag force taken into account. The motion characteristics of the bubble and important parameters'effects are analyzed. And the numerical results of the bubble loads are verified.
     Secondly, the effect of rigid-body motions on the whipping response of a ship hull subjected to a spherical underwater bubble is studied. The dynamic elastic response of a floating ship hull girder to an underwater bubble is normally composed of two parts: rigid-body motion and elastic deformation. However, the effects of rigid body motion have consistently been neglected in the current literature based on the assumption that they are small. Next, our focus is on the study of rigid-body motion effects on the hull girder's elastic deformation, also known as the'whipping response'. A theory of interaction between a gas bubble and a hull girder is presented. The model of a ship hull girder floating on water subjected to the underwater bubble load is established. The rigid-body and elastic responses of the hull that are induced by the impulsive pressure of a bubble are calculated using the methods presented herein. Two different examples of real ships are given to demonstrate the effect of rigid-body motion on whipping responses. The hydroelastic response characteristics of the hull girder are analysed. And the resonance mechanism in hull girder's whipping response to an underwater bubble is discussed in detail. The time histories of the bending moments and displacements of the two different hull girders are presented. The numerical results show that rigid-body motions reduce the amplitudes and vibration natural periods of the bending moments of the hull girder. These effects can be ignored for slender hulls, but must be taken into account for shorter/wider hulls so as not to underestimate the longitudinal strength.
     Then, the dynamic hydro-elastic-plastic response of a floating ship hull girder subjected to a spherical underwater bubble is studied. We divide the hull girder's response into three phases:The first phase, the hull girder experiences elastic deformation and rigid-body motion. Up to the point when the bending moment somewhere in the hull girder reaches the critical bending moment, a plastic'hinge'forms at the failure point. The second phase, plastic deformation accumulates until the point when the plastic deformation rate becomes zero. And the third phase, the bending moment is smaller than the limiting moment, the hull girder is plastically deformed experiences elastic deformation and rigid-body motion as an elastic hull girder. We analyse each phase of the hull girder's response separately and then obtain the whole motions of the hull girder. The theories and numerical methods of the responses in the three phases are derived and presented. The formation of the plastic hinge when the hull girder's longitudinal bending moment exceeds its ultimate bending moment is investigated. Real-scale ship examples are given to discuss the features of the dynamic elastic and plastic response. The numerical results show that the bending moment's peak value is not directly caused by the bubble pressure. It is induced by the hull girder's whipping motion. And the plastic deformation of the hull girder features a sharp rise and a short duration.
     Furthermore, based on the doubly asymptotic approximation (DAA) theory, using the finite element method with the boundary element method, the transient dynamic responses of a3-D surface ship structure subjected to a spherical underwater bubble are studied. We develop a procedure which couples the finite element method with boundry element method to study this problem. The theories and numerical methods of the structure response equation, the fluid surface equation and fluid-structure interaction are derived and presented. The global and local responses of the ship model in vertical, transverse and longitudinal directions are performed. The acceleration, velocity and displacement time histories are presented. The mechanism and characteristics of both the global and local responses of the ship hull structure are discussed in detail.
     At last, based on the theories and numerical methods described in this study, we develop the software of "The calculation of dynamic responses of the ship structure subjected to the bubble load". The software is introduced in detail from the functional modules, embedded procedures and the operation flow.
引文
[1]United Nations. United Nations Convention on the Law of the Sea [S].1982.
    [2]Webster K G. Investigation of close proximity underwater explosion effects on a ship-like structure using the multi-material arbitrary lagrangian eulerian finite element method [D]. Virginia:Virginia Polytechnic Institute and State University, 2007.
    [3]Keil A H. The response of ships to underwater explosions [J]. Transactions of the Society of Naval Architects and Marine Engineers,1961:366-410.
    [4]Cole R H. Underwater explosion [M]. New Jersey:Princeton University Press.1948: 118-231.
    [5]Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical void [J]. Philosophical Magazine,1917,34:94-98.
    [6]Poritsky H. The collapse or growth of a spherical bubble or cavity in a viscous fluid [C]. Proceedings of the first U.S. National Congress on Applied Mechanics (ed.) E Sternberg, New York: ASME,1952:813-821
    [7]Plesset M S, Chapman R B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary [J]. Journal of Fluid Mechanics,1971,47: 283-290.
    [8]Plesset M S, Prosperetti A. Bubble dynamics and cavitation [J]. Annual Review of Fluid Mechanics,1977,9:145-185.
    [9]Neppiras E A, Noltingk B E. Cavitation produced by Ultrasonics [J]. Proceedings of the Physical Society, Section B,1950,63:674.
    [10]Neppiras E A, Noltingk B E. Cavitation Produced by Ultrasonics:Theoretical Conditions for the Onset of Cavitation [J]. Proceedings of the Physical Society. Section B.1951,64:1032
    [11]Gilmore F R, Forrest R. The growth or collapse of a spherical bubble in a viscous compressible liquid [R]. Hydrodynamics Laboratory, California Institute of Technology Report.1952,26(4):117-125.
    [12]Keller J B, Kolodner I I. Damping of underwater explosion bubble oscillations [J]. Journal of Applied Physics,1956,27(10):1152-1161.
    [13]Keller J B, Miksis M. Bubble oscillations of large amplitude [J]. Journal of the Acoustical Society of America,1980,68(2):628-633.
    [14]Prosperetti A, Lezzi A. Bubble dynamics in a compressible liquid. Part 1. First-order theory [J]. Journal of Fluid Mechanics,1986,168:457-478.
    [15]Lezzi A, Prosperetti A. Bubble dynamics in a compressible liquid. Part 2. Second-order theory [J]. Journal of Fluid Mechanics,1987,185:289-321
    [16]Gibson D C, Blake J R. The growth and collapse of bubbles near deformable surfaces [J]. Applied Scientific Research,1982,38:215-224
    [17]Blake J R, Taib B B, Doherty G. Transient cavities near boundaries:Part 1 Rigid boundary [J]. Journal of Fluid Mechanics,1986,170:479-497.
    [18]Blake J R, Taib B B, Doherty G. Transient cavities near boundaries. Part 2. Free surface [J]. Journal of Fluid Mechanics,1987,181:197-212.
    [19]Best J P, Kucera A A. Numerical investigation of non-spherical rebounding bubbles [J]. Journal of Fluid Mechanics,1992,245:137-154.
    [20]Zhang S, Duncan J H, Chahine G L. The final stage of the collapse of a cavitation bubble near a rigid wall [J]. Journal of Fluid Mechanics,1993,257:147-181.
    [21]Wang Q X, Yeo K S, Khoo B C. Nonlinear interaction between gas bubble and free surface [J]. Computers & Fluids,1996,25:607-628.
    [22]Wang Q X, Yeo K S, Khoo B C, Lam K Y. Strong interaction between a buoyancy bubble and a free surface [J].Theoretical Computational Fluid Dynamics,1996,8:73-88.
    [23]Wilkerson S A. Boundary integral technique for explosion bubble collapse analysis [C]. Proc. ASME Energy-Source Technology Conference and Exhibition,1989, Houston, Texas
    [24]Chahine G L. Numerical modelling of dynamic behavior of bubble in nonuniform flow fields [C]. ASME Symposium on Numerical Method for Multiphase Flows, Toronto,1990.
    [25]Harris P J. A numerical model for determining the motion of a bubble close to a fixed rigid structure in a fluid [J]. International Journal for Numerical Methods in Engineering,1992,33:1813-1822.
    [26]Zhang Y L, Yeo K S, Khoo B C, Chong W K. Three-dimensional bubbles near a free surface [J]. Journal of Computational Physics,1998,146:105-123.
    [27]Zhang Y L, Yeo K S, Khoo B C, Wang C.3D jet impact and toroidal bubbles [J]. Journal of Computational Physics,2001,166:336-360.
    [28]Wang C, Khoo B C, Yeo K S. Elastic mesh technique for 3D BIM simulation with an application to underwater explosion bubble dynamics [J]. Computers and Fluids,2003, 32:1195-1212.
    [29]Zhang A M, Yao X L, Li J. The interaction of an underwater explosion bubble and an elastic-plastic structure [J]. Applied Ocean Research,2008,30(3):159-171.
    [30]Zhang A M, Yao X L, Yu X B. The dynamics of three-dimensional underwater explosion bubble [J]. Journal of Sound and Vibration,2008,311(3-5):1196-1212.
    [31]Zhang A M, Yao X L, Feng L H. The dynamic behavior of a gas bubble near a wall [J]. Ocean Engineering,2009,36(3-4):295-305.
    [32]张阿漫.水下爆炸气泡三维动态特性研究[D].哈尔滨:哈尔滨工程大学船舶工程学院.2006.
    [33]Rogers J C W, Szymczak W G, Berger A E, Solomon J M. Numerical solution of hydrodynamic free boundary problems [J]. International Journal of Numerical Mathematics,1990,95:241-266.
    [34]Popinet S, Zaleski S. Bubble collapse near a solid boundary:A numerical study of the influence of viscosity [J]. Journal of Fluid Mechanics,2002,464:137-163.
    [35]Monaghan J J. Smoothed particle hydrodynamics [J]. Annual Review of Astron and Astrophysics,1992,30:543-574.
    [36]Swegle J W, Attaway S W. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations [J]. Computational Mechanics,1995,17: 151-168.
    [37]Liu M B, Liu G R, Lam K Y, Zong Z. Meshfree particle simulation of the detonation process for high explosives in shaped charge unlined cavity configurations [J]. Shock Waves,2003,12 (6a):509-520.
    [38]Liu G R, Lam K Y, Zong Z. Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Computational Mechanics,2003,30 (2):106-118.
    [39]Liu G R, Zong Z, Lam K Y. Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology. Computers and Fluids,2003,32(c): 85-98.
    [40]Higdon C D, Szymczak W G, Connor J G. Analysis of Water Barrier Line Charge PlumeMeasurements [R]. Technical Report:NSWCDD/TR-97/210, Dahlgren Division, Naval Surface Weapons Center, Dahlgren, VA, USA,1998.
    [41]Smith P D, Hetherington J G. Blast and Ballistic Loading of Structures [M]. Butterworth-Heinemann Ltd,1994.
    [42]Chisum J E, Young S S. Explosion Gas Bubbles Near Simple Boundaries [J]. Shock Vibration,1997,14:11-25.
    [43]Geers T L, Hunter K S. An integrated wave-effects model for an underwater explosion bubble [J]. Journal of the Acoustical Society of America.2002,111(4):1584-1601.
    [44]Vernon T A. Whipping response of ship hulls from underwater explosion bubble loading [R]. Technical Memorandum 86/255, Defence Research Establishment Atlantic, 1986.
    [45]李翼琪,马素贞.爆炸力学[M].科学出版社,1992.
    [46]颜事龙,张金城.工业炸药水下爆炸能量估算[J].爆破器材,1993,2:1-4.
    [47]刘建湖.船舶非接触水下爆炸动力学的理论和应用[D].无锡:中国船舶科学研究中心博士学位论文.中国船舶科学研究中心.2002.
    [48]Hicks A N. Explosion induced hull whipping [J]. In:Smith, C. S., Clarke, J. D. (Eds.), Advances in Marine Structures. Elsevier Applied Science Publishers,1986. London, pp.390-410.
    [49]Smiljanic, B., Bobanac, N., Senjanovic, I.. Bending moment of ship hull girder caused by pulsating bubble of underwater explosion [J]. In:Faltinsen,0. (Ed.), Proceedings Hydroelasticity in Marine Technology. A. A. Balkema, Trondheim,1994. pp.149-156.
    [50]Yasuda A, Imakita A. Experiment and numerical investigation on whipping motion of a floating structure induced by a close-in underwater explosion [J]. Proceedings 75th Shock & Vibration Symposium, Virginia Beach, VA(USA),2006.
    [51]Ogilvy C S, Iver J M. A numerical study of the survivability implications for a trimaran hull form to UNDEX loading [J].72th Symposium Proceedings,2001.
    [52]Moussouros M. An Analysis of Explosion-Induced Bending Damage in Submerged Shell Targets [R]. AD-A169009,1986.
    [53]Shin Y. Whipping analysis of the DDG-51 Class Full Ship Model [J].76th Symposium Proceedings,2005.
    [54]Klaseboer E, Khoo B C, Hung K C. Dynamics of an oscillating bubble near a floating structure [J]. Journal of Fluids and Structures.2005,21:395-412.
    [55]Stettle J W. Damping mechansims and their effects on whipping response of a submerged submarine subjected to an underwater explosion [R]. AD-A298743,1995.
    [56]姚熊亮,陈建平.水下爆炸气泡脉动压力下舰船动态响应分析[J].哈尔滨工程大学学报,2000,21(1):1-5.
    [57]姚熊亮,陈建平.水下爆炸二次脉动压力下舰船抗爆性能研究[J].中国造船,2001,42(2):48-55.
    [58]李玉节,张孝慈,吴有生等.水下爆炸气泡激起的船体鞭状运动[J].中国造船,2001,42(3):1-7.
    [59]董海,刘建湖,吴有生.水下爆炸气泡脉动作用下细长加筋圆柱壳的鞭状响应研究[J].船舶力学,2007,11(2):250-258.
    [60]Yu T X, Chen X W, Chen Y Z. Elastic-plastic beam-on-foundation subjected to mass impact or impulsive loading [J]. Computers & Structures,2002,80(26):1965-1973.
    [61]Yu T X, Yang J L, Reid S R. Interaction between reflected elastic flexural waves and a plastic 'hinge' in the dynamic response of pulse loaded beams [J]. International Journal of Impact Engineering,1997,19(5-6):457-475.
    [62]Yang J L, Yu T X, Reid S R. Dynamic behaviour of a rigid, perfect free-free beam subjected to step-loading at any cross-section along its span [J]. International Journal of Impact Engineering,1998,21:165-175.
    [63]Yu T X, Yang J L, Reid S R. Deformable body impact:dynamic plastic behaviour of a moving free-free beam striking the tip of a cantilever beam [J]. International Journal of Solids and Structures,2001,38:261-287.
    [64]Yu T X, Teh L S. Large plastic deformation of beams of angle-section under symmetric bending [J]. International Journal of Mechanical Sciences,1997,39(7):829-839.
    [65]Yu T X, Yang J L, Reid S R. Dynamic behavior of double cantilever beams subjected to impact. International Journal of Pressure Vessels and Piping,2001,78(1): 49-57.
    [66]Yang J L, Xi F. Experimental and theoretical studyof free-free beam subjected to impact at anycross-section along its span [J]. International Journal of Impact Engineering 2003,28:761-781.
    [67]Yu T X, Yang J L, Reid S R, Austin C D. Dynamic behaviour of elastic-plastic free-free beams subjected to impulsive loading [J]. International Journal of Solids and Structures,1996,33(18):2659-2680
    [68]Boris S, Miroslav H. Analytical solutions in elasto-plastic bending of beams with rectangular cross section [J]. Applied Mathematical Modelling,2009,33: 1749-1760.
    [69]Zhang Y, Yang J L. Dynamic plastic behaviour of a notched free-free beam subjected to step-loading at one end [J]. International Journal of Pressure Vessels and Piping, 2002,79(11):741-752.
    [70]Chen X W, Yu T X. Elastic-plastic beam-on-foundation under quasi-static loading [J]. International Journal of Mechanical Sciences,2000,42:2261-2281.
    [71]Yu T X, Chen F L. A further study of plastic shear failure of impulsively loaded clamped beams [J]. International Journal of Impact Engineering,2000,24(6-7): 613-629.
    [72]Ahmed T U, Ramachandra L S, Bhattacharyya S K. Elasto-plastic response of free-free beams subjected to impact loads [J]. International Journal of Impact Engineering 2001,25:661-681.
    [73]Yang J L, X. H. Liu, Y. L. Hua. Plastic dynamic breakup of a free-free beam subjected to impact at two free ends [J]. International Journal of Solids and Structures, 2004,41:7091-7110.
    [74]Onur S, Hasan C.An elastic-plastic stress analysis of thermoplastic composite beams loaded by bending moments [J]. Composite Structures,2000,50(2):199-205.
    [75]Andrea C, Andrea S, Sabrina V. An elastic-plastic crack bridging model for brittle-matrix fibrous composite beams under cyclic loading [J]. International Journal of Solids and Structures,2006,43(16):4917-4936.
    [76]Yang J L, Liu X H, Reid S R. Dynamic plastic behavior of a free-free beam striking the mid-span of a clamped beam with shear and membrane effects considered [J]. International Journal of Mechanical Sciences,2003,45(5):915-940.
    [77]Zong Z. Dynamic plastic response of a submerged free-free beam to an underwater gas bubble [J]. Acta Mechanica,2003,161:179-214.
    [78]Zong Z. A hydroplastic analysis of a free-free beam floating on water subjected to an underwater bubble [J]. Journal of Fluids and Structures,2005,20,359-372.
    [79]Carrier G F. The interaction of an acoustic wave and elastic cylindrical shell [R]. Thechnical report No.4, Brown University,1951.
    [80]Payton R G. Transient interaction of an acoustic wave with a circular cylindrical elastic shell [J]. Journal of the Acoustical Society of America,1960,32(6): 722-729.
    [81]HAYWOOD J H. Response of an elastic cylindrical shell to a pressure pulse [J]. The Quarterly Journal of Mechanics and Applied Mathematics,1958,11(2):129-141.
    [82]Huang H. Transient interaction of plane acoustic waves with a spherical elastic shell [J]. Journal of the Acoustical Society of America,1969,45(3):661-670.
    [83]Huang H, Lu Y P, Wang Y F. Transient interaction of spherical acoustic waves and a spherical elastic shell [J]. Journal of Applied Mechanics,1971,38(1):71-74.
    [84]Huang H. An Exact Analysis of the Transient Interaction of Acoustic Plane Waves with a Cylindrical Elastic Shell [J]. Journal of Applied Mechanics,1970,37(4): 1091-1100.
    [85]Huang H, Everstine G C, and Wang Y F. Retarded Potential Techniques for the analysis of Submergerd Structures Impinged by Weak Shock Waves [J]. In:Belytschko T and Geers T L eds., Computational Methods for Fluid-Structure Interaction Problems. ASME Applied Mechanics Symposia Series AMD-Vol.26(ASME, New York),1977, pp.983-93.
    [86]Talyor G I. The pressure and impulse of submarine explosion waves on plates [R]. Ministry of Home Security Report, FC235,1941.
    [87]Mindlin R D, Bleich H H. Response of am elastic cylindrical shell to a transverse, step shock wave [J]. Journal of Applied Mechanics,1953,20:189-195.
    [88]Chertock G. The transient flexural vibrations of ship-like structures exposed to underwater explosions [J]. Journal of the Acoustical Society of America,1970, 48(1):170-180.
    [89]Clarke D. Calculation of the added mass of circular cylinders in shallow water [J]. Ocean Engineering,2001,28(9):1265-1294.
    [90]Clarke D. Calculation of the added mass of elliptical cylinders in shallow water [J]. Ocean Engineering,2001,28(10):1361-1381.
    [91]Clarke D. Calculation of the added mass of elliptical cylinders with vertical fins in shallow water [J]. Ocean Engineering,2003,30(1):1:22.
    [92]Reynolds R R, Provencher B D, Shesterikov S A. The high frequency, transient response of a panel with attached masses [J]. Journal of Sound and Vibration,2003, 266 (4):833-846.
    [93]Geers T L. Residual potential and approximate methods for three-dimensional fluid-structure interaction problems [J]. The Journal of the Acoustical Society of America,1972,49:1505-1510.
    [94]Geers T L. Doubly asymptotic approximations for transient motions of submerged structures [J]. The Journal of the Acoustical Society of America.1978,64: 1500-1508.
    [95]Geers T L, Felippa C A. Doubly asymptotic approximations for vibration analysis of submerged structures [J]. The Journal of the Acoustical Society of America,1983, 73:1152-1159.
    [96]Huang H. A Qualitative Appraisal of the Doubly Assymptotic Approximation for Transient Analysis of Submerged Structures Excited by Weak Shock Waves [R]. AD-AO15941,1975.
    [97]Underwood P, Geers T L. Doubly asymptotic, boundary-element analysis of dynamic soil-structure interaction [J]. International Journal of Solids and Structures, 1981,17(7):687-697.
    [98]Geers T L, Zhang P Z. Doubly asymptotic approximations for submerged structures with internal fluid volumes formulation [J]. Journal of Applied Mechanics.1994, 61(4):893-900.
    [99]Geers T L, Lewis B A. Doubly asymptotic approximations for transient elastodynamics [J]. Journal of Solids and Structures,1997,34(11):1293-1305.
    [100]Mathews I C, Geers T L. Doubly Asymptotic, Nonref lecting Boundary for Ground-Shock Analysis [J]. Journal of Applied Mechanics,1987,54(3):489-496.
    [101]Hasheminejad M, Geers T L. The Accuracy of Doubly Asymptotic Approximations for an Acoustic Half-Space [J]. Journal of Vibration and Acoustics,1992,114(4): 555-564.
    [102]Hunter K S. An integrated wave-effects model for an underwater explosion bubble [J]. Journal of the Acoustical Society of America,2002,111(4):1584-1601.
    [103]Ruzicka G C, Geers T L. Transient response analysis of multiple submerged structures [J]. Finite Elements in Analysis and Design,1989,6(2):153-172.
    [104]Ergin A. The response behaviour of a submerged cylindrical shell using the doubly asymptotic approximation method (DAA) [J]. Computers & Structures,1997,62(6): 1025-1034.
    [105]Soliman M, DiMaggio F L. Doubly asymptotic approximations as absorbing fluid boundaries [J]. Mechanics Research Communications,1981,8(6):349-354
    [106]Soliman M, Dimaggio F L. Doubly asymptotic approximations as non-reflecting boundaries in fluid-structure interaction problems[J]. Computers & Structures. 1983,17(2):193-204.
    [107]Gong S W, Lam K Y. Transient response of stiffened composite submersible hull subjected to underwater explosive shock [J]. Composite Structures,1998,41(1): 27-37.
    [108]Zamyshlyayev B V. Dynamic loads in underwater explosion [R]. AD-757183.1973.
    [109]DeRuntz J. The underwater shock analysis code and its applications [J]. In Proceedings of the 60th Shock and Vibration Symposium, Maryland.1989:89-107.
    [110]Park K C, Felippa C A, Deruntz J A. Stabilization of staggered solution procedures for fluid-structure interaction analysis Computational methods for fluid-structure interaction problems [J]. Proceedings of the Winter Annual Meeting, Atlanta, United States,1977, pp,95-124.
    [111]Felippa C A, Park K C. Direct time integration methods in nonlinear structural dynamics [J]. Computer Methods in Applied Mechanics and Engineering,1979, (17-18): 277-313.
    [112]Felippa C A, Park K C. Staggered transient analysis procedures for coupled mechanical systems:Formulation [J]. Computer Methods in Applied Mechanics and Engineering,1980,24(1):61-111.
    [113]Park K C, Felippa C A. Partitioned Transient Analysis Procedures for Coupled-Field Problems:Accuracy Analysis [J]. Journal of Applied Mechanics,1980,47(4): 919-928.
    [114]Felippa C A, Park K C. A direct flexibility method [J]. Computer Methods in Applied Mechanics and Engineering,1997,149(1-4):319-337.
    [115]Manoel R, Justino J R, Park K C, Felippa C A. An algebraically partitioned FETI method for parallel structural analysis:performance evaluation [J]. International Journal for Numerical Methods in Engineering,1997,40(15):2739-2758.
    [116]Felippa C A, Park K C. Direct time integration methods in nonlinear structural dynamics [J]. Computer Methods in Applied Mechanics and Engineering,1979, (17-18): 277-313.
    [117]Park K C, Justino F M R, and Felippa C A. An algebraically partitioned FETI method for parallel structural analysis:algorithm description [J]. International Journal for Numerical Methods in Engineering,1997,40:2717-2737.
    [118]Park K C, Felippa C A. A variational framework for solution method development in structural mechanics [J]. Journal of Applied Mechanics,1998,65(1):242-249.
    [119]Park K C, Felippa C A. A flexibility-based inverse algorithm for identification of structural joint properties[J]. Proc. ASME Symposium on Computational Methods on Inverse Problems.1998,15-20.
    [120]Felippa C A, Park K C, Justino F M R. The construction of free-free flexibility matrices as generalized stiffness inverses [J]. Computers & Structures,1998,68: 411-418.
    [121]Park K C, Felippa C A. A variational principle for the formulation of partitioned structural systems [J], International Journal for Numerical Methods in Engineering, 2000,47:395-418.
    [122]Park K C, Gumaste U, Felippa C A. A localized version of the method of Lagrange multipliers and its applications [J]. Computational Mechanics,2000,24(6): 476-490.
    [123]Felippa C A, Park K C, Farhat C. Partitioned analysis of coupled mechanical systems, Invited Plenary Lecture, Fourth World Congress in Computational Mechanics, Buenos Aires, Argentina, July 1998, expanded version in Comp. Meths. Appl. Mech. Engrg.2001,190:3247-3270.
    [124]Park K C, Felippa C A, Ohayon R. Partitioned formulation of internal fluid-structure interaction problems by localized Lagrange multipliers [J]. Computer Methods in Applied Mechanics and Engineering,2001,190(24-25):2989-3007.
    [125]Felippa C A, Park K C, Charbel F. Partitioned analysis of coupled mechanical systems [J]. Computer Methods in Applied Mechanics and Engineering.2001, 190(24-25):3247-3270.
    [126]Park K C, Felippa C A, Rebel G. A simple algorithm for localized construction of non-matching structural interfaces [J]. International Journal for Numerical Methods in Engineering,2002, (53)9:2117-2142.
    [127]Greenhorn J. The assessment of surface ship vulnerability to underwater attack [R], The Royal Institution of naval Architects,1988, pp.233-243.
    [128]Shin Y S, Santiago L D. Surface ship shock modeling and simulation:two-dimensional analysis [J]. Shock and Vibration,1998,5:129-137.
    [129]Hung C F, Hsu P Y, Chiang L C, Chu L N. Numerical simulation of structural dynamics to underwater explosion [J], Proceeding of The 13th Asian Tech. Exchange and Advisory Meeting on Marine Structures,1999, pp.155-164.
    [130]Liang C C, Tai Y S. Shock responses of a surface ship subjected to noncontact underwater explosions [J]. Ocean Engineering,2006,33:748-772.
    [131]Huang H. Transient bending of a large elastic plate by an incident spherical pressure wave [J]. Journal of Applied Mechanics,1974,41(3):772-776.
    [132]Huang H. Transient response of two fluid-coupler cylindrical elastic shell to an incident pressure pulse [J]. Journal of Applied Mechanics,1979,46:513-518.
    [133]Huang H, Wang Y F. Asymptotic fluid-structure interaction theories for acoustic radiation prediction [J]. The Journal of the Acoustical Society of America,77: 1389-1394.
    [134]Huang H. Numerical analysis of the linear interaction of pressure pulses with submerged structures [J]. In:Smith, C. S., Clarke, J. D. (Eds.), Advance in Marines Structures,1986.
    [135]Huang H, Kiddy K C. Transient interaction of a spherical shell with an underwater explosion shock wave and subsequent pulsating bubble [J]. Shock and Vibration. 1995,2:451-460.
    [136]Hung C F, Hsu P Y, Chiang L C, Chu L N. Numerical simulation of structural dynamics to underwater explosion [J]. Proceeding of The 13th Asian Tech. Exchange and Advisory Meeting on Marine Structures,1999, pp.155-164.
    [137]何亮.水下爆炸气泡及附近结构损伤机理的数值研究[D].大连:大连理工大学船舶工程学院,2007.
    [138]孙龙泉.水下爆炸气泡动力学特性及附近结构响应数值研究[D].大连:大连理工大学船舶工程学院,2008.
    [139]Molland A. The Maritime Engineering Reference Book [M]. Butterworth -Heinemann, Oxford, UK.2008.
    [140]金咸定、夏利娟.船体振动学[M].上海交通大学出版社.2011.
    [141]金咸定、赵德有.船体振动学[M].上海交通大学出版社.2000.
    [142]Class NK. Rules and Guidance 2007[S].2007.
    [143]宗智,邹丽,倪少玲.水下爆炸造成结构损伤的理论研究[C].2005年船舶结构力学学术会议论文集,2005.
    [144]张文鹏,宗智.分析水中结构自由振动的三维附加质量矩阵法[J].中国舰船研究,2011,6(4):13-18.
    [145]姚熊亮,孙士丽,陈玉等.非线性双渐进法应用于水中结构瞬态运动的研究[J].振动与冲击,2010,10(29):9-15.
    [146]汪玉,华宏星.舰船现代冲击理论及应用[M].科学出版社,2005.
    [147]王新敏Ansys工程结构数值分析[M].大民交通出版社,2007.
    [148]Liu G R, Quek S S. The Finite Element Method-A Practical Course [M]. Elsevier, 2003.
    [149]傅永华.有限元分析基础[M].武汉大学出版社,2003.
    [150]Chamdrupatla T R, Belegundu A D. 工程中的有限元法[J].工业出版社,2005.
    [151]Deruntz J A, Geers T L. Added mass computation by the boundary integral method [J]. International Journal for Numerical Methods in Engineering,1978,12:531-550.
    [152]王婕.水下爆炸载荷作用下海洋结构物动态响应的数值模拟[D].大连:大连理工大学船舶工程学院,2009.
    [153]叶帆.水下爆炸空化效应作用下结构响应的数值模拟[D].大连:大连理工大学船舶工程学院,2010.
    [154]徐永刚.水下爆炸作用下结构响应数值分析[D].大连:大连理工大学船舶工程学院,2010.
    [155]张亚辉,林家浩.结构动力学基础[M].大连理工大学出版社,2007.
    [156]Gladwell I, Thomas R. Stability properties of the Newmark, Houbolt and Wilson-θ methods [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1980,4(2):143-158.
    [157]黄庆丰,王全凤,胡云昌.Wilson-6法直接积分的运动约束和计算扰动[J].计算力学学报,2005,22(4):477-481.
    [158]Tulay A 0. A finite element formulation for dynamic analysis of shells of general shape by using the Wilson-O method [J]. Thin-Walled Structures,2004,42(4): 497-513.
    [159]陈学兵,李玉节.圆柱壳在永下爆炸气泡作用下的动态塑性响应研究[J].船舶力学,2010,14(8):922-929.
    [160]Newman J N. Marine Hydrodynamics [M]. The MIT Press, Cambridge,1978.
    [161]刘土光,张涛.弹塑性力学基础理论[M].华中科技大学出版社,2008.
    [162]孙雷.船兴波及其对结构物作用的研究[D].大连:大连理工大学上小水利学院,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700