转子—轴承—密封系统动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着旋转机械在实际应用中日益向高性能、大容量方向发展,促使流体与旋转转子之间的流固耦合作用不断增加,从而对转子系统的动力特性和稳定性产生影响。目前大量的研究表明,转子系统的非线性因素对系统的动力学特性影响很大,其中尤以非线性油膜力和非线性密封力的影响最为显著。本文即是针对这一问题,采用了理论建模、数值仿真及试验验证相结合的研究路线,围绕着密封力数学模型的建立和转子—轴承—密封耦合系统的动力学特性分析两个主题展开。较为深入的探讨了转子—轴承—密封耦合系统的动力学特性,相应的研究工作得到了国家863项目(编号:2002AA52613-8)和国家自然科学基金资助项目(编号:10572087)的资助。主要内容如下:
     从理论分析与工程应用的角度出发,简要介绍了本文的选题背景与研究意义。并对非线性转子动力学及密封力在国内外的研究现状、研究进展与发展趋势进行了较为全面的阐述。
     在国家863项目“超超临界汽轮机关键技术研究”的资助下,建造了转子—轴承—密封系统动力学试验台。本试验台只是缩小了转子的尺寸,密封件模型仍保持与实际汽轮机完全相同的结构形式,且转子支承形式、转子工作转速与临界转速的比值等重要参数都接近于汽轮机的真实情况,保证了试验台转子系统与实际大型汽轮机组转子系统有较好的相似度,可用于汽轮机组转子系统振动特性的试验研究。
     详细介绍了用双控体模型计算平齿密封动特性系数的方法,并在原有的模型中引入了密封齿高,使得改进后的双控体模型计算密封的动特性系数与实测结果更为接近,这说明用该模型来预测密封的动特性系数是可行的。通过应用该模型,进一步研究了密封中的入口预旋速度对等效动力特性系数、密封力对系统一阶临界转速和一阶对数衰减率的影响,得到以下几点结论:随着密封入口预旋速度的增加,交叉刚度系数也要增加;与未考虑密封力的转子—轴承系统相比,在考虑了密封力与转子相互作用后,转子—轴承—密封系统的临界转速有所下降,这是因为主阻尼的影响效果大于交叉刚度的影响,而且随着密封入口压力的增大,下降幅度也会进一步增加;密封入口预旋对转子—轴承—密封系统稳定性的影响较为复杂:正向预旋越大,一阶对数衰减率越小,则系统稳定性越差,当正、反向入口预旋速度的绝对值相等时,反向预旋速度的情况下计算的一阶对数衰减率大于正向预旋速度时的一阶对数衰减率,从而使系统稳定性提高,但反向预旋速度也并非越大越好,如果太大,反而使系统的一阶对数衰减率降低。将数值仿真结果和试验结果进行对比,结论较一致,验证了改进后的双控制体模型的有效性。
     将试验台的复杂转子系统简化为Jeffcott转子系统,并引用短轴承理论和Muszynska密封力模型分别建立了油膜力和密封力的非线性模型,从而进一步建立了转子—轴承—密封系统非线性振动方程。首先依据试验台参数对转子系统进行数值仿真,其结果与试验结果在趋势上较为一致,证明建立的非线性转子—轴承—密封模型的有效性,为进一步的理论研究提供了可行性技术。接着应用数值分析方法对转子转速、转子质量偏心、密封间隙和密封入口压力这些关系转子系统动力学特性的重要因素进行研究,采用分叉图,Poincare映射、轴心轨迹、频谱图以及最大Lyapunov指数从不同的侧面描述并揭示了耦合系统的单周期运动、倍周期运动、多周期运动和拟周期运动,以及这些运动形式的转化与演变过程。
     应用有限元方法建立转子—轴承—密封系统的动力学模型。首先依据转子—轴承—密封试验台的参数进行数值仿真,其结果与实测数据相符,验证了建立的复杂转子系统动力学分析模型的正确性。接着通过对转子—轴承系统与转子—轴承—密封系统的非线性动力学分析,配合转子轴心轨迹图、频谱图、瀑布图,以及随着转子转速变化的分叉图,揭示了综合考虑非线性油膜力与非线性密封力后,转子系统动力学特性的变化。最后将结果与采用简单的Jeffcott模型分析的结果相比,得出使用有限元法构造转子—轴承—密封系统的模型进行数值仿真的结果与实测数据更接近的结论。
As rotating machinery become large-capacity, the stabilization and dynamics of rotating rotor were influenced by the increasing in coupled interaction between the fluid and the rotor. Therefore in the present study the dynamic characteristics of the rotor-bearing-seal system. And the present study is involved in the mathematical modeling of seal force and dynamics analysis of a rotor-bearing-seal system, which combines the theoretical modeling, the numerical simulation with experimental investation. The project is supported in part by National Hi-Tech Research and Development Program (863) of China (approved No. 2002AA52613-8), by National Natural Science Foundation of China (approved No.10572087). The research content is given in detail as follows:
     From the viewpoint of theoretical analysis and engineering application, the background and significance of the present study are elucidated. Status and development of research on the nonlinear dynamics of a rotor and seal force are introduced.
     Supported by National Hi-Tech Research and Development Program (863) of China, the laboratory setup of the rotor-bearing-seal experimental device, which scale the seal structure and journal bearings. The experimental device can simulate the pressure ratio, ratating speed and unsteady and steady pressure. Furthermore, the signals of staic pressure, fluctuating pressure, rotating speed and rotor displacements can be acquired simultaneously. As a result the experimental device provides the experimental basis for investigating the coupled interaction between the seal and the rotor.
     Tow-control-volume model has been detailedly expounded in computing dynamic characteristics for the see-through labyrinth seal. In this paper, the height of the seal is introduced in the improved two-control-volume method. And the result of the present method is in good agreement with the experimental data, which had been conducted by Childs, so it is feasible using this method to predict the dynamic characteristics of see-through labyrinth seal. In addition, the influences of the system first-order critical speed and its logarithmic decrement have also been probed into. With increase in inlet preswirl velocity, the cross-coupled stiffness increases. It also shows that the first critical speed of the rotor decreases by the seal force. And the first critical speed decreases rapidly in inlet pressure. Moreover, the research shows that the inlet preswirl velocity has a greate effect on the stability of the rotor with seals. The stability of rotor obtained from the positive inlet preswirl velocity is more unsafe than that from the opposite directions with same absolute values. This implies that neglecting the coupled fluid-solid effect will result in unsafe prediction of the stability of the rotor. The results of current method are in agreement with the one from the experimental. Accordingly, the improved two-control-volume model was validated
     The complex experimental rotor system is simplified as the Jeffcot rotor. Based on the short bearing theory, the nonlinear oil-film force mode is given. And a simply model of nonlinear seal force based on the results of a series of experiments was proposed by Muszynska. Then the dynamic model of the nonlinear rotor-bearing-seal system was set up. The simulated result tends to agree with the experimental data. As a result, the study may contribute to a further understanding of the non-linear dynamics of such a rotor-bearing-seal coupled system. It is indicated that the dynamic behavior of the rotor-bearing-seal system depends on the rotation speed, rotor eccentricity, seal clearance and seal pressure of the rotor-bearing-seal system. Therefore, by changing the values of these factors, the bifurcation of the coupled system is analyzed. Then the dynamic behavior of the rotor center are analyzed by the system state trajectory, Poincare maps, frequency spectra, bifurcation diagrams and the curves of maximal Lyapunov exponent. From the results of the numerical simulation, it is found that there are periodic motion, doubling-periodic motion, multi-periodic motion and approximate-periodic motion in the coupled system.
     Finite element method is proposed to estabilish a dynamic mode of rotor-bearing-seal system. And the results of the present method are in good agreement with the experimental. Then study on nonlinear dynamics of a rotor-bearing-seal system by the bifurcation diagram, state trajectories, frequency spectra and waterfall. From the numerical simulation, it is found that the simulated results of the current calculation are more accurate according to the experimental result than that of the Jeffcott rotor.
引文
[1]顾家柳,丁奎元,刘启洲等.转子动力学.北京:国防工业出版社, 1985.
    [2]顾家柳,夏松波,张文.转子动力学研究的现状及展望[J].振动工程学报, 1988, 1(2): 63-70.
    [3]孟光.转子动力学研究的回顾与展望[J].振动工程学报, 2002, 15(1): 1-9.
    [4]闻邦椿,顾家柳,夏松波等.高等转子动力学理论技术与应用.北京:机械工业出版社, 2000.
    [5]张文.转子动力学理论基础.北京:科学出版社, 1990.
    [6]钟一谔,何衍宗,王正等.转子动力学.北京:高等教育出版社, 1987.
    [7] Childs DW. The Space Shuttle Main Engine High-Pressure Fuel Turbopump Rotordynamic Instability Problem[J]. ASME Journal of Engineering for Power, 1978, 100(1): 48-57.
    [8] Kostyuk AG. A Theoretical Analysis of the Aerodynamic Forces in the Labyrinth Glands of Turbomachines[J]. Teploenergetica, 1972, 19(11): 29-33.
    [9]何立东.离心压缩机迷宫密封中的汽流激振[J].热能动力工程, 1996, 11(67): 17-19.
    [10]何立东,夏松波.转子密封系统流体激振及其减振技术简评[J].振动工程学报, 1999, 12(1): 64-71.
    [11]吕延军,虞烈,刘恒.非线性转子一轴承系统的动力学特性及稳定性[J].机械强度, 2004, 26(3): 242-246.
    [12]袁茹,赵凌燕,王三民.滚动轴承—转子系统的非线性动力学特性分析[J].机械科学与技术, 2004, 23(10): 1175-1177.
    [13]李振平,闻邦椿.刚性转子-轴承系统的复杂非线性动力学行为研究[J].振动与冲击, 2005, 24(3): 36-39.
    [14] Ranklne W. On the Centrifugal Force of Rotating Shafts[J]. Engineer, 1869, 27: 249-256.
    [15] Jeffcott H H. The Lateral Vibration of Loaded Shafts in the Neighborhood of a Whirling Speed[J]. Philosophical Magzine, 1919, 7(6): 304-314.
    [16]虞烈,刘恒.轴承一转子系统动力学.西安:西安交通大学出版社, 2001.
    [17] Newkirk B. Shaft Whipping[J]. General Electric Review, 1924, 27: 169-178.
    [18] Lund J. W. Spring and Damping Coefficients for the Tilting Pad Journal Bearing[J]. Trans. ASLE, 1964, 7: 342-352.
    [19] Lund J. W. The stability of an elastic rotor in journal bearings with flexible, damped supports[J]. Transactions of the ASME, Journal of Applied Mechanics, 1965, 87: 911-920.
    [20] Lund J. W. Stability and damped critical speeds of a flexible rotor in fluid-film bearings[J]. Transactions of the ASME, Journal of Engineering for Industry, 1974, 96(2): 509-517.
    [21]黄文虎,武新华,焦映厚,夏松波,陈照波.非线性转子动力学研究综述[J].振动工程学报, 2000, 13(4): 497-509.
    [22]高亹,张新江,张勇.非线性转子动力学问题研究综述[J].东南大学学报(自然科学版), 2002, 32(3): 443-451.
    [23] Ehrich F.F. Observations of subcritical superharmonic and chaotic response in rotor dynamics[J]. ASME J. Vibration Acoust, 1992, 114(1): 93–100.
    [24] Goldman P, Muszynska A. Dynamics effects in mechanical structures with gap and impacting: Order and Chaos[J]. Journal of Vibration and Acoustics, 1994, 116(3): 692-701.
    [25] Goldman P, Muszynska A. Chaotic responses of unbalanced rotor/bearing/stator system with loosniss or rubs [J]. Chaos, Solitons & Fractals, 1995, 5(9): 683-704.
    [26]郑吉兵,孟光.考虑非线性涡动时裂纹转子的分岔与混沌特性[J].振动工程学报, 1997, 10(2): 190-197.
    [27]郑吉兵,孟光等.亚临界情形下非线性裂纹转子的分岔与混沌.[J].固体力学学报, 1997, 18(3): 257-270.
    [28] Ehrich F F. Some observations of chaotic vibration phenomena in high-speed rotordynamics[J]. ASME Journal of Vibration and Acoustics, 1991, 113: 50~57.
    [29] Ishida Y. Nonlinear vibrations and chaos in rotordynamics,[J]. JSME International Journal, Series C, 1994, 37: 237-245.
    [30]陈予恕,孟泉.非线性转子—轴承系统的分叉[J].振动工程学报, 1996, 9(3): 266-275.
    [31]曹树谦,陈予恕.多种非线性力作用下不平衡弹性转子的分岔特性[J].应用力学学报, 2003, 20(3): 57-60.
    [32]张靖,李鹤,闻邦椿.动态油膜转子系统的支座松动故障研究[J].东北大学学报(自然科学版), 2003, 24(10): 963-965.
    [33]张亚红,许庆余,张小龙,许清源.弹性支承滑动轴承不平衡转子系统非线性动力稳定性和分岔的研究[J].应用力学学报, 2003, 20(3): 34-37.
    [34]张彦梅,陆启韶.非稳态油膜力作用下转子振动分岔与稳定性分析[J].航空学报, 2003, 24(1): 37-38.
    [35]郑铁生,张文,马建敏,杨树华.滑动轴承非线性油膜力的几个理论问题及应用[J].水动力学研究与进展, 2003, 18(6): 762-768.
    [36] Agnes Muszynska, Paul Goldman. Chaotic responses of unbalanced rotor/bearing/stator system with looseness or rubs[J]. Chaos, Solitons and Fractals, 1995, 5(9): 1683-1704.
    [37]于洪洁,吕和祥.非稳态非线性油膜力作用下柔性轴裂纹转子的动力特性分析[J].固体力学学报, 2002, 23(4): 2-9.
    [38]李振平,罗跃纲.考虑油膜力的弹性转子系统碰摩故障研究[J].东北大学学报:自然科学版, 2002, 23(10): 14-19.
    [39]刘元峰,赵玫,朱厚军.考虑碰摩的裂纹转子非线性特性研究[J].振动工程学报, 2003, 16(2): 203-206.
    [40]刘元峰,赵玫,朱厚军.裂纹转子在支承松动时的振动特性研究[J].应用力学学报, 2003, 20(3): 118-121.
    [41]罗跃纲,曾海泉,李振平,闻邦椿.基础松动一碰摩转子系统的混沌特性研究[J].振动工程学报, 2003, 16(2): 184-188.
    [42]张韬,孟光.有挤压油膜阻尼器支承的多故障转子系统的非线性响应特性研究[J].机械科学与技术, 2003, 22(4): 543-546.
    [43]周纪卿,朱因远.非线性振动.陕西:西安交通大学出版社, 1998.
    [44]陈予恕,唐云,陆启韶,郑兆昌,徐健学,欧阳怡.非线性动力学中的现代分析方法.北京:科学出版社, 1992.
    [45]胡海岩.应用非线性动力学.北京:航空工业出版社, 2000.
    [46] Zhao J Y, Hahn E J. Sub-harmonic、Quasi-periodic and Chaotic Motions of a Rigid Rotor Supported by an Eccentric Squeeze Film Damper[J]. Journal of Mechanical Engineering Science, Part C, 1993, 207: 383-392.
    [47] Brancati R., Russo M. On the stability of periodic motions of an unbalanced rigid rotor on lubricates journal bearings[J]. Nonlinear dynamics, 1996, 10: 175-186.
    [48] Chu F, Tang.Y. Stability and Nonlinear Response of a Rotor-bearing System with Pedestal Looseness[J]. Journal of Sound and Vibration, 2001, 241(5): 879-893.
    [49] Alford F.F. Protecting Turbo machinery from Self-Excited Vibration[J]. Journal of Engineering for. Power, 1965, 87(4): 333–344.
    [50] Rosenberg C. Investigating aerodynamics transverse force in labyrinth seals in cases involving rotor eccentricity[J]. C.E.Tran.083. Translated from Energnmashinostrojohic, 1974, 8: 15-17.
    [51]沈庆根.透平机械迷宫密封气流激振的研究[J].流体工程, 1988, 6: 6-13.
    [52]沈庆根.迷宫密封的两控制体模型与动力特性研究[J].振动工程学报, 1996, 9(1): 24-50.
    [53]潘晓弘.交错式迷宫密封的动力特性分析[J].工程热物理学报, 2000, 21(1): 62-65.
    [54]史进渊,张汉英,许楚镇.国外大机组轴系重大事故综述[J].超临界技术信息跟踪, 1991, (6): 1- 12.
    [55]柴山,张耀明,曲庆文.汽轮机间隙气流激振力分析[J].中国工程科学, 2001, 3(4): 68-72.
    [56]龚汉声,何毅,孙庆.大型汽轮机的蒸汽振荡问题[J].全国第二届转子动力学学术讨论会论文集, 1989.
    [57]陆颂元.汽轮发电机组振动.北京:中国电力出版社, 2000.
    [58]张正松,傅尚新,冯冠平.旋转机械振动监测及故障诊断.北京:机械工业出版社, 1991.
    [59] Vance JM, Murphy BT. Labyrinth seal effects on rotor whirl stability. Inst. of Mechanical Engineer, 1980, 369-373.
    [60] Black HF. Effects of hydraulic forces in annular pressure seals on the vibration of centrifugal pump rotors[J]. Journal of Mechanical Engineering Science, 1969, 11(2): 206-213.
    [61] Childs DW. Dynamic analysis of turbulent annular seals based on hirs' lubrication equation[J]. ASME Journal of Lubrication Technology, 1983, 105(3): 429-436.
    [62] Nordmann R, Dietzen FJ. Calculating rotordynamic coefficients of seals by finite difference techniques. The 4th Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery, Taxas A &MUniversity. 1986: 77-98.
    [63] Bently DE, Muszynska A. Role of circumferential flow in the stability of fluid handling machine rotors.The 5th Work-shop on Rotordynamic Instability Problems in High Performance Turbomachinery ,Taxas A &M University. 1988: 1-15.
    [64] Rosenberg C. Investigating aerodynamics transverse force in labyrinth seals in cases involving rotor eccentricity. C. E.Tran. 083. Translated from Energnmashinostrojohic. 1974: 15-17.
    [65] Kameoko T. Theoretical approach for labyrinth seal forces-cross coupled stiffness of a straight-through labyrinth seal. NASA. 1984: CP2338.
    [66]孙庆,危奇,黄功文.蒸汽激振及其对大机组轴系振动和稳定性影响的计算分析研究.透平专委会论文集. 2003: 92-95.
    [67]陈佐一,王继宏.流体激振的全三维数值分析系统[J].自然科学进展, 1998, 8(1): 1-7.
    [68]陈佐一.流体激振.北京:清华大学出版社, 1998.
    [69]何立东,高金吉,金琰等.三维转子密封系统气流激振的研究[J].机械工程学报, 2003, 39(3): 100-104.
    [70]黄典贵,沈逵.大型旋转机械中汽封间隙流激振分析—非定常欧拉解[J].热能动力工程, 2000, 15(9): 470-474.
    [71]杨树涛,秦成虎.迷宫汽封振动频率对转子动特性系数的影响[J].汽轮机技术, 2003, 45(3): 142-144.
    [72] Childs DW, Scharrer JK. Experimental rotordynamic coefficientresults for teeth-on-rotor and teeth-on-stator labyrinth gas seals[J]. Trans. ASME J. of Engineering for gas Turbines and Power, 1986, 108: 599-604.
    [73]秦成虎,杨树涛.迷宫气封偏心距对转子动力学系数的影响[J].燃气轮机技术, 2004, 17(2): 46-54.
    [74]黄守龙,陆家鹏,徐诚.直通式迷宫瞬态压力特性的实验研究[J].弹道学报, 1994, 4: 7-11.
    [75] Wachter J, Benckert H. Querkrafte aus Spaltdichtungen-Eine mogliche Ursache fur die Laufunruhe von Turbomaschinen[J]. Atomkernenergie, 1978, 32(4): 239-246.
    [76] Wachter J, Benckert H. Flow Induced Spring Coefficients of Labyrinth Seals for Applications in Rotordynamics. NASA CP 2133 Proceedings of a workshop held at Texas A&M University, May 12-14[J]. Entitled Rotordynamic Instability Problems of High Performance Turbomachinery, 1980, 189-212.
    [77] Wright D.V. Labyrinth Seal Forces on a Whirling Rotor[J]. Rotor Dynamical Instability, ASME,New York, 1983, 19-31.
    [78] Brown R.D, Leong Y.M.M.S. Experimental Investigation of Lateral Forces Induced by Flow Through Model Labyrinth Glads. NASA CP 2338,Rotordynamic Instability Problems in High Performance Turbomachinery, proceedings of a workshop held at Texas A&M University. 1984: 187-210.
    [79] Childs D W, Nelson C E. Theory Versus Experiment For the Rotordynamic Coefficient of Annular Gas Seals (Part I )[J]. ASME, J. of Tribology, 1986, 108: 426-432.
    [80] Kanemitsu Y, Ohsawa M. Experimental Study on Flow Induced Force of Labyrinth Seal. Proceedings of the Post IFToMM Conference on Flow Induced Force in Rotating Machinery, September Kobe University, 1986: 106-112.
    [81] Hisa S, Sakakida H, Asatu S, Sakamoto T. Steam Excited Vibration in Rotor-Bearing System. Proceedingsof the International Conference on Rotordynamics. Tokyo, Japan, 1986: 635-641.
    [82] Scharrer J. Acomparison of Experimental and Theoretical Results for Rotordynamic Coefficients for Labyrinth Gas Seals[R]. TRC Report No.SEAL-2-85, Texas A&M University, 1985.
    [83] Childs D, Scharrer J. An Iwatsubo-based solution for labyrinth seals: Comparison to experimental results[J]. Journal of Engineering for Gas Turbins and Power, 1986, 325-331.
    [84] Hawkins L, Childs D. W. Experimental Results for Labyrinth. Gas Seals With Honeycomb Stators: Comparisons to Smooth-Stator Seals and Theoretical Predictions[J]. Journal of Trebology, Transactions of the ASME, 1989, 111: 161-168.
    [85] Morrison G L, DeOtte R E, Thames J D. Experimental Study of Field Inside a Whirling Annular Seal[J]. Tribology Transactions, 1994, 37(2): 425-429.
    [86] Iwatsubo T. Analysis of dynamic characteristics of fluid force induced by labyrinth seal[J]. In NASA. Lewis Research Center Rotordynamic Instability Problems in High-Performance Turbomachinery, 1984, 211-234.
    [87] Moore J. CFD comparison to 3D laser anemometer and Rotordynamic force measurements for grooved liquid annular seals [J]. Journal of Tribology, 1999, 121(2): 307-314.
    [88] Moore J. J, Palazzolo A. B. Rotordynamic Force Prediction of Centrifugal Impeller Shroud Passages Using Computational Fluid Dynamic Techniques[J]. ASME International Gas Turbine and Aeroengine Congress and Exposition, June 9-12, Indianapolis, Indiana, 1999.
    [89] Kwanka K, Sobotzik J, Nordmann R. Dynamic Coefficients Of Labyrinth Gas Seals A Comparison Of Experimental Results And Numerical Calculations[J]. ASME International Gas Turbine and Aeroengine Congress and Exposition, May 8-11, Munich, Germany, 2000.
    [90] Dawson M. P, Childs D. W. Measurement versus prediction for the dynamic impedance of annular gas seals. Part II: Smooth and honeycomb geometries[J]. Journal of engineering of gas turbines and power, ASME Transactions, 2002, 124: 963-970.
    [91] Dawson M. P, Childs D. W, Holt C. G, Phillips S. G. Measurement versus prediction for the dynamic impedance of annular gas seals. Part I: Test facility and apparatus[J]. Journal of engineering of gas turbines and power, ASME Transactions, 2002, 124: 958-962.
    [92] RHODE D. L, JOHNSON J. W, BROUSSARD D. H. Flow visualization and leakage measurements of stepped labyrinth seals : Part 1—Annular groove[J]. Journal of turbomachinery 1997, 119(4): 839-843.
    [93] RHODE D. L, ALLEN B. F. Measurement and visualization of leakage effects of rounded teeth tips and rub-grooves on stepped labyrinths[J]. Journal of engineering for gas turbines and power, 2001, 123(3): 604-611
    [94] DENECKE J, SCHRAMM V, KIM S, WITTIG S. Influence of rub-grooves on labyrinth seal leakage[J]. Journal of turbomachinery, 2003, 125(2): 387-393.
    [95] Kwanka K. Improving the Stability of Labyrinth Gas Seals[J]. Journal of engineering for gas turbines and power, 2001, 123(2): 383-387.
    [96]潘永密,郑水英.迷宫密封气流激振及其动力特性的研究[J].振动工程学报, 1990, 3(2): 48-58.
    [97]潘永密.迷宫腔中气流旋转速度的逐腔变化规律及其阻力计算[J].流体工程, 1992, 20(10): 27-33.
    [98]鲁周勋,谢友柏,丘大谋.迷宫气体密封转子动力学特性分析[J].润滑与密封, 1991, 1: 10-19.
    [99]何立东,诸振友,夏松波.密封间隙气流振荡流场的动态压力测试[J].热能动力工程, 1999, 14(1): 40-42.
    [100]魏统胜,郝点等.迷宫密封气流激振效应对转子振动响应影响的实验研究[J].石油大学学报, 2000, 24(3): 70-75.
    [101]沈庆根.迷宫密封中的气流激振及其反旋流措施[J].流体机械, 1994, 7: 7-12.
    [102]赵三星.气流轴承与迷宫密封动特性研究[博士后论文].上海:上海交通大学, 2005.
    [103] Yucel U, Kazakia JY. Analytical prediction techniques for axisymmetric flow in gas labyrinth seals[J]. Journal of Engineering for Gas Turbines and Power, 2001, 123: 255 -257.
    [104] Scharrer JK. Theory versus experiment for the rotordynamic coefficients of labyrinth gas seals: Part I-A two control volume model[J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1988, 110: 270-280.
    [105] Thomas HJ. Unstable Natural Vibration of Turbine Rotors Induced by the Clearance Flow in Glands and Blading[J]. Bull De l'AIM, 1958, 71(11): 1039-1063.
    [106]曾国辉.透平机械密封件对转子振动的影响[硕士学位论文].西安交通大学, 1996.
    [107] Childs DW, Scharrer JK. Theory versus experiment for the rotordynamic coefficients of labyrinth gas seals: Part II-A comparson to experiment[J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1988, 110: 281-287.
    [108]孙保苍,周传荣.不平衡转子—轴承系统非线性行为研究[J].振动与冲击, 2003, 22(2): 85-89.
    [109]何成兵,顾煜炯,杨昆.裂纹转子弯扭耦合瞬态振动影响因素研究[J].振动与冲击, 2004, 23(2): 68-71.
    [110]李振平,闻邦椿.刚性转子——轴承系统的复杂非线性动力学行为研究[J].振动与冲击, 2005, 24(3): 36-39.
    [111]陈予恕,丁千.非线性转子-密封系统的稳定性和Hopf分岔研究[J].振动工程学报, 1997, 10(3): 368-374.
    [112]张文.转子动力学理论基础.北京: 1990.
    [113] Adiletta G, Guido A R, Rossi C. Chaotic Motions of a Rigid Rotor in Short Journal Bearings[J]. Nonlinear Dynamics, 1996, 10(6): 251-269.
    [114] Wolf A, Swift JB, Swinney HL. Determining Lyapunov exponents from a time series[J]. Physica D, 1985, 16: 285-317.
    [115] Shimada I, Nagashima T. A numerical approach to ergodic problem of dissipative dynamical systems[J]. Progress of Theoretical Physics, 1979, 61(6): 1605-1616.
    [116] S?ffker D, Bajkowski J, Müller PC. Detection of cracks in turborotors-a new observer based method[J]. Transactions of the ASME, Journal of Dynamic Systems, Measurement and Control, 1993, 115 518-524.
    [117] S?ffker D, Bajkowski J, Müller PC. Analysis and detection of the cracked rotor[J]. ZAMM, 1993, 73(4-5 ): 87-91.
    [118]李鸿光.若干工程非线性振动系统的动力学特性及分叉与混沌的研究[博士学位论文].沈阳: 1999,东北大学.
    [119] Sekhar A. S, Jayant K D. Effects of cracks on rotor system instability[J]. Mechanism and Machine Theory, 2000, 35: 1657-1674.
    [120] Sekhar A S. Vibration characteristics of a cracked rotor with two open cracks[J]. Journal of Sound and Vibration, 1999, 223(4): 497-512.
    [121] Sekhar A S, Prasad P B. Dynamic Analysis of a Rotor System Considering a Slant Crack in the Shaft[J]. Journal of Sound and Vibration, 1997, 208(3): 457-474.
    [122] Prabhakar S, Sekhar A S, Mohanty A R. Transient lateral analysis of a slant-cracked rotor passing through its flexural critical speed[J]. Mechanism and Machine Theory, 2002, 37: 1001-1020.
    [123] Sekhar A S, Prabhu B S. Condition monitoring of cracked rotors through transient response[J]. Mech.Mach.Theory, 1998, 33(8): 1167-1175.
    [124] Sekhar A S. Detection and monitoring of crack in a coast-down rotor supported on fluid film bearings[J]. Tribology Intenrational, 2004, 37: 279-287.
    [125] Sekhar A S. Crack identification in a rotor system: a model-based approach [J]. Journal of Sound and Vibration 2004, 270: 887-902.
    [126] Sekhar A S. Model-based identification of two cracks in a rotor system [J]. Mechanical Systems and Signal Processing, 2004, 18: 977-983.
    [127] Ratan S, Baruh H, Rodriguez J. On-line identification and location of rotor cracks[J]. Jounral of Sound and Vibration, 1996, 194(1): 67-82.
    [128] Zapome J, Fox C H J, Malenovsky E. Numerical investigation of a rotor system with disc- housing impact[J]. Journal of Sound and Vibration, 2001, 243(2): 215-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700