高速微小孔振动钻削主轴系统动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据实际微小孔钻床的结构特点,将主轴系统简化为六个阶梯轴段。采用有限单元法和Timoshenko梁-轴理论,结合虚功原理和拉格朗日原理,在考虑了主轴系统的陀螺力矩、钻削轴向力、主轴轴承和比例阻尼等因素对主轴系统弯曲变形影响的基础上,建立了包含回转系统偏心的微小孔钻床主轴系统转子动力学模型,给出了主轴系统弯曲变形产生的正应力和剪切应力的计算式。在上述工作基础上,分别分析了普通钻削和振动钻削时,钻头悬伸长度、主轴轴承位置、轴承刚度和阻尼、轴向力恒定部分、轴向力幅度、轴向力频率和主轴转速等系统参数对轴段截面弯曲正应力、主轴系统共振特性和稳定性的影响。综合微小孔钻头的弯曲应力疲劳特性和主轴系统的稳定性,定义了评价振动钻削主轴系统转子动力学性能优劣的指标,给出了基于该指标的主轴系统合理参数。
Micro-holes have been employed widely in the fields of aviation, space, navigation, automobile, electronics, chemical industry, medicine, optical fiber communications and flow control, et al. High-speed drilling is an economic, practical and widely-used processing technology for the micro-holes. And the technology is much better than other processing methods in efficiency and precision. Furthermore, the novel technology of high-speed vibration-drilling for the micro-holes can increase the drilling quality, prolong the life of tool, and improve the processing performance of composite materials and some more special material. However, the problem of micro-drills breaking hinders development of the novel technology.
     For the small stiffness of micro-drills and inevitable eccentricity of spindle system constructed by spindle, clamp and micro-drills, the micro-drills bends under the high-speed rotation of the spindle system and axial thrust of drilling. The bending causes the bending stresses in the cross-section of micro-drills, even result in the micro-drills breaking. The axial thrust of vibration-drilling varies in some period and amplitude. From dynamics, the spindle system of vibration-drilling can be modeled as a periodically time-varying parametrically excited system, and unbounded growth of a small disturbance can occur in the parametrically excited system, the parametric instability namely. If the improper parameters of vibration-drilling which could cause system resonance and even the parametric instability are employed, then the micro-drills must break.
     From the structure of micro-drilling machine, the spindle system can be modeled and simplified as six segments of spindle A, shaft B, up-clamp C, down-clamp D, drill E and the drill with spiral groove F in this paper. Based on the precondition of equivalent bending stresses, the drill with spiral groove F can be equalized as a uniform shaft. The kinetic and potential energy of shaft element are obtained from finite element method and the theory of classic Timoshenko beam-shaft with shear deformation. With Lagrange principle, the mass, gyroscopic, stiffness and axial force induced stiffness matrices of shaft element are deduced. And centrifugal force from system eccentricity and supporting force from bearing are obtained from the principle of virtual work. As a result, from finite element method, rotor-dynamic model of spindle system of the micro-drilling machine is achieved with the relation of the shaft segments and the models of centrifugal force and supporting force from bearing. The rotor-dynamic model includes the effects of gyroscopic moment, axial thrust of drilling, bearing and centrifugal forces, and proportional damping on the spindle system bending.
     From experimental data of drilling forces (axial thrust and torque) in traditional drilling, the fluctuation of the drilling forces is small compared with the mean drilling forces in normal drilling process. With the small fluctuation, the drilling forces in the traditional drilling can be considered as a constant one to facilitate the calculation in the study of dynamic stresses of micro-drills. Steady state response of the spindle system bending can be deduced from the rotor-dynamic model of spindle system for the traditional drilling, and then the bending normal and shear stresses are provided. As a result, there is a suitable clamping length of micro-drill with minimum stresses in the dangerous cross-section of the drill. Fixing the bearings at the ends of the spindle (increasing the bearings span) and employing bearings with large damping can reduce the dynamic stresses of the spindle system and improve the Processing Performance. When the spindle system rotates around resonance speed, the resonance should causes evident increase of dynamic stresses, and then the micro-drills break. The dynamic stresses increases with the axial thrust of drilling, and the micro-drills break could break when the axial thrust approaches the bulking loads of spindle system.
     The axial thrust of vibration micro-drilling spindle system can be separated as a constant part and a periodically fluctuating part. As a periodically time-varying parametrically excited system, the rotor-dynamic model of vibration micro-drilling spindle system can be achieved. Analytical expression of steady state response of the system is deduced from the harmonic balance method in complex exponent form and the operation of block matrices, and the calculation method of bending normal and shear stresses are provided. The resonance condition of the system is achieved in eigenvalue problem from the theory of differential equation and vibration mechanics. Quadratic eigenvalue problem for characteristic exponent is expressed from harmonic balance method, the real part of the characteristic exponent is the natural frequency of system, and the image one can be used to determined parametric stability of the spindle system.
     The bending stresses of E-F cross-section and resonance condition of the spindle system are investigated in this paper. The results show that the bending normal and shear stresses in the cross-section of E-F segment for vibration micro-drilling varies periodically with the fluctuation of axial thrust, but the variation is not synchronized due to the phase factors of damping. The normal stresses is 10 times larger than the shear stresses, thus the shear stresses can be neglected. The periodic fluctuation of bending normal stress should induce alternating stress in the vibration micro-drilling, and the alternating stress can result in fatigue damage of the micro-drills. And the fundamental factors of the fatigue damage can be measured by the maximum, minimum, mean and amplitude of the bending stress. Therefore, with the plot of single-factor and the gray image of double-factor, the maximum, minimum, mean and amplitude of the bending stress are investigated from the effects of system parameters, such as constant part, amplitude and frequency of axial thrust, rotating speed of spindle system, fixing location of bearings, clamping length of micro-drill, inertia and stiffness damping. As a result, the maximum, minimum and mean of the bending stress vary identically with the system parameters. The amplitude of axial thrust entirely increases the amplitude of bending stress, but the effect of constant part of axial thrust in not evident. When system resonates, the amplitude of axial thrust increases the maximum, minimum, mean and amplitude of the bending stress, and widens the range of resonance parameter causing large stress. The effects of frequency of axial thrust become obvious when system resonates. Effect of spindle speed on the difference between maximum and minimum of bending stresses is not evident. But compared with constant part, amplitude and frequency of the axial thrust, the spindle speed affects the maximum and minimum of bending stresses more evidently. With the increase of the span of spindle bearings and suspending length of micro-drills, the maximum, minimum and mean of the bending stress decrease. Furthermore, the span of spindle bearings and suspending length of micro-drills also can result in system resonance. The maximum, mean and amplitude of the bending stresses can be decreased by the inertial and stiffness damping of spindle system, thus large damping material should be selected to reduce the bending stresses. The minimum of bending stress decreases consistently with the inertial damping, but it increases firstly, and then decreases with the stiffness damping. And the reduction performance of the inertial damping is better than stiffness damping, but all of them can not cause system resonance. When system resonates, the amplitude of bending stresses should grow dramatically. The resonance of spindle system for vibration micro-drilling can be divided into two categories: the resonance of spindle speed and the resonance of axial thrust excitation. For the resonance of spindle speed, the maximum and minimum of the bending stress increase simultaneously, and the resonance obviously affects the maximum, minimum, mean and amplitude of the bending stresses. However, for the resonance of axial thrust excitation, the maximum bending stress increases, but the minimum one decreases correspondingly. The resonance induced by constant part, amplitude and frequency of axial thrust, fixing location of spindle bearings and suspending length of micro-drills all can be categorized as the resonance of axial thrust excitation.
     As the periodically time-varying parametrically excited system, the spindle system of vibration micro-drilling can induce unbounded growth of a small disturbance. When the curves of natural frequencies overlapped with each other, there must be a characteristic exponent whose real part is greater than zero, and then the parametric instability should occur in the spindle system. However, the inertial and stiffness damping can reduce the real part of characteristic exponent to improve system stability. The parametric instability induced by the axial thrust of spindle system is determined by the constant part, amplitude and frequency of the thrust, but could not be influenced by the spindle speed. The constant part of axial thrust of drilling reduces the unstable frequency of axial thrust, and widens the range of parameters inducing system instability. The occurrence of parametric instability is determined by the frequency of axial thrust of drilling, and the amplitude of the axial thrust determines the extent of instability and the range of unstable frequency of axial thrust.
     Combining the bending fatigue properties of micro-drills and stability of spindle system, a factor is defined to indicate the rotor-dynamic performance of spindle system of vibration micro-drilling. Using the factor, some suitable parameters with good rotor-dynamic performance are listed.
引文
[1] EL-WARDANY T I, GAO D, ELBESTAWI M A. Tool condition monitoring in drilling using vibration signature analysis [J]. International Journal of Machine Tools and Manufacture, 1996, 36: 687-711.
    [2] CHEONG M S, CHO D W, EHMANN K F. Identification and control for micro-drilling productivity enhancement [J]. International Journal of Machine Tools and Manufacture, 1999, 39: 1539-1561.
    [3] TUCKER R W, WANG C. On the Effective Control of Torsional Vibrations in Drilling Systems [J]. Journal of Sound and Vibration, 1999, 224: 101-122.
    [4] ROUKEMA J C, ALTINTAS Y. Time domain simulation of torsional-axial vibrations in drilling [J]. International Journal of Machine Tools and Manufacture, 2006, 46: 2073-2085.
    [5] PANDA S S, CHAKRABORTY D, PAL S K. Flank wear prediction in drilling using back propagation neural network and radial basis function network [J]. Applied Soft Computing, 2008, 8: 858-871.
    [6] PIRTINI M, LAZOGLU I. Forces and hole quality in drilling [J]. International Journal of Machine Tools and Manufacture, 2005, 45: 1271-1281.
    [7] GONG Y P, EHMANN K F, LIN C. Analysis of dynamic characteristic of micro-drills [J]. Journal of Materials Processing Technology, 2003, 141: 16-18.
    [8] EMA S, MARUIB E. Theoretical analysis on chatter vibration in drilling and its suppression [J]. Journal of Materials Processing Technology, 2003, 138: 572-578.
    [9] BAIS R S, GUPTA A K, NAKRA B C, KUNDRA T K. Studies in dynamic design of drilling machine using updated finite element models [J]. Mechanism and Machine Theory, 2004, 39: 1307-1320.
    [10] KHULIEFA Y A, AL-NASERB H. Finite element dynamic analysis of drillstrings [J].Finite Elements in Analysis and Design, 2005, 41: 1270-1288.
    [11] KHULIEF Y A, AL-SULAIMAN F A, BASHMAL S. Vibration analysis of drillstrings with self-excited stick-slip oscillations [J]. Journal of Sound and Vibration, 2007, 299: 540-558.
    [12] ARVAJEH T, ISMAIL F. Machining stability in high-speed drilling-Part 1: Modeling vibration stability in bending [J]. International Journal of Machine Tools and Manufacture, 2006, 46: 1563-1572.
    [13] ROUKEMA J C, ALTINTAS Y. Generalized modeling of drilling vibrations. Part I: Time domain model of drilling kinematics, dynamics and hole formation [J]. International Journal of Machine Tools and Manufacture, 2007, 47: 1455-1473.
    [14] ROUKEMA J C, ALTINTASB Y. Generalized modeling of drilling vibrations. Part II: Chatter stability in frequency domain [J]. International Journal of Machine Tools and Manufacture, 2007, 47: 1474-1485.
    [15]米曾榜.小孔加工[M].北京:机械工业出版社,1988:1-174.
    [16] BREHL D E, DOW T A. Review of vibration-assisted machining [J]. Precision Engineering, 2008, 32: 153-172.
    [17]王立平,杨叔子,王立江.振动钻削工艺的发展概况及应用前景[J].工具技术,1999,33(6):3-7.
    [18]王立平,杨叔子,杨兆军,王立江.振动钻削的国内外研究状况和发展趋势[J].机械设计与制造工程,1999,28(2):1-5.
    [19]高本河,熊镇芹,吴序堂,王世清,刘战锋,张振友.振动钻削技术综述[J].机械制造,2001,39(1),16-18.
    [20]朱晓翠,赵云飞,韩雪冰,杨玫,母德强.振动钻削的国内外研究现状和发展趋势[J].机械工程师,2005,10:28-29.
    [21]吴镝.复合材料超声振动钻削微小孔加工的研究现状[J].焦作大学学报,2005,3:69-70.
    [22]程军,焦锋.微小孔钻削工艺的研究现状[J].机械工程师,2007,11:9-11.
    [23] YANG Z J, LI W, CHEN Y H. Study for increasing micro-drill reliability by vibrating drilling [J]. Reliability engineering and system safety, 1998, 61: 229-233.
    [24] ZHANG D Y, WANG L J. Investigation of chip in vibration drilling [J]. International Journal of Machine Tools and Manufacture, 1998, 38: 165-176.
    [25]高本河,吴序堂,熊镇芹,王世清.振动钻削改善排屑效果机理的研究[J].机械科学与技术,2000,19(2):281-283.
    [26]张平宽,王慧霖,王贵成.轴向振动钻削过程及其切屑长度分析[J].应用科学学报,2003,21(4):393-396.
    [27]高印寒,王昕,代汉达.永磁振动钻削排屑分析[J].农业机械学报,2003,34(5):15-18.
    [28]高本河,郑力,李志忠,熊镇芹,吴序堂.振动钻削改善孔壁粗糙度的因素分析[J].制造技术与机床,2002,9:49-52.
    [29]杨兆军,金在权,卢龙,池龙珠.振幅对钻削钻头寿命的影响[J].机械工程师,2000,3:54-55.
    [30]张平宽,王贵成,王慧霖.轴向振动钻削中Tc-T的研究[J].工具技术,2005,39(5):46-48.
    [31]张平宽,王贵成,王慧霖.轴向振动钻削中钻头角度变化的影响因素[J].农业机械学报,2005,36(3):115-117.
    [32]高本河,吴序堂,熊镇芹,王世清.振动钻削中的振幅损失与补偿研究[J].制造技术与机床,2000,4:34-37.
    [33]高本河,郑力,刘大成,李志忠.振动钻削的变速减振特性分析[J].机械科学与技术,2003,22(3):415-417.
    [34]高本河,吴序堂,江虹,熊镇芹,王世清.振动钻削钻头扭转振动减振机理与效果的试验研究[J].重型机械,1999,3:47-50.
    [35]黄文.用有限元法研究微细钻头振动钻入动力学特性[J].工具技术,2004,38(3):21-23.
    [36] TICHKIEWITCH S, MORARU G, BRUN-PICARD D, GOUSKOV A. Self-ExcitedVibration Drilling Models and Experiments [J]. CIRP Annals-Manufacturing Technology, 2002, 51: 311-314.
    [37] PEIGNE G, KAMNEV E, BRISSAUD D, GOUSKOV A. Self-excited vibratory drilling: a dimensionless parameter approach for guiding experiments [J]. Proceedings of the Institution of Mechanical Engineers Part B: Journal of engineering manufacture, 2005, 219: 73-85.
    [38] PARIS H, BRISSAUD D, GOUSKOV A, GUIBERT N, RECH J. Influence of the ploughing effect on the dynamic behaviour of the self-vibratory drilling head [J]. CIRP Annals - Manufacturing Technology 2008, 57: 385-388.
    [39] NICOLAI N, THOMAS S. Set-oriented numerical analysis of a vibro-impact drilling system with several contact interfaces [J]. Journal of Sound and Vibration, 2007, 308: 831-844.
    [40] CHERN G L, LIANG J M. Study on boring and drilling with vibration cutting [J]. International Journal of Machine Tools and Manufacture, 2007, 47: 133-140.
    [41]江保华,李淑珍,杜润生,杨绪光.振动钻削加工过程的监控系统[J].华中理工大学学报,1996,24(7):28-30.
    [42]张平宽,王贵成,王慧霖.振动钻削台设计及试验[J].农业机械学报,2005,36(11):178-180.
    [43]熊烽,李淑珍,杜润生,杨绪光.振动钻削中切削力的实验研究系统[J].华中理工大学学报,1994,22(9):56-60.
    [44]王立平,杨兆军,王立江,杨叔子.多元变参数振动钻床的数控系统[J].机械工业自动化,1998,20(4),29-31
    [45]张广立,蔡绍勤,王立江,杨汝清.微小孔振动钻削力的实验研究[J].工具技术,2001,35(4):6-8.
    [46]赵宏伟,臧雪柏,凌兴宏,王立江.基于神经网络与遗传算法的振动钻削仿真[J].中国机械工程,2001,12:172-175.
    [47] GUIBERT N, PARIS H, RECH J. A numerical simulator to predict the dynamicalbehavior of the self-vibratory drilling head [J]. International Journal of Machine Tools and Manufacture, 2008, 48: 644-655.
    [48]赵宏伟,王立江,臧雪柏,凌兴宏.基于人工神经网络的振动钻削仿真与参数优化[J].吉林工业大学自然科学学报,2000,30(2):10-14.
    [49]臧雪柏,管秀君,赵宏伟,凌兴宏,王立江.基于遗传算法的神经网络振动钻削参数优化[J].吉林大学学报(工学版),2002,32(1):37-41.
    [50]李言,李淑娟,郑建明,肖继明,袁启龙.轴向振动钻孔工艺参数对切削力的影响[J].西安理工大学学报,2004,20(2):113-116.
    [51]王慧霖,张平宽,王贵成.轴向振动钻削参数的匹配研究[J].农业机械学报,2003,34(3):146-148.
    [52] PARISA H, TICHKIEWITCHA S, PEIGNéG. Modelling the Vibratory Drilling Process to Foresee Cutting Parameters [J]. CIRP Annals - Manufacturing Technology, 2005, 54: 367-370.
    [53]杨兆军,王立江,王立平.变振幅振动钻削提高微小孔入钻定位精度的研究[J].吉林工业大学学报,1995,25(1):27-33.
    [54]杨兆军,王勋龙,池龙珠,王立江.变频率振动钻削微孔提高孔径质量的研究[J].农业机械学报,1998,29(3):128-132.
    [55]朱晓翠,韩雪冰,赵云飞,杨玫.变进给量振动钻削提高微小孔加工质量的分析[J].工具技术,2006,40(4):54-56.
    [56]王立江,李自军,赵宏伟,张林波.阶跃式变参数振动钻削新型叠层材料的实验研究[J].汽车技术,2000,2:22-25.
    [57]李自军,洪迈生,赵宏伟,王立江.阶跃式多元变参数振动钻削的动态轴向力、扭矩及加工精度分析[J].中国机械工程,2001,12(8):935-938.
    [58]李自军,洪迈生,王立江,赵宏伟,苏恒,魏元雷.阶跃式多元变参数振动钻削叠层复合材料的加工精度[J].上海交通大学学报,2002,36(8):1100-1113.
    [59]张林波,王立江,王昕.混合变参数振动钻削纤维增强复合材料的研究[J].汽车技术,2001,11:27-29.
    [60] ZHANG L B, WANG L J, WANG X. Study on vibration drilling of fiber reinforced plastics with hybrid variation parameters method [J]. Composites Part A: Applied Science and Manufacturing, 2003, 34: 237-244.
    [61]杨兆军,王立江,张林波,王昕.变参数振动钻削微孔的最佳振动参数的非线性回归[J].吉林工业大学自然科学学报,2000,30(4):7-11.
    [62]李自军,洪迈生,王立江,赵宏伟.变参数振动钻削微小孔的优化试验分析[J].上海交通大学学报,2000,34(10):1347-1350.
    [63]杨兆军,王立江.三区段变参数振动钻削微孔的研究[J].机械工程学报,2001,37(3):51-54.
    [64]臧雪柏,赵宏伟,于繁华,王立江.叠层材料变参数振动钻削模型与实验研究[J].吉林工业大学自然科学学报,2001,31(4):33-37.
    [65]张林波,王立江,刘向阳,王昕.多元变参数振动钻削复合材料的研究[J].中国机械工程,2002,13(3):62-64.
    [66]姜兴刚,李勋,张德远.低频变参数振动钻削微孔控制技术的研究[J].现代制造工程,2004,6:66-68.
    [67]于繁华,赵宏伟,臧雪柏,刘仁云,王立江.基于小波神经网络的变参数振动钻削仿真[J].吉林大学学报(工学版),2005,35(3):297-300.
    [68]张德远,王立江,张明.超声波振动钻削微孔的横刃入钻特性[J].科学通报,1991,36(12):947-950.
    [69]张明,王立江.超声波振动钻削微小深孔的研究[J].工具技术,1991,25(1):36-38.
    [70]张明,王立江.轴向超声波振动钻削微小孔的研究[J].机械工程师,1999,7:20-21.
    [71]吕宝占.工程陶瓷小孔超声振动钻削的理论探讨[J].工具技术,2000,34(8):14-16.
    [72]曾忠.微孔的超声振动钻削技术[J].中国机械工程,2001,12(3):65-68.
    [73]曾忠.微孔的超声振动钻削技术与工艺效果[J].机械工程师,2001,1:36-39.
    [74]刘传绍,郑建新,赵波,焦锋,高国富.超声振动钻削声学系统的设计研究[J].电加工与模具,2003,2:44-47.
    [75]郑建新,刘传绍,赵波,高国富,焦锋.超声振动钻削中局部共振现象的研究与应用[J].工具技术,2003,37(2):5-8.
    [76]黄文.微细深孔超声轴向振动钻削装置的设计[J].工具技术,2003,37(5):20-23.
    [77]黄文.微细钻头超声轴向振动钻入横向偏移的有限元分析[J].现代制造工程,2004,3:96-98.
    [78]向道辉,马玉平,赵波.超声振动钻削系统固有频率和振型的分析[J].电加工与模具,2004,2:37-38.
    [79]丁雪芹,马玉平,田成彪,向道辉.振幅对超声振动钻削力的影响研究[J].机械工程师,2006,1:89-91.
    [80]刘战锋,杨立合.深孔超声轴向振动钻削装置的设计与研究[J].机床与液压,2007,35(3):56-58.
    [81] CHANG S S F, BONE G M. Burr size reduction in drilling by ultrasonic assistance [J]. Robotics and Computer-Integrated Manufacturing, 2005, 21: 442-450.
    [82] THOMAS P N H, BABITSKY V I. Experiments and simulations on ultrasonically assisted drilling [J]. Journal of Sound and Vibration, 2007, 308: 815-830.
    [83] POTTHAST C, TWIEFEL J, WALLASCHEK J. Modelling approaches for an ultrasonic percussion drill [J]. Journal of Sound and Vibration, 2007, 308: 405-417.
    [84] BABITSKY V I, ASTASHEV V K, MEADOWS A. Vibration excitation and energy transfer during ultrasonically assisted drilling [J]. Journal of Sound and Vibration, 2007, 308: 805-814.
    [85]刘华明.低频振动钻小孔的试验研究[J].机械工程师,1988,3:9-10.
    [86]王立平,杨兆军,王立江,杨叔子.低频振动钻削时微小钻头钻入横向偏移的研究[J].中国机械工程,1998,9(12):59-62.
    [87] YANG Z J, TAN Q C, WANG L J. Principle of precision drilling-in of micro-drilling with the axial vibration of low frequency [J]. International journal of production research, 2002, 40: 1421-1427.
    [88]高本河,熊镇芹,王世清,刘战锋,吴序堂.低频振动钻削钛合金深小孔的试验研究[J].西安石油学院学报(自然科学版),2000,15(4):76-80.
    [89]徐旭松,刘战锋,彭海.低频机械式深孔振动钻削装置的设计与应用[J].新技术新工艺,2002,10:16-18.
    [90]张彦波,陈志同,李建平.枪钻低频振动钻削振动问题的研究[J].机械设计与制造,2004,3:115-117.
    [91]刘耀辉,代汉达,高印寒,杜军. Al2O3f+Cf/ZL109混杂复合材料低频振动钻削的实验研究[J].机械制造,2005,43(485):35-37.
    [92]张平宽,王贵成,王慧霖.超低频振动钻削过程分析[J].农业机械学报,2005,36(12):156-159.
    [93]叶玉刚,黄晓斌,程峰.低频振动钻削方式在DF系统中的应用[J].机械管理开发,2005,5:41-42.
    [94]李振东,张俐.枪钻低频振动钻削深孔断屑条件和振幅损失研究[J].航空精密制造技术,2005,41(5):9-11.
    [95]刘战锋,黄华,徐旭松.超细长小直径深孔振动钻削工艺[J].机械工程师,2004,1:72-74.
    [96]高本河,吴序堂,熊镇芹,王世清.深孔振动钻削的断屑条件研究[J].机械设计与研究,1999,3:63-64.
    [97]陈丛桂.小深孔振动钻削工艺参数分析与选用[J].机械研究与应用,2001,14(2):5-6.
    [98]刘战锋,王世清,陈怀永.小直径深孔振动钻削系统设计与试验[J].太原重型机械学院学报,1999,20(3):262-266.
    [99]徐旭松,杨将新,孙志英,刘战锋.小直径深孔振动钻削钻头的研究[J].中国机械工程,2005,16(9):764-766.
    [100]代汉达,刘耀辉,高印寒,杜军.振动钻削提高Al2O3f+Cf/ZL109的机械加工性能[J].农业机械学报,2005,36(8):168-170.
    [101]代汉达,刘耀辉,高印寒,杜军. Al2O3f+Cf/ZL109混杂复合材料的复合振动钻削加工[J].材料导报,2005,19(1):121-123.
    [102]臧雪柏,赵宏伟,潘志敏,王立江.叠层材料振动钻削虚拟集成环境[J].吉林大学学报(工学版),2002,32(2):55-59.
    [103]臧雪柏,翟景阳,桑蓝芬,安晓峰.叠层材料振动钻削的计算机仿真[J].吉林大学学报(工学版),2003,33(2):60-63.
    [104]赵宏伟,李自军,张林波,王立江.多层复合材料微小孔振动钻削三参数优化[J].吉林工业大学自然科学学报,2000,30(1):31-34.
    [105] ZHANG L B, WANG L J, LIU X Y, ZHAO H W, WANG X, LUO H Y. Mechanical model for predicting thrust and torque in vibration drilling fibre-reinforced composite materials [J]. International Journal of Machine Tools and Manufacture, 2001, 41: 641-657.
    [106]蒋峰,赵宏伟.加工叠层材料的振动钻床嵌入式控制系统[J].新技术新工艺,2004,9:17-19.
    [107] WANG X, WANG L J, TAO J P. Investigation on thrust in vibration drilling of fiber-reinforced plastics [J]. Journal of Materials Processing Technology, 2004, 148: 239-244.
    [108] ARULA S, VIJAYARAGHAVANA L, MALHOTRAB S K, KRISHNAMURTHYA R. The effect of vibratory drilling on hole quality in polymeric composites [J]. International Journal of Machine Tools and Manufacture, 2006, 46: 252-259.
    [109] ISHIKAWA K I, SUWABE H, NISHIDE T, UNEDA M. A study on combined vibration drilling by ultrasonic and low-frequency vibrations for hard and brittle materials [J]. Precision engineering, 1998, 22: 196-205.
    [110] EGASHIRA K, MIZUTANI K, NAGAO T. Ultrasonic Vibration Drilling of Microholes in Glass [J]. CIRP Annals - Manufacturing Technology, 2002, 51: 339-342.
    [111]刘战锋,徐旭松,彭海,黄华.高温合金材料的小直径深孔振动钻削试验研究[J].现代制造工程,2003,9:48-49.
    [112]李仙昊,季远,姜兴刚,李勋,张德远.高速钢钻头振动钻削9Cr18不锈钢微小孔的研究[J].现代制造工程,2005,1:69-71.
    [113] KIYOSHI O, HIROYUKI S, TOSHIAKI S, MASAOMI T. Low-Frequency Vibration Drilling of Titanium Alloy [J]. JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 2006, 49: 76-82.
    [114] LIAO Y S, CHEN Y C, LIN H M. Feasibility study of the ultrasonic vibration assisted drilling of Inconel superalloy [J]. International Journal of Machine Tools and Manufacture, 2007, 47: 1988-1996.
    [115] AZARHOUSHANG B, AKBARI J. Ultrasonic-assisted drilling of Inconel 738-LC [J]. International Journal of Machine Tools and Manufacture, 2007, 47: 1027-1033.
    [116] HEISEL U, WALLASCHEK J, EISSELER R, POTTHAST C. Ultrasonic deep hole drilling in electrolytic copper ECu 57 [J]. CIRP Annals - Manufacturing Technology, 2008, 57: 53-56.
    [117]孟光.转子动力学研究的回顾与展望[J].振动工程学报,2002,15(1):1-8.
    [118]虞烈,刘恒,谢友柏.轴承—转子系统动力学[J].中国机械工程,1999,10(11):1290-1295.
    [119]钟一谔,何衍宗,王正,李方泽.转子动力学[M].北京:清华大学出版社,1987:176-195.
    [120]张文.转子动力学理论基础[M].北京:科学出版社,1990:45-57.
    [121]闻邦椿,顾家柳,夏松波,王正.高等转子动力学-理论、技术及应用[M].北京:机械工业出版社,2000:1-78.
    [122]虞烈,刘恒.轴承-转子系统动力学[M].西安:西安交通大学出版社,2001:1-10.
    [123] LEE H P. Dynamic response of a rotating Timoshenko shaft subject to axial forces and moving loads [J]. Journal of Sound and Vibration, 1995, 181: 169-177.
    [124] KU D M. Finite element analysis of whirl speeds for rotor-bearing systems with internal damping [J]. Mechanical systems and signal processing, 1998, 12: 599-610.
    [125] KOSMATKA J B. An improved two-node finite element for stability and natural frequencies of axial-loaded Timoshenko beams [J]. Computer and Structures, 1995, 57: 141-149.
    [126] CHEN L W, KU D M. Dynamic stability analysis of a rotating shaft by the finite element method [J]. Journal of sound and vibration, 1990, 143: 143-151.
    [127] OZGUVEN H N, OZKAN Z L. Whirl speeds and unbalance response of multibearing rotors using finite elements [J]. Transactions of the ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1984, 106: 72-79.
    [128] HUSEYIN K. On the Basic properties of stability Regions and Boundaries of Rotating Flexible Shafts, IUTAM SYMPOSIUM NüMBER CHT/GERMANY 1981 [C]. Berlin: Springer-Verlag, 1982: 232-243.
    [129] REDDY J N. An introduction of the finite element method [M]. New York: McGraw-Hill Book Company, 1984: 1-11.
    [130] FRIEDMANN P, HAMMOND C E. Efficient numerical treatment of periodic systems with application to stability problems [J]. International Journal for numerical methods in engineering, 1977, 11: 1117-1136.
    [131] THOMAS J, ABBAS B A H. Dynamic stability of Timoshenko beams by finite element method [J]. Journal of engineering for industry, 1976, 98: 1145-1151.
    [132] YUKIO I, TAKASHI I, TSHIO Y, TOSHINORI E. Parametrically excited oscillations of a rotating shaft under a period axial force [J]. JSME International Journal Series III, 1988, 31(4): 698-704.
    [133] ZAJACZKOWSKI J, LIPINSKI J. Vibrations of parametrically excited systems [J]. Journal of sound and vibration, 1979, 63(1): 1-7.
    [134] TAKAHASHI K. A method of stability analysis for non-linear vibration of beams [J]. Journal of Sound and Vibration, 1979, 67: 43-54.
    [135] TAKAHASHI K. Stability of Hill's equation with three independent parameters [J]. Journal of Sound and Vibration, 1981, 79: 605-608.
    [136] TAKAHASHI K. An approach to investigate the instability of the multiple degree of freedom parametric dynamic systems [J]. Journal of sound and vibration, 1981, 78(4): 519-529.
    [137] TAKAHASHI K. Instability of parametric dynamic systems with non-uniform damping [J]. Journal of Sound and Vibration, 1982, 85: 257-262.
    [138] TAKAHASHI K, KONISHI Y. Dynamic stability of a rectangular plate subjected to distributed in-plane dynamic force [J]. Journal of Sound and Vibration, 1988, 123: 115-127.
    [139] TAKAHASHI K. Dynamic stability of cables subjected to an axial periodic load [J]. Journal of Sound and Vibration, 1991, 144: 323-330.
    [140] TAKAHASHI K, NATSUAKI Y, KONISHI Y. Dynamic stability of a circular arch subjected to distributed in-plane dynamic force [J]. Journal of Sound and Vibration, 1991, 146: 211-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700