基于烃类微渗漏理论的高光谱遥感油气异常探测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用遥感技术直接找油主要是利用遥感影像信息提取等技术挖掘出遥感影像的烃类微渗漏信息,圈定或预测有利的油气勘探靶区,是遥感油气勘探技术的前沿。它是一种非侵入式技术,具有经济、安全及高效率等方面的优势,有很大的应用潜力。
     90年代以前,遥感探测油气微渗漏信号主要利用陆地卫星LANDSAT MSS和TM等多光谱遥感资料,通过图像增强、波段比值、图像变换等图像处理方法,揭示和探测由油气微渗漏引起的色调异常,填绘油气微渗漏分布区域,进行油气远景评价。由于多光谱遥感光谱分辨率的限制,多光谱遥感油气渗漏信息探测的不确定性较大。随着20世纪80年代以来新型遥感传感器(如高分辨率、高光谱等遥感传感器)的研制成功及遥感信息处理方法的发展,我们可以获得更加丰富的空间影像信息资源。
     本文以此为契机,基于烃类微渗漏理论,利用高光谱遥感技术对油气异常遥感进行方法研究试验。具体研究利用EO-1 Hyprion成像光谱数据,从烃类微渗漏理论入手,探寻烃类微渗漏区的地表波谱特征及遥感探测指示标志。在此基础上,选择青海省柴达木盆地作为研究区,对Hyprion影像进行信息处理,进而提取烃类微渗漏信息。最后结合研究区实测土壤样品做相关的波谱测试、化验分析,为高光谱遥感油气勘探应用提供佐证。
     首先,本文系统地研究归纳了烃类物质微渗漏现象以及由此引起的地表蚀变,从微渗漏地表土壤及岩石地球化学异常、地表土壤吸附烃异常、地植物异常、地热异常等几个方面寻求遥感指示标志。进而,论述了利用传统遥感手段实现烃类微渗漏探测的方法,阐述利用高光谱遥感探测油气的理论可行性和一些实验室研究成果。
     然后,利用柴达木盆地的Hyprion影像,在影像数据预处理的基础上,选取距涩北2号气田最近的一段影像为研究目标。充分利用了卫星高光谱成像遥感数据具有的光谱细分特性,分别采用波谱纯度指数法(PPI)、光谱角分类(SAM)、光谱代数运算等遥感信息提取技术方法进行分析、对比,最终在已知油气区确定了与烃类微渗漏相关的蚀变矿物组合信息,并作为气区探测的遥感解译组合标志,进一步分析确定了新的油气勘探远景区。
     进而,对研究区野外勘踏采集的土壤样品做了相关的波谱测试、化验分析。结果表明,土壤波谱测试分析呈现出粘土矿物、碳酸盐矿物、烃类物质的特征吸收波谱;酸解烃分析从地球化学场等角度验证了气区属于高背景场和以甲烷为主的地下含油气性结论,并证实甲烷含量与实测波谱的烃指数呈正相关;矿物组分分析结果证实了蚀变矿物信息组合是识别油气区的有利遥感解译标志。这些结果为上述油气高光谱遥感技术的研究提供了有力的证明。
     最后归纳出高光谱油气遥感的工作技术流程,展望了该项应用的前景。
Utilizing remote sensing technology to explore oil & gas reservoir, which extract hydrocarbon microseepage information from remote sensing images by information extraction techniques mainly, can detect oil & gas information directly and locate oil &gas exploration target area. It is an non-invasive technology among the technologies of exploring oil & gas reservoir. It is economical, safe, effective and promising. And it can accomplish integrative forecast.
    Before 1990's, the multi-spectral remote sensing data, such as LANDSAT MSS and TM, were the main source for extracting hydrocarbon microseepage information. By image enhancing, band ratio and image transform, human can identify the tone abnormity induced by hydrocarbon microseepage, then map the distribution region to evaluate the oil & gas perspective. Since 1980's, new remote sensing sensor, such as high spatial resolution and hyperspectral remote sensing sensor, were developed and some more advanced remote sensing information process method appeared. We can acquire more abundant spatial image information.
    This article catches this chance to make an attempt to study on using hyperspectral remote sensing to explore oil & gas resources. Research is started with finding some indicating symbols based on hydrocarbon microseepage theory over oil & gas reservoir. Then Qaidam basin of Qinghai province is chose for oil & gas remote sensing research. The EO-1 Hyprion images are introduced to extract hydrocarbon microseepage information by applying various method. In the end, soil samples are collected. And spectrum test, hydrocarbon acid-digestion test and mineral components analysis of soil samples are performed. This can prove application feasibility and validity for hyperspectral remote sensing to explore oil & gas reservoir.
    Firstly, this article systematically studies hydrocarbon microseepage phenomenon and ground surface corrosion caused by it. And finding out remote sensing indicators, which can be used by hyperspectral remote sensing technology, are geochemistry abnormity of soil and rock, adsorption hydrocarbon abnormity in soil, earth's surface vegetation abnormity and terrestrial heat abnormity. Furthermore, discuss some means to detect hydrocarbon microseepage by multi-spectral remote sensing data, and quote theory feasibility of detecting microseepage information by hyperspectral remote sensing and some production from lab research.
    Afterwards, Spectral Puritify Index, Spectral Angle Mapping, and Spectral algebra operation are performed to this application research. It is based on the preprocessed Hyprion image covering Seibei No.2 gas field of Qaidam basin. High spectral subdivision feature of hyperspectral image is fully made use of in course of research. Eventually corrosion minerals compounding information are confirmed to be the
    identification indicator for hyperspectral remote sensing to explore oil & gas reservoir. And then find some new perspective area for oil & gas exploration.
    Furthermore, soil samples in research area are collected. And spectra test, hydrocarbon acid-digestion test and mineral components analysis of soil samples are performed. The result of spectrum test shows that samples spectra have absorption features of clay minerals, carbonate minerals and hydrocarbons. The result of hydrocarbon acid-digestion test makes conclusion that research area is high background field at the point of view of regional geochemical field and methane is the main component in Sebei No.2 gas field. Then approves that methane content and hydrocarbon index of soil test spectra is positive correlation. And mineral components analysis confirms that corrosion minerals compounding information is identification indicator for hyperspectral remote sensing to explore oil & gas reservoir. These results powerfully prove the feasibility and validity of hyperspectral application research in oil &gas field.
    Finally, conclude technical flowchart of using Hyperspectral image to explore oil &gas reservoir and expect the application prospect.
引文
Acharya, P. K., A. Berk, G. P. Anderson, et al, 1999, MoDTRAN4: multiple scattering and bi-directional reflectance distribution function(BRDF) upgrades to MODTRAN, Proceedings SPIE Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, 19-21 July 1999, Vol. 3756
    Almeida Filho R. Remote Detection of Hydrocarbon Microseepage-indeuced Soil Alteration [J]. Int. J. Remote Sensing, 2002, 23(18):3523-3524.
    Bailey, G. B. and Anderson, P. D., 1982, Applications of Landsat imagery to problems of petroleum exploration in Qaidam Basin, China: AAPG Bull, v. 66:9, pp. 1348-1354.
    Bammel, B. H., Birnie, r. w., 1994, Spectral response of big sagebrush to hydrocarbon-induced stress in the Bighorn Basin, Wyoming. Photogrammetric Engineering and Remote Sensing, 60, 87-96.
    Baugh W M, Kruise F A, Atkinson W Jr. Quantitative Geochemical Mapping of Ammonium Minerals in the Southern Cedar Mountains, Nevada, Using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [J]. Remote sensing of Environment, 1998, 65: 292-308.
    Becker F, Zhao-Liang Li. Surface temperature and emissivity at various scale: definition, measurement and related[J]. Remote Sensing Review, 1995,12: 225-253.
    Berger, Z., 1994, Satellite Hydrocarbon Exploration: Springer-Verlag, Bernard E, Hubbard, James K Crowley. Mineral mapping on the Chilean - Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions[J]. Remote Sensing of Environment, 2005, (99): 173 -186
    Berk A., Bernstein L. S. and D. C. Robertson. MODTRAN : A moderate resolution model for LOWTRAN 7 , GLTR-89-0122, Air Force Geophysics Lab. , Hanscom AFB, MA, 1989, 33p
    Berk, A., G. P. Anderson, L. S. Bernstern, et al.M0DTRAN4 radiative transfer modeling for atmospheric correction, Procedings SPIE Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, 19-21 July 1999, Vol. 3756
    B.HORIG, F. KUHN, F. OSCHUTZ, and F. LEHMANN, 2001, HyMap hyperspectral remote sensing to detect hydrocarbons: Int. J. Remote Sensing, v. 22:8, pp. 1213-1422.
    Boardman J W. Leveraging the High Dimensionality of AVIRIS Data for Improved Sub-Pixel Target Unmixing and Rejection of False Positives: Mixture Tuned Matched Filtering [A]. Summaries of the Senventh Annual JPL Airborne Earth Science Workshop [C]. Pasadena, CA:JPL Publication, 1998.
    Buckingham, W. F. and Sommer, S.E., 1983, Mineralogical characterization of rock surfaces formed by hydrothermal alteration and weathering - Application to remote sensing: Economic Geology, v. 78, pp. 664-674.
    Clark R. N., Rough T L. Reflectance Spectroscopy: Quantitative Analysis Techniques for Remote Sensing Application[J]. J. Geophys Res., 1984,89(B7): 6329-6340.
    Clark R. N., T. V. V. King, M. Klejwa, G. Swayze, and N. Vergo. High Spectral Resolution Reflectance Spectroscopy of Minerals, J. Geophys Res. 1990, 12653-12680
    Clark R. N., Swayze G A. Mapping Mineral, Amorphous Materials, Environmental Materials, Vegetation, Water, Ice and Snow, and Other Materials: The USGS Tricorder Algorithm[A]. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop[C]. JPL Publication, 1995.
    Cloutis, E. A., 1989, Spectral reflectance properties of hydrocarbons: remote-sensing implications: Science, v. 245, pp. 165-168.
    Crosta, A. P., Sabine, C. and Taranik, J.V., 1998, Hydrothermal Alteration Mapping at Bodie, California, Using AVIRIS Hyperspectral Data: Remote Sensing of Environment, v.65:3, pp. 309-319.
    Debba P, Van Ruitenbeek F J A, et al. Optimal Field Sampling for Targeting Minerals Using Hyperspectral Data[J]. Remote sensing of Environment, 2005, 99: 373-386.
    Dietmar Schumacher, Hydrocarbon-induced Alteration of Soils and Sediments [A]. AAPG Memoir 66 [C]. 1996.
    Donovan, T. J., 1974, Petroleum microseepage at Cement Oklahoma: Evidence and mechanism: AAPG Bull, v. 58:3, pp. 429-446.
    Ellis, J.M., Davis, H. H., Zamudio, J.A., 2001, Exploring for onshore oil seeps with hyperspectral imaging: Oil and Gas Journal, Sept. 10, pp. 49-56.
    Everett, J. R., Staskowski, R. J. and Jengo, C., 2002, Remote sensing and GIS enable future exploration success: World Oil, v. 223:11, pp. 59-60, 63-65.
    F. KUHN, K. OPPERMANN and B. HORIG, 2004, Hydrocarbon Index - an algorithm for hyperspectral detection of hydrocarbons: Int. J. Remote Sensing, v. 25:12, pp. 2467-2473.
    Fred A Kruse, Joseph W Boardman, Jonathan F Huntington. Comparison of Airborne Hyperspectral Data and EO-1 Hyprion for Mineral Mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1388-1399.
    Gillespie A. R. Rokugawa S., Matsunaga T. et al. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflectance Radiometer(ASTER)images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36: 1113-1126.
    Goetz, A. F. H., Vane, G., Solomon, J.E. and Rock, B. N., 1985, Imaging spectrometry for earth remote sensing: Science, v. 211, pp. 1147-1153.
    Green, R. O., Eastwood, M. L., Sarture, C. M., Chrien, T. G., Aronsson, M., Chippendale, B. J., Faust, J. A., Pavri, B. E., Chovit, C. J., Solis, M., Olah, M. R. and Williams, O., 1998, Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS): Remote Sensing of Environment, v. 65:3, pp. 227-248.
    Green A. A., Berman M., Switzer P., et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal, IEEE Trans. Geosci. Remote Sens, 1988,26(1):65-74
    Guha B, Goyal A K Sniffer: A geochemical technique for offshore oil and gas exploration [A]. In: Kumar R K, Dwivedi P, Banerjie V, etal. Petroleum Geochemistry in the Afro-AsianRe-gion [C]. Rotterdam: [s.n.], 1987. 409-415.
    Halbouty, M. T., 1976, Application of Landsat imagery to petroleum and mineral exploration: AAPG Bull, v. 60:5, pp. 745-793.
    Halbouty M T. Geologic significance of LANDSAT data for 15 giant oil and gas fields [J]. AAPG Bulletin, 1980, 64:8-36 2822289.
    Heather Freeman. Evaluation of the use of Hyperspectral Imagery for Identification of Microseeps Near Santa Barbara [A]. California [C]. 2003.
    Hunt, G. R. and J. W. Salisbury, 1971, Visible and Near Infrared Spectra of Mineral and Rocks. II, Carbonates, Model Geology, Vol.2, PP23-30.
    Hunt, G. R., 1979, Near-infrared (1.3-2.4μm) spectra of alteration minerals -Potential for use in remote sensing: Geophysics, v. 44:12, pp. 1974-1986.
    Ira Leifer, Dar Roberts, Jack Margolis, Frank Kinnaman. In situ sensing of methane emissions from natural marine hydrocarbon seeps: A potential remote sensing technology. Earth and Planetary Science Letters, 2006, 245: 509-522.
    Kathy Shirley, Remote revolution being sensed, and images to move to higher level [J]. AAPG, Explorer, 1999, 43: 38-4
    Kaufman, Y. J., D. Tanre, L. A. Remer, et al. Operational Remote Sensing of Tropospheric Aerosol over Land from EOS Moderate Imaging Spetroradiometer, J. Geophys. Res. 1997,102, 17051
    Kierein Young,Kathryn S. Mapping of Vegetation and Lithology in Railroad Valley, Nevada Using AVIRIS Data, in Processing of the Twelfth Thematic Conference on Applied Geologic Remote Sensing, 17-19 November 1997, Environmental Research Institute of Michigan Publication 2:135-142.
    Klusman R W Soil Gas and Related Methods for Natural Re-source Exploration[M]. Chichester: John Wiley & SonsLtd., 1993. 127-162.
    Kruse F A, G. L. Raines, and K. Watson. Analytical techniques for extracting geologic information from multichannel airborne spectroradiometer and airborne imaging spectrometer data, Proceedings of the t Fourth thematic conference on geologic remote sensing, San Francisco, California, 1985,1-4 April, PP309-324.
    Kruse F. A., Baugh W. M. and Atkinson W. W. Mapping alteration minerals in drill core using a field spectrometer and hyperspectral image analysis techniques, Presented at the tenth thematic conference on geologic remote sensing, San Antonio, TX 9-12 may 1994 , 1137—43
    Kruse, F. A. The effects of Spatial Resolution, Spectral Resolution and Signal-to-Noise Ratio on Geologic Mapping using Hyperspectral Data, Northern Grapevine Mountain, Navada, Proceedings of 2000 AVIRIS Workshops, JPL, Pasadena, CA. 2000
    Kruse F. A., and Lefkoff A. B., Boardman J. W., The Spectral Image Processing System (SIPS)-Interactive Visualization and Analysis of Imaging Spectrometer Data [J]. Remote Sensing of Environment, 1993,44:145-163.
    Matthew, M., S. Adler-Golden, A. Berk, G. Felde, et al, 2003, Atmospheric Correction of Spectral Imagery: Evaluation of the FLAASH Algorithm with AVIRIS Data, Proceedings of 2003 AVIRIS Workshops.
    McCoy, R. M., Blake, J. G. and Andrews, K. L., 2001, Detecting hydrocarbon microseepage using hydrocarbon absorption bands of reflectance spectra of surface soils: Oil and Gas Journal, May 28, pp. 40-45.
    Michael F Crawford, Preliminary evaluation of remote sensing data for detection of vegetation stress related to hydrocarbon microseepage: Mist gas field, Oregon. Proceedings of the fifth thematic conference on remote sensing for exploration geology. 1986: 161-178.
    Philp R P, Crisp P T. Surface geochemical prospecting methods used for oil and gas prospecting[J]. Journal of Geochemical Exploration, 1982, 17(1):1-34.
    Price J C. Land surface temperature measurements from the split window channels of the NOAA7/AVHRR [J]. Geophys. Res., 1984 , 89: 7231-7237.
    Research Systems, 2002. ENVI User's Guide, ENVI 3. 6. Research Systems, Boulder CO., pp. 1042.
    Research Systems, 2001, FLAASH User's Guide, ENVI FLAASH version 1.0. Research Systems, Inc., pp. 58.
    Richard Beck. EO-1 User Guide v. 2.3 [Z]. 2003. http://eol.usgs.gov& http://eol.gsfs.nasa.gov.
    Saunders D F, Burson K R, Thompson C K. Model for Hydrocarbon Microseepage and Related Near-surface Alterations[J]. AAPG BULL, 1999, 83(1): 170-185.
    Richard F, Brian J., 1977, "physical. Geology" , second edition, Inc., New York. John wiley and sons.
    Schumacher D., Hydrocarbon -induced alteration of soils and sediments [A]. Schumacher D., Abrams M A. Hydrocarbon Migration and Its Near Surface Expression[C]. AAPA Memoir, 1996, 66: 71-89.
    Simpson C J., Remote Sensing of Petroleum gas seepage alteration: pain vally gas field, Amadeus basin central Australia. The Eighth thematic conference on geologic remote sensing, Colorado. U.S.A. 1991: 1463-1472.
    SMITH, K. L., STEVEN, M. D., COLLS, J. A., 2004: Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks, Remote Sensing of Environment: vol.92, pp. 207-217.
    Tedesco, S. A., 1995, Surface Geochemistry in Petroleum Exploration: Chapman and Hall, pp. 1-29.
    Theiler J, L avenier D, Harvey N, et al. U sing Block s of Skewers for Faster Computation of P ixel Purity Index (Z) . SPIE Int Conf Op tical Science and Techo logy, 2000.
    Yang. H., Zhang. J., van der Meer. F. and Kroonenberg, S.B., 1998, Geochemistry and field spectrometry for detecting hydrocarbon microseepage: Terra Nova, v. 10, pp. 231-235.
    Yang. H., Zhang. J., van der Meer, F. and Kroonenberg, S.B., 1999, Spectral characteristics of sweat assiociated with hydrocarbon microseepage, International Journal of Remote Sensing, v. 20 (4), pp. 807-813.
    Yuhas R. H., Geotz F. H. A., et al. Discrimination among semiarid landscape endmembers using the spectral angle mapper (SAM) algorithm, Summaries of the Third Annual JPL Airborne Geoscience workshop, 1 June 1992, Pasadena, CA, JPL Publication 92-14,147-149
    Yunpeng Wang, Xuan Ding. Hydrocarbon Alteration Characteristics of Soils and Mechanism for Detection by Remote Sensing in East Sichuan Area[J]. China, Natural Resources Research, 2000, (4): 295-305
    高来之,杨柏林,应用于油气资源遥感的近红外石油物质光谱特征研究[J].国土资源遥感,1991,4(4):91
    甘贵元,柴达木盆地西部油区特态矿物在油气勘探中的应用,中国海上油气(地质):1999年第13卷第2期。
    甘甫平,王润生.遥感岩矿信息提取基础与技术方法研究[M].北京:地质出版社,2004,2
    郭德方、叶和飞,油气资源遥感,浙江大学出版社,1995年6月
    郭德方,遥感技术直接找油,石油学报:1995年10月第16卷第4期
    侯卫国,塔北地区化探遥感技术探测油气藏的研究,物探化探计算技术:Vol.24 No.1 Feb.2002
    黄秀华,李正文,热红外遥感找油的时效性研究,遥感学报,2003年3月 Vol.7 No.2.
    J.M.亨特,石油地球化学和地质学,石油工业出版社,1986.
    李宾元,王成武.青海台南—涩北气田出砂机理及防砂技术研究[J].西南石油学院学报,2000,22(1):40-43
    李盛汉,许建荣,陈云天.柴达木盆地涩北达布逊地区高精度重磁精查成果报告.青海油田分公司.1993年3月1日.
    李小林,马建青,高忠咏等.柴达木盆地土壤积盐特点及对工程建设的影响[Z].青海国土经略,2004,(4):30-32.
    刘崇禧.中国油气化探四十年[M].北京:地质出版社,1999.
    刘子贵,遥感直接勘探油气有关问题的思考,遥感技术与应用,1993(4).
    马蔼乃.遥感信息模型.北京大学出版社,1997.
    缪九军,荣发准,李广之,张彦霞.酸解烃技术在油气勘探中的应用.物探与化探,2005:Vol.29,No.3.
    浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
    芮轶南,刘大任.青海省柴达木盆地东部地区生气层研究报告.青海油田分公司.1976年12月1日.
    宋晓宇,王纪华,刘良云等.基于高光谱遥感影像的大气校正:用AVIRIS数据评价大气校正
    孙成权等,遥感技术在油气勘探中的应用,遥感技术与应用,1992(2)
    谭青,油气勘探中的遥感预测技术,天然气工业,2004年3月.
    谭炳香,李增元,陈尔学等.EO-1 Hyprion高光谱数据的预处理[J].遥感信息,2005,(6):36-41.
    汤玉平.中国主要含油气盆地区域地球化学场参数特征及其成因研究[J].石油勘探与开发,2001(3).
    王润生等.矿产资源调查评价中遥感新方法新技术应用研究,航空物探遥感中心,2002
    王润生等.成像光谱矿物填图技术与应用示范,国家高科技研究发展计划(863计划)课题技术报告,航空物探遥感中心,2004。
    王润生,杨苏明,阎柏琨.成像光谱矿物识别方法与识别模型评述.国土资源遥感,2007(1).
    王桂宏,张友焱,岳兵等.柴达木盆地第四系气田构造遥感信息提取[J].石油勘探与开发,1998,25(4):7-9
    王桂宏,张友焱,冉新权,油气勘探中遥感方法新进展与趋向,地学前缘,2000年9月,Vol.7 No.3
    王福印,我国东部某地油气微渗漏的遥感研究,国土资源遥感,1990(4)
    王福印,油气微渗漏遥感影像异常形成的化学机理,国土资源遥感,1993(1)
    王锡田译,俄勒冈州米斯特气田用遥感数据检测油气微渗漏有关的植被病变的初评,国外地质遥感通讯,8802,1988
    王小凤[等].柴达木盆地油气资源潜力评价.青海油田分公司.2004年2月1日.
    王云鹏,耿安松,刘德汗.鄂尔多斯盆地地表烃类的遥感探测研究[J].天然气工业,1999,19(6):17-20.
    文百红,郭建军.热红外遥感探测油气藏.地球学报,2003,24(增刊):311—314
    吴官生 遥感技术在油气勘探中的应用 勘探地球物理进展 2004 27(2):99-103
    谢娟,杨军,张骏.柴达木盆地环境地质的调查及评价[J].西北地质,2001,34(3):29-34
    谢青云,丁树柏,油气资源遥感技术若干问题的探讨[J].国土资源遥感,1994,6(2):5662.
    许卫东.地物光谱匹配模型比较研究[J].红外与毫米波学报,2005,24(4):296-300
    徐子远,谢丽,魏彩茹[等].柴达木盆地涩北二号气田天然气探明储量重算报告,青海油田分公司,2003年3月10日.
    杨金中,方洪宾,张玉君等.中国西部重要成矿带遥感找矿异常提取的方法研究[J].国土资源遥感,2003,(3):50-53
    赵克斌.烃类垂向微运移及近地表地球化学效应[J].石油勘探与开发,2000(4).
    周翥红,周瑞年,管志强.柴达木盆地东部第四系气源岩地化特征与生物气前景[J].石油勘探与开发,1994,2 1(2):30-36
    朱振海,王文彦,彭希龄.遥感技术直接探测烃类微渗漏的方法研究[J].科学通报,1990,(16):59~62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700