超精密机床多尺度集成设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超精密机床应用于关系国家利益和安全的战略性产业中,其相关技术被我国以及美国、欧盟、日本等国家列为国家关键技术并予以重点资助和发展。超精密机床具有自己独特的特点:结构跨越了从纳米级到数百毫米级的多种空间尺度;结构之间的流体介质形成具有一定刚度和承载能力的流体膜结合面。由于超精密机床结构的特殊性,使得机床工作中位置、姿态及结合面的微小改变将对整机性能产生决定性影响。目前,超精密机床系统整体、关键部件的性能与结构及其结合面多种尺度参数间的映射关系尚未系统建立,设计中缺少对系统级性能的形成机理分析,缺乏建立在性能成因分析基础上的系统设计方法,不能应对超精密机床更高精度的设计挑战。基于此,本课题通过解析超精密机床空间尺度和功能尺度的本质特征,分析结构位置姿态宏微观变化、结构间结合面微观特性对超精密机床刚度、精度、热特性等性能的作用机理,提出超精密机床刚度、热性能和精度的多尺度集成设计方法,从而科学指导超精密机床系统设计,满足系统更高精度的设计追求。
     课题将超精密机床的研究尺度分为三个层次:大尺度,核心尺度,小尺度。在大尺度上设定三个研究目标,分别为精度、刚度在工作空间中的变化规律和整机热特性的时空分析。在核心尺度中,基于运动学、动力学、传热学分析理论和空间统计学分析方法,将超精密机床各项设计参数与整机性能相关联,进而建立核心尺度与大尺度的映射关系。在小尺度上采用试验设计方法研究核心尺度参数的采样和敏度,构建核心尺度参数的取值准则。通过三个尺度的参数集成分析,获得超精密机床整体性能与各尺度设计参数的关联规律,从而确定超精密机床系统设计参数的选取准则,形成超精密机床刚度、精度、热特性及整机集成系统设计体系,用以指导高精度的超精密机床系统设计。
     基于上述研究思想,建立超精密机床系统多尺度参数的刚度模型,研究微观表面结构、气浮刚度、结构刚度等本征多尺度特征对系统工作空间刚度的综合作用规律。采用空间统计学和Kriging方法,进行模态-位姿相关性分析,解析设计空间到特征状态空间的映射关系,进而获取设计目标机床在工作空间内的全部模态信息。以刚度模型和工作空间内的刚度分布规律为指导,构建刚度设计中结构、运动部件、结合面、微观表面结构等关键参数优化设计准则,形成超精密机床系统刚度多尺度设计方法,并给出超精密机床刚度多尺度特性分析设计的应用实例。
     针对超精密机床整机热特性这一嵌入型多尺度问题,采用集总参数法预测强耦合分布,继而采用局部细化热阻网络法建立多尺度的超精密机床热特性分析模型,研究空间上的热分布特性和时间上的热传递规律。多尺度方法克服了传统热特性分析滞后的缺点,在设计之初进行热特性判断、提出热冷却要求,在详细设计阶段仿真获得机床热场分布,基于以上分析,建立热优化设计模型,形成超精密机床热特性多尺度设计体系。
     在超精密机床系统精度特性研究中,以精度链端点矢量差值在工作空间的变化最小为设计目标,基于多体运动学理论建立误差分析模型,采用试验设计和效应分析,通过解析超精密机床部件体间误差、姿态误差和位置误差3类核心尺度误差参数主效应和交互效应,获得各误差对精度及精度保持性的作用规律,确定关键设计参数和精度分配准则,获得优化的定位精度及高的精度保持性。在此基础上,建立5轴超精密铣床的多元二次回归代理模型(160项参数项),与线性模型(38项参数项)、二次误差模型(741项参数项)比较分析各自的拟合精度,并进行系统精度与固有频率的空间相关性分析。这三部分的分析结果,提供了超精密机床系统精度设计的理论和方法支撑。
     在完成刚度、精度和热性能多尺度设计和分析的基础上,建立刚度、精度和热性能集成设计的数学模型,搭建多尺度集成设计仿真平台,实现多种尺度数据传递,研究各相关因素和参数耦合对精度、刚度和热特性的综合影响规律。通过完成5轴超精密铣床实例集成设计与分析,与初始设计对比,集成设计能够在设计阶段更精确地获取性能参数,依据设计方法提供的优化设计指导准则,能够提高超精密机床的系统刚度、精度和热性能,对本文提出的设计方法实现实例验证。
Ultra-precision machine tools relate strongly to the strategies of national interestsand security, and their relevant technology are listed as the national key technologies bythe United States, European Union, Japan and other countries, and received special aidfor development. The ultra-precision machine tools have their own distinguishingfeatures: structures span the spatial scales from nanometers to hundreds of millimeter;fluid medium between structures form fluid membrane bound surface with a certainamount of stiffness and carrying capacity. The performance of ultra-precision machinetools is a function of structures and bound surface parameters, and the tiny change ofworking position, posture and bound surface will bring a decisive affection to the wholemachine performance. Currently the design method of ultra-precision machine toolslacks the mechanism investigation of the affecting from the motion of multi-scalestructures and bound surface micro changing to the performance of ultra-precisionmachine tools. So this project proposes a ultra-precision machine tools multi-scaleintegration design method, and through the analysis of the characteristics of spatialscales and function scales of ultra-precision machine tools, interpret the micro-macrochanging of structure position and posture, the interpret the affecting mechanism frommicro feature of structures bound surface to the stiffness, accuracy, thermalcharacteristics, etc., thus provide a scientific guidance to the whole machine design ofultra-precision machine tools including stiffness, accuracy and thermal characteristics.
     This project takes research of ultra-precision machine tools into three levels:macro-scale, core-scale, and micro-scale. And three research goals are set tomacro-scale design, and they are the varying rules of accuracy and stillness, and thespatial analysis of the whole machine thermal characteristics. In core-scale, based on thekinematics, dynamics, heat transfer theory and spatial statistics method, relate thedesign parameters to the whole machine performance, and thus establish the mappingrelation between core-scale to macro-scale. In micro-scale, investigate the samplingmechanism and acuteness of the core-scale parameters, and build the tuning rules ofcore-scale-parameters. Through parameters seamless integration analysis of the threescales, obtain the relating rules between ultra-precision machine tools and multi-scaledesign parameters, thus determine the selecting rules of ultra-precision machine toolsdesign parameters, and finally guide the design process.
     Based on the antecedent thought, establish the whole machine stiffness model ofultra-precision machine tool systems, in order to investigate the integrated affectingrules from the multi-scale feature, such as surface micro structures, air bearing stiffness,structural stiffness, to the whole machine spatial stiffness. With the stiffness model based spatial statistics and Kriging method, parse out the design space to thecharacteristics of the state space mapping relationship, and analyze the modal-pose toget machine processing space modal information to guide the system stiffness design.
     Aiming at the fact that the whole machine thermal characteristics is a strongcoupling embedded multi-scale problems, adopt lumped parameter method to predictthe strong coupling distribution, and then establish the ultra-precision machine toolsthermal characteristics analyzing model based on local refining thermal resistancenetwork method, to investigate the spatial thermal distribution characteristics and thetemporal thermal transmission rules. The multi-scale method overcomes the weaknessof lagging in traditional thermal characteristics analysis, since it conduct thermalcharacteristics prediction in elementary design process, and propose coolingrequirement, and simulate the machine thermal distribution in detailed design process.
     In the research of the conjunction between various scale parts with their boundingsection, the positioning accuracy and the precision preserve, take the minimum spatialchanging of the difference value between the endpoint vectors of accuracy chain, as thedesign goal. Build error analyzing model based on multi-body kinematics theory, andadopt experimental design and effect analysis, solve the affecting rules from the varyingof3core-scale parameters, the verticality error, the tilt angular error and the straightnesserror. According the influence level from the former parameters to accuracy, determinekey design parameters, and provide theoretical support to ultra-precision machine toolsdesign. On this basis, build multi-parameter quadratic regression model for5-axis (160parameters), and compare the model with linear model (38parameters) and secondaryerror (741parameters), and obtain the optimized positioning accuracy and accuracypreserve, and validate the constraint settings of parameters during design process.
     Based on the above multi-scale analyzing method and principle of accuracy,stiffness and thermal characteristics, establish an integrated mathematical modelincluding stiffness, accuracy and thermal characteristics, and adopt the multi-scaleintegration design and simulation platform, achieve seamless data transmission amongmulti-scale parameters, to investigate the coupling effect of the performance relatedparameters, and explore the influence rules from the various factors and parameterschanging to the whole machine performance. Complete the integrated design andanalysis for a5-axis ultra-precision milling machine, and compared with the initialdesign, obtain more accurate performance parameters in design stage, and provideguidance principles to optimization design, and finally experimentally validate thedesign method proposed in this thesis.
引文
[1]熊有伦,吴波,丁汉.新一代制造系统理论及建模[J].中国机械工程,2000,11(2):49-52.
    [2] Altintas Y, Brecher C, Weck M, et al. Virtual Machine Tools[J]. Annals of theCIRP,2005,54(2):651–674.
    [3] Cheng K, Shore P. Special Issue on “Design of Ultraprecision and MicroMachine Tools and Their Key Enabling Technologies”[J]. International Journalof Machine Tools&Manufacture,2010,50(4):309-370.
    [4] Shinno H, Yoshioka H, Taniguchi K. A Newly Developed Linear Motor-DrivenAerostatic X-Y Planar Motion Table System for Nano-Machining[J]. Annals ofthe CIRP,2007,56(1):369-372.
    [5] Khan A W, Chen W. A Methodology for Systematic Geometric ErrorCompensation in Five-Axis Machine Tools[J]. The International Journal ofAdvanced Manufacturing Technology,2011,53(5-8):615-628.
    [6] Uriarte L, Herrero A, Zatarain M, et al. Error Budget and Stiffness ChainAssessment in a Micromilling Machine Equipped with Tools Less Than0.3mmin Diameter[J]. Precision Engineering,2007,31:1-12.
    [7] Fesperman R, Ozturk O, Hocken R, et al. Multi-scale Alignment and PositioningSystem–MAPS[J]. Precision Engineering,2012,36(4):517-537.
    [8] Cross N. Engineering Design Methods: Strategies for Product Design (4th Ed.)[M]. John Wiley&Sons. New York.2008.
    [9] Yang K, Zhang H. A Comparison of Triz and Axiomatic Design. FirstInternational Conference on Axiomatic Design[C]. Cambridge, Ma,21-23June,2000.
    [10] Pahl G, Beitz W, Feldhusen J, et al. Engineering Design: A SystematicApproach[M]. London: Springer.2007.
    [11] Brecher C, Utsch P, Klar R. Compact Design for High Precision MachineTools[J]. International Journal of Machine Tools and Manufacture,2010,50(4):328-334.
    [12] Wang Z G, Cheng X, Nakamoto K, et al. Design and Development of APrecision Machine Tool Using Counter Motion Mechanisms[J]. InternationalJournal of Machine Tools and Manufacture,2010,50(4):357-365.
    [13] Luo X, Cheng K, Webb D, Wardle F. Design of Ultra-Precision Machine Toolswith Applications to Manufacture of Miniature and Micro Components[J].Journal of Materials Processing Technology,2005,167:515-528.
    [14] Heisel U, Gringel M. Machine Tool Design Requirements for High-SpeedMachining[J]. CIRP Annals-Manufacturing Technology,1996,45(1):389-392.
    [15] Huo D, Cheng K, Wardle F. A Holistic Integrated Dynamic Design andModelling Approach Applied to the Development of UltraprecisionMicro-Milling Machines[J]. International Journal of Machine Tools andManufacture,2010,50(4):335-343.
    [16] Uriarte L, Herrero A, Zatarain M, et al. Error Budget and Stiffness ChainAssessment in A Micromilling Machine Equipped with Tools Less Than0.3mmin Diameter[J]. Precision Engineering,2007,31:1-12.
    [17]李圣怡,戴一凡等编著.精密和超精密机床设计理论与方法[M].长沙:国防科技大学出版社,2009.
    [18] Slocum A H. Precision Machine Design[M]. Prentice-Hall Inc., Dearborn,Michigan. USA.1992.
    [19] Ferreira P M,Liu C R. Aeontribution to the Analysis and Compensation of theGeometricerner of A Machining Center[J]. Annals of the CIRP,1986,35(L):259-261.
    [20] Reshetov D N, Portman V T. Accuracy of Machine Tools[M]. Amer Society ofMechanical,1988.
    [21] Chen J S, Yuan J, Ni J. Compensation of Non-Rigidbody Kinematic Effect of aMachine Center[J]. Transaction of Namri,1992,20(7):325-329.
    [22]粟时平.多轴数控机床精度建模与误差补偿方法研究[D].长沙:国防科学技术大学,2002.
    [23] Fines M, Arvin A. Machine Tool Positioning Error Compensation UsingArtificial Neural Networks[J]. Engineering Applications of ArtificialIntelligence,2008,21:1013~1026.
    [24] Zhu W, Wang Z, Yamazaki K. Machine Tool Component Error Extraction andError Compensation by Incorporating Statistical Analysis[J]. InternationalJournal of Machine Tools and Manufacture,2010,50(9):798-806.
    [25] Goh Y M. Improved Utility and Application of Probabilistic Methods forReliable Mechanical Design[J]. Proceedings of the Institution of MechanicalEngineers, Part O Journal of Risk and Reliability,2009,223(3):199-213.
    [26] Abele E, Fiedler U. Creating Stability Lobe Diagrams During Milling[J]. Annalsof the CIRP,2004,53(1):309–312.
    [27] Lu S, Suh N P. Complexity in Design of Technical Systems[J]. CIRP Annals-Manufacturing Technology,2009,58(1):157-160.
    [28] Zatarain M, Lejardi E, Egaa F, et al. Modular Synthesis of Machine Tools[J].CIRP Annals-Manufacturing Technology,1998,47(1):333-336.
    [29] Alexander Slocum. Kinematic Couplings: A Review of Design Principles andApplications[J]. International Journal of Machine Tools and Manufacture,2010,50(4):310-327.
    [30] Chen X D, He X M. The Effect of the Recess Shape on Performance Analysis ofthe Gas-Lubricated Bearing in Optical Lithography[J]. Tribology International,2006,39:1336-1341.
    [31] Mariani V, Prata A, Deschamps C. Numerical Analysis of Fluid Flow throughRadial Diffusers in the Presence of a Chamfer in the Feeding Orifice with aMixed Eulerian-Lagrangian Method[J]. Computers&Fluids,2010,39:1672-1684.
    [32] Zaeh M,Siedl D. A New Method for Simulation of Machining Performance byIntegrating Finite Element and Multi-Body Simulation for Machine Tools[J].CIRP Annals-Manufacturing Technology,2007,56(L):383-386.
    [33] Salgado M A, López De Lacalle L N, Lamikiz A, et al. Evaluation of theStiffness Chain on the Deflection of End-Mills under Cutting Forces[J].International Journal of Machine Tools and Manufacture,2005,45(6):727-739.
    [34] Cheng K. Machining dynamics: Fundamentals, Applications and Practices[M].Springer,2009.
    [35] Mori M, Mizuguchi H, Fujishima M, et al. Design Optimization andDevelopment of CNC Lathe Headstock to Minimize Thermal Deformation[J],CIRP Annals-Manufacturing Technology,2009,58(1):331-334.
    [36] Kim J, Nakayama W, Ito Y, et al. Estimation of Thermal Parameters of theEnclosed Electronic Package System by Using Dynamic Thermal Response[J].Mechatronics,2009,19(6):1034-1040.
    [37]严乐,刘红忠,卢秉恒等.高精度压印机热误差补偿中温度变量的辨识[J].西安交通大学学报,2006,40(7):51-54.
    [38] Creighton E, Honegger A, Tulsian A, et al. Analysis of Thermal Errors in aHigh-Speed Micro-Milling Spindle[J]. International Journal of Machine Toolsand Manufacture,2010,50(4):386-393.
    [39] Majumdar A, Bhushan B. Fractal Model of Elastic-Plastic Contact BetweenRough Surfaces[J]. ASME Journal of Tribology,1991,113(1):1-11.
    [40] Gonzalez-valadez M,Baltazar A,Dwyerjoyce R S. Study of Interfacial StiffnessRatio of a Roughsurface in Contact Using a Spring Model[J]. Wear,2010,268:373-379.
    [41]赵宏林,丁庆新,曾鸣.机床结合部特性的理论解析及应用[J].机械工程学报,2008,44(12):208-214.
    [42]张景雄.空间信息的尺度、不确定性与融合[M].武汉:武汉大学出版社,2008.
    [43] Peterson D L, Parker V T. Ecological Scale: Theory and Applications[M].Columbia University Press,1998.
    [44] Geers M G D, Kouznetsova V G, Brekelmans W A M. Multi-scaleComputational Homogenization: Trends and challenges[J]. Journal ofComputational and Applied Mathematics,2010,234(7):2175-2182.
    [45] Mabit L, Bernard C. Assessment of Spatial Distribution of Fallout RadionuclidesThrough Geostatistics Concept[J]. Journal of Environmental Radioactivity,2007,97:206-219.
    [46] Hansen H J. Techniques for Precision Air-Temperature Control[C]. Proceedingsof27Annual International Technical Symposium on High Speed Photography,San Diego, CA, USA, Videography and Photonics,1983,80-91.
    [47] Josef M, Jerzy J, Eckart U, et al. Thermal Issues in Machine Tools[J]. CIRPAnnals-Manufacturing Technology,2012,61(2):771-791.
    [48]刘更,刘天祥,张征等.宏观-微观多尺度数值计算方法研究进展[J].中国机械工程,2005,16(16):1493-1499.
    [49] Narita H, Shirase K, Arai E, et al. An Accuracy-Prediction Model Taking ToolDeformation and Geometric Machine-Tool Error into Consideration[J].International Journal of Automation Technology,2010,4(3):235-242.98.
    [50]葛哲学,陈仲生. Matlab时频分析技术及其应用[M].人民邮电出版社,2006.
    [51] Zhu K, Wong Y, Hong G. Wavelet Analysis of Sensor Signals for ToolCondition Monitoring: A Review and Some New Results[J]. InternationalJournal of Machine Tools and Manufacture,2009,49(7–8):537-553.
    [52] Boisot M, McKelvey B. Integrating Modernist and Postmodernist Perspectiveson Organizations: A Complexity Science Bridge[J]. Academy of ManagementReview,2010,35(3):415-433.
    [53] Benveniste D, Nikoukhah A, Willsky R, et al. Multiscale System Theory,Decision and Control[C]. Proceedings of the29th IEEE Conference,1990,4:2484-2489.
    [54] Zahouani H, Mezghani S, Vargiolu R, et al. Identification of ManufacturingSignature by2D Wavelet Decomposition[J]. Wear,2008,264:480-485.
    [55] Grossi L, Zurlini G, Rossi O. Statistical Detection of Multiscale LandscapePatterns [J]. Environmental and Ecological Statistics,2001,8(3):253-267.
    [56] Brown J H, Gupta V K, Li B L, et al. The Fractal Nature of Nature: Powerlaws, Ecological Complexity and Biodiversity[J]. PhilosophicalTransactions-royal Society of London Series B Biological Sciences,2002,357(1421):619-626.
    [57] Kessler M A, Werner B T. Self-Organization of Sorted Patterned Ground[J].Science,2003,299:380-383.
    [58] Tian Y, Shirinzadeh B, Zhang D. Effects of the heat source profiles on thethermal distribution for ultraprecision grinding[J]. Precision Engineering,2009,33(4):447-458.
    [59] Toroczkai Z, Bassler K E. Network Dynamics Jamming is Limited in Scale-freeSystems [J]. Nature,2004,428(6984):716.
    [60]陶文铨.传热与流动问题的多尺度数值模拟[M].北京:科学出版社,2009.
    [61] Nie Q, Joshi Y. Multiscale Thermal Modeling Methodology forThermoelectrically Cooled Electronic Cabinets[J]. Numerical Heat Transfer,Part A: Applications,2007,53(3):225-248.
    [62] Quang T. Ho, Jan Carmeliet, Ashim K, et al. Multiscale Modeling in FoodEngineering[J]. Journal of Food Engineering,2013,114:279-291.
    [63]张雨英.一种多尺度协同仿真方法及其在SOFC-MGT混合发电系统中的应用[D].重庆大学,2009.
    [64]王崇愚.多尺度模型及相关分析方法[J].复杂系统与复杂性科学,2004,3:9-19.
    [65] Guo Z X, Pettifor D, KubinL, et al. MaterialsScience and Engineering: aStructural Materials Properties[C]. Microstructure and Processing,2004,365:1-1.
    [66] O ate E. Multiscale Computational Analysis in Mechanics Using FiniteCalculus: an Introduction[J]. Computer Methods in Applied Mechanics andEngineering,2003,192(28-30):3043-3059.
    [67] Abdulle A, Weinan E, Engquist B, et al. The heterogeneous multiscalemethod[J]. Acta Numerica,2012,21(1):1-87.
    [68] Jendrejack R M, de Pablo J J, Graham M D. A Method for MultiscaleSimulation of Flowing Complex Fluids [J]. Journal of Non-New-tonian FluidMechanics,2002,108:123-142.
    [69] Weinan E, Engquist B, Huang Z Y. Heterogeneous Multiscale Method: AGeneral Methodology for Multiscale Modeling[J]. Physical Review B,2003,67(9):1-4.
    [70] Zahouani H, Mezghani S, Vargiolu R, et al. Identification of ManufacturingSignature by2D Wavelet Decomposition[J]. Wear,2008,264:480-485.
    [71] Chen M, Pang Q, Wang J, et al. Analysis of3D Microtopography in MachinedKDP Crystal Surfaces Based on Fractal and Wavelet Methods[J]. InternationalJournal of Machine Tools&Manufacture,2008,48(7-8):905-913.
    [72]阎军,邓佳东,程耿东.基于柔顺性与热变形双目标的多孔材料与结构几何多尺度优化设计[J].固体力学学报,2011,32(2):119-131.
    [73]魏喆.性能驱动的复杂机电产品设计理论和方法及其在大型注塑装备中的应用[D].浙江:浙江大学,2009.
    [74] Haining R.空间数据分析理论与实践[M].湖北:武汉大学出版社,2009.
    [75] Gelfand A, Diggle P J, Guttorp P, et al. Handbook of Spatial Statistics[M]. CRCPress,2010.
    [76] Ingram G D, Cameron I T, Hangos K M. Classification and Analysis ofIntegrating Frameworks in Multiscale Modelling[J]. Chemical EngineeringScience,2004,59(11):2171-2187.
    [77] Parashar S, Bloebaum C L. Multi Objective Genetic Algorithm ConcurrentSubspace Optimization (MOGACSSO) for Multidisciplinary Design[R]. AIAA,2006,2047.
    [78] Bhat N, Barrans S, Kumar A. Performance Analysis of Pareto Optimal BearingsSubject To Surface Error Variations[J]. Tribology International,2010,43(11):2240-2249.
    [79]邱清盈,冯培恩,武建伟.支持广义优化设计的产品模型结构研究[J].自然科学进展:国家重点实验室通讯,2001,11(12):1307-1313.
    [80] Cressie, N. Statistics for Spatial Data[M]. John Wiley&Sons. New York.1993.
    [81] Van Gorp A, Bigerelle M, Grellier A, et al. A Multi-scale Approach ofRoughness Measurements: Evaluation of the Relevant Scale[J]. MaterialsScience and Engineering,2007,27:1434-1438.
    [82] Alexandrov N M, Lewis R M, Gumbert C R, et al. Optimization with VariableFidelity Models Applied to Wing Design[R]. AIAA,2000,0841Altintas Y.Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations,and CNC Design[M]. Cambridge University Press,2012.
    [83]郭仁忠.空间分析[M].湖北:武汉测绘科技大学出版社,2000.
    [84] Hung J P, Lai Y L, Lin C Y, et al. Modeling the Machining Stability of aVertical Milling Machine Under the Influence of the Preloaded Linear Guide[J].International Journal of Machine Tools and Manufacture,2011,51(9):731-739.
    [85] Zhang H, Yang J, Zhang Y, et al. Measurement and Compensation forVolumetric Positioning Errors of CNC Machine Tools Considering ThermalEffect[J]. The International Journal of Advanced Manufacturing Technology,2011,55(1-4):275-283.
    [86] Tohru I, Koji T, Keiichi N. Application of Ultraprecision Microgrooves toDental Implant and Blood Inspection[J]. Procedia CIRP,2013,5:147-151.
    [87] Ge S S, Hang C C, Lee T H, et al. Stable Adaptive Neural Network Control[M].Springer Publishing Company, Incorporated,2010.
    [88] Slocum A H, Scagnetti P A, Kane N R, et al. Design of self-compensated,water-hydrostatic bearings[J]. Precision Engineering,1995,17(3):173-185.
    [89]戴一帆,彭小强.复合节流的静压导轨设计及其稳定性分析[J].中国机械工程,2000,11(8):880-882.
    [90] Qiu M, Delic A, Raeymaekers B. The Effect of Texture Shape on theLoad-Carrying Capacity of Gas-Lubricated Parallel Slider Bearings[J].Tribology Letters,2012,48(3):315-327.
    [91] Aoyama T, Koizumi K, Kakinuma Y, et al. Numerical and ExperimentalAnalysis of Transient State Micro-bounce of Aerostatic Guideways Caused bySmall Pores[J]. CIRP Annals-Manufacturing Technology,2009,58:367-370.
    [92] Miyatake M, Yoshimoto S. Numerical Investigation of Static and DynamicCharacteristics of Aerostatic Thrust Bearings with Small Feed Holes[J].Tribology International,2010,43(8):1353-1359.
    [93] Butcher M R. Spacecraft Thermal Design: Particular Problems with SmallSatellites[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering,1999,213(4):245-253.
    [94] Hui K, Cho Y. Analytical and Numerical Approaches of a Solar Array ThermalAnalysis in A Low-earth Orbit Satellite[J]. Advances in Space Research,2010,46(11):1427-1439.
    [95] Andolfatto L, Mayer J, Lavernhe S. Adaptive Monte Carlo Applied toUncertainty Estimation in Five Axis Machine Tool Link Errors Identificationwith Thermal Disturbance[J]. International Journal of Machine Tools andManufacture,2011,51(7–8):618-627.
    [96] Karthik K. Bodla, Jayathi Y. Murthy, Suresh V. Garimella, ResistanceNetwork-Based Thermal Conductivity Model for Metal Foams[J].Computational Materials Science,2010,50(2):622-632.
    [97] Eslami M, Jafarpur K. Thermal Resistance in Conductive Constructal Designs ofArbitrary Configuration: A New General Approach[J]. Energy Conversion andManagement,2012,57:117-124.
    [98] Holman J P. Heat Transfer[M]. Mcgraw-Hill,2002.
    [99] А.И.鲍里先科.电机中的空气动力学与热传递[M].北京:北京机械工业出版社,1985.
    [100]刘暾.静压气体润滑[M].黑龙江:哈尔滨工业大学出版社,1990.
    [101] Aguirre G, Al-Bender F, Van Brussel H. A Multiphysics Model for Optimizingthe Design of Active Aerostatic Thrust Bearings[J]. Precision Engineering,2010,34(3):507-515.
    [102] ASM International. ASM Metals HandBook[M]. ASM International HandbookCommittee,1993.
    [103] Mao K, Li B, Wu J, et al. Stiffness Influential Factors-Based Dynamic Modelingand Its Parameter Identification Method of Fixed Joints in Machine Tools[J].International Journal of Machine Tools and Manufacture,2010,50(2):156-164.
    [104] Chen J S,Yuan J,Ni J. Compensation of Non-Rigid Body Kinematics Effect ofa machining Center[J]. Transaction of NANRI,1997,2(20):325-329.
    [105] Mahbubur R, Jouko L, KaukoI L. Modeling, Measurement and ErrorCompensation of Multi-axis Machine Tools, Part l: Theory[J]. InternationalJournal of Machine Tools&Manufacture,2000,40:1535-1546.
    [106] Kyoung G, Dong W. An Analysis of the Volumetric Error Uncertainty of aThree-Axis Machine Tool by Beta Distribution[J]. International Journal ofMachine Tools and Manufacture,2000,40(15):2235-2248.
    [107] Pawe M, Modeling of Geometric Errors of Linear Guideway and TheirInfluence on Joint Kinematic Error in Machine Tools[J]. Precision Engineering,2012,36(3):369-378.
    [108] Johan F, Anders J, G ran B. Holistic Methodology Using Computer Simulationfor Optimisation of Machine Tools[J]. Computers&Industrial Engineering,2012,63(1):294-301.
    [109] Hwa S, Young M. Design and Modeling of a Novel3-DOF PrecisionMicro-Stage[J]. Mechatronics,2009,19(5):598-608.
    [110]张仁择.空间变异理论及应用[M].北京:科学出版社.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700