大豆对大豆花叶病毒抗性遗传、抗性基因精细定位及表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆花叶病毒(Soybean mosaic virus, SMV)病是世界大豆产区分布最广的病毒病害之一,在我国各大豆产区均有发生,严重影响大豆的产量与品质。培育和种植抗病品种是防治该病害最经济、安全、有效的途径,而抗病育种的关键是具备优异抗源,并阐明大豆对SMV的抗性遗传规律。进一步对抗性基因标记定位、对分子标记辅助选择以及抗性基因克隆、明确抗性基因作用也有重要意义。
     因此,本研究针对新鉴定的部分SMV株系,筛选抗源、研究抗性遗传并精细定位抗性基因,为抗SMV育种提供抗性种质和技术支撑。利用实时荧光定量PCR(Quantitative real-time polymerase chain reaction, QRT-PCR)技术对抗性基因目标区段内的候选基因进行定量表达分析研究,进一步确定抗性品种抗病的关键基因,以阐明其抗病的分子机制,为大豆抗性基因的图位克隆和利用转基因技术提高大豆的抗病性奠定基础。同时采用分子标记辅助选择(Marker assisted selection, MAS)的方法,验证利用抗性相关的分子标记对SMV抗性基因聚合的可行性。主要研究结果如下:
     1.抗源筛选
     为抗SMV育种筛选优异抗源,本研究对新育成的参加2004-2007年国家及江苏、北京和山东等省市大豆区试的品种在接种我国大豆产区主要流行SMV株系SC3和SC7的条件下分别进行抗性评价,结果表明:在抗SMV鉴定的334个品种中,对SC3抗性较好(高抗和抗病)的品种数有148个,占参试品种数的44.31%;对SC7抗性较好的有71个,占参试品种数的21.26%;同时对两个株系抗性表现较好的有55个,占参试品种数的16.47%。这些抗性较好的品种既可用于大豆生产,也可作为抗源用于抗病品种选育和与抗性相关的研究。研究还显示,来自于西北和黄淮海大豆产区的参试品种一般抗性较好。
     2.抗性遗传和抗性基因的等位性分析
     利用在我国长江流域和北方大豆产区广分布的SMV株系SC8对部分抗病品种与感病品种的杂交后代进行鉴定,发现F1均表现抗病,F2分离结果经卡方测验符合3抗:1感分离比例,F2:3家系符合1抗:2分离:1感的分离比例,结果表明:科丰1号、PI96983、齐黄1号、大白麻、晋大74、汾豆56、中作229和NY58对SC8株系的抗性受1对显性基因控制。齐黄22x南农1138-2和其反交南农1138-2×齐黄22的F1均表现抗病、F2表现为3抗:1感的分离比例,F2:3家系符合1抗:2分离:1感的分离比例,结果表明齐黄22对SC8的抗性是由1对显性基因控制,且抗性基因是由细胞核遗传,无细胞质效应。抗抗组合的等位性测验显示抗病品种晋大74x汾豆56的F1表现抗病,F2和F2:3家系未发现感病株,表明晋大74与汾豆56携带对SC8株系的抗性基因是等位的或紧密连锁的。研究还显示齐黄1号与科丰1号、大白麻与汾豆56携带抗SC8的基因是不等位的,而且独立遗传。
     大白麻×南农1138-2和南农1138-2x大白麻的F1、F2和F2:3接种SC4株系的鉴定结果表明,F1植株均表现抗病;经卡方测验,F2群体分离比例符合3抗:1感的比率;F2:3纯合抗病家系、抗感分离家系和纯合感病家系的比率符合1:2:1,表明大白麻对SC4的抗性是受细胞核遗传的1对显性基因控制,无细胞质效应。研究结果还显示:冀LD42、科丰1号、徐豆1号、晋大74、PI96983、齐黄22、跃进4号和汾豆56与感病品种杂交的F1均表现抗病,F2均符合3抗:1感分离比例,F2:3家系符合1抗:2分离:1感的分离比例,证明它们对SC4株系的抗性均各有1对基因控制,且抗病表现为显性。抗抗组合的等位性测验结果表明大白麻与汾豆56、科丰1号、齐黄1号早熟18四个品种携带抗SC4的基因是不等位的,冀LD42与汾豆56是不等位的,晋大74与中作229是不等位的,而且独立遗传。
     3.抗性基因的精细定位
     以抗病品种科丰1号和感病品种南农1138-2为亲本构建的F2群体(156个F2单株),重组自交家系群体(184个家系)和次级F2群体(181个单株)为材料,利用SNP和基因组SSR标记将科丰1号对SC8株系的抗性基因Rsc8精细定位在大豆的2号染色体上,Rsc8两侧最近的基因组SSR标记(BARCSOYSSR_02_0610和BARCSOYSSR_02_0616)之间的遗传距离为0.32cM,在大豆基因组上的物理距离不足200kb。
     利用1047株大白麻×南农1138-2的F2作图群体,采用分离群体分组分析法,将对SC4株系表现抗病的大豆品种大白麻携带的抗性基因Rsc4定位在大豆的14号染色体上,连锁最紧密的基因组SSR标记是BARCSOYSSR_14_1413和BARCSOYSSR_14_1416,与RSC4的遗传距离分别为0.17cM和0.27cM,在大豆基因组上两个标记之间的物理距离不到110kb。
     4.抗性候选基因的QRT-PCR (?)析
     利用生物信息学的方法和QRT-PCR技术在抗性基因候选区段内搜索候选基因并进行分析:在Rsc8抗性基因区段内,14个预测基因中有11个基因在SMV诱导后的表达量在抗感品种间存在程度差异,进一步分析发现8个抗病候选基因的表达量在抗感品种间的响应模式或时间上有很大的差异,推测这些基因可能参与了科丰1号对SC8株系的抗性反应。在RSC4抗性基因所在的区段,初选的11个候选基因在抗感亲本间的QRT-PCR分析表明,9个基因在接种SC4株系后的表达量在不同时间点抗感品种间都有响应,深入比较发现7个候选基因在抗感品种间不同时间点的表达量有一定的差异,初步认为这些基因可能参与了大白麻对SC4株系的抗性反应。通过上面的分析,推测候选基因Glyma02g13310、13320、13400、13460、13470和Glyma14g38510、38560、38580、39300可能是抗病关键基因。
     5.SMV抗性基因的聚合选择
     针对SMV株系SC14、SC8和SC4,用齐黄1号(Rsc140)、科丰1号(RSC8)和大白麻(RSC4)做抗性基因的供体,利用获得的与各个抗性基因连锁的9个分子标记,对4个亲本复交(齐黄1号×科丰1号)×(大白麻×南农1138-2)后代进行了标记辅助选择,结合网室接种SC14、SC8和SC4进行表型鉴定,结果证实分子标记选择的携带3个抗性基因的20个F4代单株对三个株系均表现抗病,其中有2个单株携带的3个SMV抗性基因位点已经纯合。研究结果证实紧密连锁的分子标记可以有效地用于对SMV抗性基因的聚合。
Soybean mosaic disease, caused by soybean mosaic virus (SMV), is one of the most broadly distributed viral diseases worldwide in soybean [Glycine max (L.) Merr.]. It causes yield loss and seed quality deficiency seriously. Utilization of resistant varieties is the most economical and environmentally safe approach to controlling this disease. The success and failure of breeding resistant varieties depend on resistant resources, the realization of inheritance mechanisms of resistance and molecular mapping of resistance genes to SMV strains.
     In China, SMV has been classified into21strains based on the reactions of SMV isolates on a set of soybean differentials. The objectives of this study were to identify resistant resources, to study the inheritance of resistance to the newly identified strains, to fine mapping the resistance genes, and to study feasibility of pyramiding of resistance genes for SMV using tightly linked molecular markers. Meanwhile, the mRNA expression profiles were analyzed by quantitative real-time polymerase chain reaction (QRT-PCR) in order to insight the resistance mechanism, to determine the soybean functional resistance genes. These will provide basis to cloning of resistance genes and improvement of the resistance of soybean through transgenic technique. The main results were as follows:
     1. Identification of resistant resources
     In order to provide resistant sources for breeding resistant varieties to SMV strains, the resistance to SMV of334cultivars from the soybean regional test in2004-2007was evaluated after inoculation with two SMV prevalent strains, i. e. SC3and SC7. The results showed that148(44.31%) and71(21.26%) cultivars were resistance to strains SC3and SC7respectively,55(16.47%) cultivars were resistance to both SC3and SC7. These resistance cultivars can not only be used directly in soybean production, but also be used as resistance resources in breeding programs. The study also showed that the cultivars from Northwest China and Huang-Huai-Hai valleys were more resistant to SMV than those from the other regions.
     2. Analysis of inheritance and allelism of resistance genes
     Crosses of resistant (R) and susceptible (S) parents were made and selfed to construct F1, F2and F2:3populations. They were used to determine the inheritance for resistance to SMV strain SC8. All F1showed resistant, F2generation segregated in3resistant:1susceptible ratio, and1R:2Seg.:1S in F2:3families. The results indicated that Kefeng No.1, PI96983, Qihuang No.1, Dabaima, Jinda74, Fendou56, Zhongzuo229, and NY58carried single resistant gene for SC8strain. Reciprocal crosses were made with Qihuang22and Nannong1138-2to investigate the inheritance of resistance to SC8strain. No cytoplasmic effect was found in the two kinds crosses. It indicated that Qihuang22carried a dominant resistant gene. The test of the allelism of the resistance genes showed that the single dominant gene in Jinda74and Fendou56were alleles or very closely linked; the resistance genes between Qihuang No.1and Kefeng No.1, between Kefeng No.1and Fendou56were not at same locus.
     Ten soybean cultivars with resistance to SMV strain SC4, was crossed respectively with a susceptible cultivar (Nannong1138-2or8101) to determine the inheritance of their resistance reaction to SC4strain. Each R parents were also crossed with each other to test the allelism of the resistance genes. The results showed that a dominant gene controlled the resistance to SC4strain in each of Ji LD42, Kefeng No.1,Xudou No.1, Jinda74, P196983, Qihuang22, Yuejin No.4, and Fendou56, respectively. Reciprocal crosses were made with Dabaima and Nannong1138-2to investigate the inheritance of resistance to SC4. The result indicated that Dabaima carried single dominant resistant gene, no cytoplasmic effect was found in the two kind's crosses. The test of the allelism of the resistance genes showed the resistance genes between Dabaima and Fendou56, Kefeng No.1, Qihuang No.1, Zaoshul8; between Ji LD42and Fendou56; between Jinda74and Zhongzuo229were not at same locus.
     3. Fine mapping for SMV resistance genes
     In order to fine mapping the resistance gene to SMV strain SC8in Kefeng No.1, F2population (156individuals), recombined inbred lines (RIL) population (184families), F2 of secondary population (SP-F2,181individuals) of Kefeng No.1×Nannongl138-2were evaluated following inoculation with SC8and analyzed by simple sequence repeats (SSR), single nucleotide polymorphisms (SNP) and genomic-SSR markers. Results indicated that the resistance gene (designated as RSC8) in Kefeng No.l was located on soybean chromosome2(MLG D1b), closest markers locating two sides of RSC8respectively were BARCSOYSSR_02_0610and BARCSOYSSR_02_0616. The genetic distance of the two markers was0.32cM. Sequence analysis of soybean genome indicted that interval between the two genomic-SSR markers was less than200kb.
     By applying bulked segregate analysis (BSA), two genomic-SSR markers (BARCSOYSSR_14_1413and BARCSOYSSR_14_1416) on soybean chromosome14(MLG B2) closely linked to SMV strain SC4resistant gene (designated as Rsc4) were identified in1047plants F2population of Dabaima×Nannongl138-2. The Rsc4was located at a distance of0.17cM from BARCSOYSSR141413and0.27cM from BARCSOYSSR_14_1416(on the other side). Sequence analysis of soybean genome indicted that interval between the two genomic-SSR markers was less than110kb.
     4. QRT-PCR analysis of the resistance candidate genes
     The analysis of bioinformatics and QRT-PCR of the candidate genes in the RSC8region indicated that the expression level of the eleven genes were different at some time points in the post inoculated with SC8. The eight genes maybe involved in resistance to SMV strain SC8in soybean. Seven candidate genes for Rsc4were identified by QRT-PCR and their expression levels were different between the two parents (Dabaima and Nannong1138-2). Based on the analysis of above, we inferred that candidate genes Glyma02g13310,13320,13400,13460,13470and Glymal4g38510,38560,38580, and39300could be key genes to activating plant defense pathways in response to SMV infection.
     5. Pyramiding for SMV resistance genes
     The purpose of the research was to pyramid resistance genes RSC14Q, RSC8and RSC4to SMV using marker assisted selection (MAS) and traditional breeding methods. Qihuang No.1, Kefeng No.1and Dabaima were used as the donor of resistance genes RSC14Q, RSC8and RSC4, respectively. A set of F2, F3and F4populations derived from multi-cross and self-cross of (Qihuang No.1×Kefeng No.1)x(DabaimaxNannong1138-2) were developed for selecting individuals carrying three resistant genes. Nine molecular markers linked to the three SMV resistance genes were used for MAS. The results indicated that twenty F4plants carry all three SMV resistance genes were confirmed are resistant to three SMV strains (SC14, SC8and SC4) by inoculation. The results confirmed that the feasibility of pyramiding of resistance genes for SMV in soybean by MAS.
引文
1.白丽,李海朝,马莹,等.大豆对大豆花叶病毒SC-11株系抗性的遗传及基因定位[J].大豆科,学,2009,28(1):1-6
    2. 白丽,李凯,陈应志,等.部分国家和省(市)区试品种对大豆花叶病毒的抗性分析[J].中国油料作物学报,2007,29(1):86-89
    3.白丽.大豆品种对大豆花叶病毒的抗源筛选、抗性遗传分析和抗性基因的SSR标记定位[D].南京:南京农业大学硕士学位论文,2007
    4. 长泽次男等.大豆抗病毒病的育种[J].国外农学(大豆),1981,(6):13-16
    5. 陈珊宇,郑桂杰,杨中路,等.我国大豆核心种质南方材料对SMV流行株系的抗性评价[J].中国油料作物学报,2009,31(4):513-516
    6. 陈怡,栾晓燕,黄承运,等.大豆对两个大豆花叶病毒株系的抗性遗传研究[J].黑龙江农业科学,1991,(5):21-24
    7. 陈怡.大豆种质对SMV1号株系的抗性遗传[J].黑龙江农业科学,1999,(1):4-6
    8. 陈永萱,薛宝娣,胡蕴珠,等.大豆花叶病毒(SMV)两个新株系的鉴定[J].植物保护学报,1986,13(4):221-226
    9. 程利国,李广军,刘玉芹,等.大豆对火豆花叶病毒Sa株系抗扩展特性的遗传分析[J].南京农业大学学报,2009,32(4):13-17
    10.邓其明,周宇爝,蒋昭雪,等.白叶枯病抗性基因Xa21、Xa4和Xa23的聚合及其效应分析[J].作物学报,2005,31(9):1241-1246
    11.东方阳.大豆对SMV株系抗性遗传分析和RAPD标记研究[D].南京:南京农业大学博士学位论文,1999
    12.董宏平,濮祖茂,濮祖芹.大豆花叶病毒(SMV)侵染大豆种胚的研究[J].南京农业大学学报,1997,20(1):38-41
    13.董建力,王敬东,惠红霞,等.小麦3个抗白粉病基因聚合于推广品种后代抗性的遗传分析[J].华北农学报,2007,22(2):161-163
    14.方宣钧,吴为大,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001
    15.付三雄.大豆微卫星标记遗传图谱的构建及其在大豆抗病、虫基因定位中的应用[D].南京:南京农业大学博十学位论文,2006
    16.盖钧镒,胡蕴珠,崔章林,等.大豆资源对SMV株系抗性的鉴定[J].大豆科学,1989,84(4):323-330
    17.郜李彬,曹越平,周斐红,等.大豆种质资源对SMV东北3号株系和黄淮7号株系的抗性 鉴定[J].中国种业,2008,(2):48-50
    18.耿迎春,李默然,李勇.大豆花叶病毒的株系鉴定[J].大豆科学,1985,4(4):261-266
    19.郭东全,王廷伟,智海剑,等.大豆对SMVSC13株系群的抗性遗传及基因定位的研究[J].大豆科学,2007,26(1):21-24
    20.郭东全,智海剑,王延伟,等.黄淮中北部大豆花叶病毒株系的鉴定与分布[J].中国油料作物学报,2005,27(4):64-68
    21.郭书巧,黄骥,江燕,等.水稻C2H2型锌指蛋白基因RZF71的克隆与表达分析[J].遗传,2007,29(5):607-613
    22.韩庆典,陈志伟,邓云,等.水稻细菌性条斑病抗性QTL qBlsr5a的精细定位[J].作物学报,2008,34(4):587-590
    23.何凤华,席章营,曾瑞珍,等.利用高代回交和分子标记辅助选择建立水稻单片段代换系[J].遗传学报,2005,32(8):825-831
    24.贺超英,张志永,陈受宜.大豆中NBS类抗性基因同源序列的分离与鉴定[J].科学通报,2001,46(12):1017-1021
    25.胡国华,高凤兰,吴宗璞.大豆抗种粒斑驳基因效应的研究[J].遗传学报,1995,22(2):133-141
    26.胡蕴珠,盖钧镒,马育华,等.大豆对两个SMV株系抗性的遗传研究[J].南京农业大学学报,1985,8(3):17-22
    27.黄骥,王建飞,张红生.植物C2H2型锌指蛋白的结构与功能[J].遗传,2004,26(3):414-418
    28.李得孝,陈鹏印,陈耀锋.利用美国SMV株系初步鉴定中国大豆鉴别寄主的抗性基因[J].西北植物学报,2009,29(10):2096-2102
    29.李海朝,智海剑,白丽,等.大豆对SMV株系SC11的抗性遗传及抗性基因的等位性研究[J].大豆科学,2006,25(4):365-368
    30.李海朝.大豆对大豆花叶病毒的抗性遗传与SSR标记定位研究[D].南京:南京农业火学硕士学位论文,2006
    31.李凯.中国南方大豆花叶病毒株系的鉴定、抗性遗传和抗性基因的定位[D].南京:南京农业大学博十学位论文,2009
    32.李文福,刘春燕,高运来,等.大豆种粒斑驳抗性的遗传分析及基因定位[J].作物学报,2008,34(9):1544-1548
    33.李文福,刘春燕,于妍,等.大豆种质资源对东北SMVl号和3号株系的抗性鉴定[J].中国油料作物学报,2009,31(1):94-96
    34.李学湛,Kim K S, Sctt H A.复合病毒感染对大豆叶片细胞超微结构的影响[J].电子显微学报,1991,10(1):12-16
    35.廖林,刘玉芝.抗花叶病大豆品种的抗病力和病毒毒株致病力变化的研究[J].中国油料作物学报,1996,18(3):56-59
    36.廖林,刘玉芝,孙大敏,等.大豆花叶病的抗性遗传-Ⅰ.几个引用抗原对东北大豆花叶病毒二号株系的抗性遗传[J].遗传学报,1994,21(5):403-408
    37.廖林,刘玉芝,孙大敏,等.大豆花叶病引起的大豆顶端坏死症[J].作物学报,1995,21(6):707-710
    38.廖林,王金陵,吴忠璞,等.大豆花叶病(SMV)症状与大豆品种、病毒毒株及环境条件关系的研究[J].大豆科学,1990,9(2):149-156
    39.刘俊君,彭学贤,莽克强.大豆花叶病毒N1b基因的cDNA克隆和序列分析[J].中国科学(B辑),1994,24(3):265-271
    40.刘俊君,彭学贤,李荔,等.大豆花叶病毒外壳蛋白基因的克隆和其在火肠杆菌中的表达[J].生物工程学报,1993,9(3):198-203
    41.刘宁,马莹,王大刚,等.大豆花叶病毒株系间的交义保护作用研究[J].中国油料作物学报,2009,31(2):213-218
    42.刘伟.大豆花叶病毒病[J].大豆通报,1998,(2):29-30
    43.卢双勇,韩英鹏,滕卫丽,等.大豆抗花叶病毒及耐疫霉根腐病的SSR标记分析[J].大豆科学,2008,27(5):746-750
    44.陆京杰,陈永萱.大豆花叶病毒(SMV)的侵染对大豆光合作用的影响[J].植物生理学通讯,1992,28(2):104-106
    45.吕文清,张明厚,魏培文,等.东北三省大豆花叶病毒(SMV)株系的种类与分布[J].植物病理学报,1985,15(4):225-229
    46.栾晓燕,陈怡,杜维广,等.不同抗性大豆品种(系)感染SMV后叶绿素和光合速率变化分析[J].黑龙江农业科学,1998,(3):8-10
    47.栾晓燕,陈怡,杜维广,等.大豆感染SMV3后多酚类物质的变化分析[J].大豆科学,2003,22(3): 186-189
    48.栾晓燕,陈怡,杜维广,等.大豆抗性种质对SMV3号株系种粒斑驳的抗性遗传[J].黑龙江农业科学,1997,(5):1-3
    49.栾晓燕,李宗匕,满为群,等.与大豆SMV3号株系抗性相关的分子标记的鉴定[J].分子植物育种,2006,4(6):841-845
    50.栾晓燕.大豆对SMV3号株系成株抗性遗传的研究[J].大豆科学,1997,16(3):223-226
    51.罗瑞梧,尚佑芬,杨崇良,等.大豆花叶病流行因素和发生预测研究[J].植物保护学报,1991,(3):267-271
    52.罗瑞梧,杨崇良,尚佑芬,等.山东省大豆花叶病毒株系鉴定[J].山东农业科学,1990,(5): 16-19
    53.马淑梅.中国大豆品种对大豆花叶病毒(SMV)病抗病性鉴定结果[J].大豆科学,1991,10(3):240-244
    54.梅丽艳.大豆花叶病毒种子带毒及其检测技术研究[J].黑龙江农业科学,1997,(3):17-19
    55.倪大虎,易成新,李莉,等.利用分子标记辅助选择聚合水稻基因Xa21和Pi9(t)[J].分子植物育种,2005,3(3):329-334
    56.倪大虎,易成新,杨剑波,等.利用分子标记辅助选择聚合Pi9(t)和Xa23基因[J].分子植物育种,2007,5(4):491-496
    57.濮祖芹,曹琦,薛宝娣.大豆品种(品系)对大豆花叶病毒六个株系的抗性反应[J].南京农业大学学报,1983,(3):41-45
    58.濮祖芹,曹琦,房德纯,等.大豆花叶病毒的株系鉴定[J].植物保护学报,1982,9(1):15-19
    59.尚佑芬,赵玖华,杨崇良,等.黄淮地区大豆花叶病毒株系鉴定[J].山东农业科学,1997,(6):23-26
    60.沈文飚,徐朗莱,胡蕴珠,等.大豆花叶病毒(SMV)的侵染对大豆叶片过氧化物酶及其同功酶的影响[J].南京农业大学学报,1997,(4):91-95
    61.孙浩华,薛峰,陈集双.火豆花叶病毒研究进展[J].生命科学,2007,19(3):338-344
    62.孙永吉,刘玉芝,胡吉成.火豆田中蚜虫发生与大豆花叶病毒流行的研究[J].吉林农业科学,1987,(2):12-17
    63.孙志强,刘玉芝,孙火敏,等.大豆对大豆花叶病毒1、2、3号毒系抗性的遗传[J].中国油料作物学报,1990,(2):22-26
    64.陶庭典,濮祖芹,濮祖茂.SMV对大豆花粉表面的污染及对花粉活力的影响[J].中国病毒学,1991,6(3):232-236
    65.滕卫丽,李文滨,韩英鹏,等.大豆抗感品种(系)接种SMV1叶片细胞超微结构变化的比较[J].作物杂志,2008,(1):34-36
    66.滕卫丽,李文滨,邱丽娟,等.大豆SMV3号株系抗性基因的SSR标记[J].大豆科学,2006,24(3):244-249
    67.滕卫丽.大豆抗花叶病遗传、细胞超微结构分析及基因定位[D].哈尔滨:东北农业大学博士论文,2006
    68.王大刚,卢为国,马莹,等.新育成大豆品种对SMV和SCN的抗性评价[J].大豆科学,2009,28(6):949-953
    69.王心宇,陈佩度,张守忠.小麦白粉病抗性基因的聚合及其分子标记辅助选择[J].遗传学报,2001,28(7):640-646
    70.王修强,盖钧镒,濮祖芹.黄淮和长江中下游地区大豆花叶病毒株系鉴定与分布[J].大豆科 学,2003a,22(2):102-107
    71.王修强,盖钧镒,喻德跃.广谱抗源科丰1号对大豆花叶病毒强毒株系群SC8抗性的遗传研究[J].大豆科-学,2003b,22(3):190-192
    72.王修强,盖钧镒,喻德跃,等.大豆品种(品系)对黄淮和长江中下游地区SMV株系群的抗性反应[J].大豆科学,2003c,22(4):241-244
    73.王修强.黄淮和长江中下游地区大豆花叶病毒(SMV)株系鉴定、抗源筛选及抗性遗传的研究[D].南京:南京农业大学硕十学位论文,2000
    74.王延伟,智海剑,郭东全,等.中国北方春大豆区大豆花叶病毒株系的鉴定与分布[J].大豆科学,2005,24(4):263-268
    75.王永军,东方阳,王修强,等.大豆5个花叶病毒株系抗性基因的定位[J].遗传学报,2004,31(1):87-90
    76.王玉正,岳跃海.大豆玉米间作和同穴混播对大豆病虫发生的综合效应研究[J].植物保护,1998,(1):13-15
    77.王月明,侯春燕,张孟臣,等.河北省推广大豆品种对六个SMV株系的抗性鉴定[J].华北农学报,2006,21(S2):183-186
    78.吴宗璞,高凤兰.火豆育种应用基础和技术研究进展[M].南京:江苏科学技术出版社,1990
    79.吴宗璞,钟兆西,高凤兰,等.大豆品种对SMV不同毒株抗性反应与种粒斑驳关系的研究[J].大豆科学,1986,5(2):153-160
    80.武晓玲.大豆疫霉根腐病抗性评价、基因定位及抗性相关基因的筛选[D].南京:南京农业大学博士学位论文,2009
    81.向远道,盖钧镒,马育华.火豆对4个大豆花叶病毒株系的抗性及其连锁遗传研究[J].遗传学报,1991,18(1):51-58
    82.熊克娟,李天宪,陈绳亮,等.常见植物病毒冷冻干燥方法的改进与效果观察[J].华中农业大学学报,1999,11(2):22-23
    83.徐刚,郜李斌,陶波,等.大豆资源对大豆花叶病毒病(SMV)东北3号及黄淮7号株系的抗性研究[J].东北农业大学学报,2008,39(10):11-14
    84.许志刚,濮祖芹,曹琦,等.长江流域蚕豆病毒病的发生情况[J].南京农业大学学报,1985,(4):42-48
    85.许志纲,Goodman R M, Polston J E.大豆花叶病毒株系的鉴定[J].南京农业大学学报,1983,(3):36-40
    86.严隽析,马育华.大豆花叶病抗性遗传的初步研究[J].大豆科学,1985,4(4):249-259
    87.杨崇良,尚佑芬,李长松,等.我国北方地区大豆吕种资源对大豆花叶病毒抗性鉴定[J].山东农业科学,1995,(5):22-25
    88.杨华,李凯,杨清华,等.国内部分新品种对大豆花叶病毒抗性的鉴定[J].华北农学报,2008,23(S2):253-255
    89.杨华.大豆抗大豆花叶病毒病相关基因的克隆和功能研究[D].南京:南京农业大学博十学位论文,2009
    90.杨雅麟.长江中下游地区大豆花叶病毒(SMV)株系组成、分布及抗性研究[D].南京:南京农业大学硕十学位论文,2002
    91.杨郁文,倪万潮,张保龙,等.陆地棉SUPERMAN类似锌指蛋白基因的克隆与表达分析[J].遗传,2006,28(4):443-448
    92.杨中路.大豆对大豆花叶病毒(SMV)的数量抗性研究及QTL定位[D].南京:南京农业火学硕士学位论文,2009
    93.余子林.湖北地区大豆花叶病毒的研究[R].全国大豆病害学术讨论会论文摘要汇编,1986
    94.战勇,喻德跃,陈受宜,等.大豆对SMV SC-7株系群的抗性遗传与基因定位[J].作物学报,2006,32(6):936-938
    95.战勇.黄淮地区大豆花叶病毒的生物学检测_株系鉴定及大豆抗性的遗传与基因定位[D].南京:南京农业大学硕士学位论文,2003
    96.张明厚,魏培文,张春泉.我国东北部五省市SMV对大豆主栽品种的毒力测定[J].植物病理学报,1998,28(3):237-242
    97.张伟,宋淑云,晋齐鸣,等.吉林省大豆新品种(系)抗大豆花叶病毒病鉴定及抗源筛选[J].吉林农业大学学报,2004,26(4):371-374
    98.张玉东,盖钧镒,马育华.大豆对两个大豆花叶病毒本地株系抗性的遗传研究[J].作物学报,1989,15(3):213-220
    99.张志永,陈受宜,盖钧镒.大豆花叶病毒抗性基因Rsa的分子标记[J].科学通报,1998,43(20):2197-2202
    100.章元寿,王建新.大豆花叶病毒病病种子的氨基酸含量测定[J].南京农业大学学报,1990,13(1): 127-128
    101.郑翠明,常汝镇,邱丽娟,等.大豆种质资源对SMV3号株系的抗性鉴定[J].大豆科学,2000a,19(4):299-305
    102.郑翠明,常汝镇,邱丽娟.大豆对SMV3号株系的抗性遗传分析及抗性基因的RAPD标记研究[J].中国农业科学,2001,34(1):14-18
    103.郑翠明,常汝镇,邱丽娟.大豆花叶病毒病研究进展[J].植物病理学报,2000b,30(2):97-105
    104.郑翠明,滕冰,高风兰,等.不同种粒抗性大豆品种感染SMV后可溶性蛋白和游离氨基酸的研究[J].植物病理学报,1998,28(3):227-231
    105.郑翠明,滕冰,高凤兰,等.感染SMV后大豆种皮超氧物歧化酶、过氧化物酶和多酚氧化 酶的变化[J].中国农业科学,1999,32(1):99-101
    106.智海剑,盖钧镒,何小红.大豆对SMV数量(程度)抗性的综合分级方法研究[J].大豆科学,2005a,24(2):5-11
    107.智海剑,盖钧镒,陈应志,等.2002-2004年国家大豆区试品种对大豆花叶病毒抗性的评价[J].大豆科学,2005b,24(3):189-193
    108.智海剑,盖钧镒,郭东全,等.对大豆花叶病毒不同抗性类型品种的细胞超微结构特征[J].南京农业大学学报,2005c,28(1):6-10
    109.智海剑,盖钧镒.大豆对SMV数量抗性的表现形式与种质鉴定[J].中国农业科学,2004,37(10):1422-1427
    110.智海剑,盖钧镒.大豆花叶病毒及抗性遗传的研究进展[J].大豆科学,2006,25(2):174-180
    111.智海剑,盖钧镒.大豆花叶病毒症状反应的遗传研究[J].中国农业科学,2005,38(5):944-949
    112.智海剑,胡蕴珠,刘天宇.大豆花叶病毒对大豆生长的影响[J].中国油料,1996,(1):44-47
    113.钟兆西,吴宗璞,高凤兰,等.筛选SMV抗源品种的初步研究[J].大豆科学,1986,5(3):239-244
    114.周建农,蒋伶活,濮祖芹,等.大豆花叶病毒的越冬寄主[J].江苏农业学报,1991,7(2):56
    115.周明华,许志刚,沈秀萍.水稻品种与水稻细菌性条斑病菌的互作机制[J].植物保护学报,2001,28(2):103-107
    116.周雪平,濮祖芹.自然侵染豌豆的大豆花叶病毒[J].南京农业大学学报,1990,13(1):53-56
    117.朱晓娜,陈耀锋,曹婷,等.小麦抗条锈基因聚合及抗条中32号基因分子标记筛选[J].西北农林科技大学学报(自然科学版),2008,36(3):187-191
    118.庄炳昌,徐豹,廖林.接种大豆花叶病毒后、大豆叶片超氧物歧化酶、过氧化物酶和蛋白组份的变化[J].植物病理学报,1993,23(3):71-75
    119.邹淑华,赵荣林.对大豆花叶病不同抗性的大豆品种的电泳分析[J].作物学报,1990,16(3):284-287
    120. Ade J, Deyoung B J, Golstein C, et al. Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease[J]. Proc Natl Acad Sci USA,2007,104 (2): 2531-2536
    121.Asai T, Tena G, Plotnikova J, et al. MAP kinase signaling cascade in Arabidopsis innate immunity[J]. Nature,2002,415 (6875):977-983
    122. Babu M, Gagarinova A G, Brandle J E, et al. Association of the transcriptional response of soybean plants with soybean mosaic virus systemic infection[J]. J. Gen Virol,2008,89 (4):1069-1080
    123. Boswell K F, Gibbs A J. Viruses of legumes[M]. Descriptions keys from VIDE. Australian National University, Canberra,1983,139:77-107
    124. Buss G R, Chen P Y, Tolin S A, et al. Breeding soybeans for resistance to soybean mosaic virus[M]. Proceedings of World Soybean Research Conference Ⅳ,1989:1144-1154
    125. Buzzell R I, Tu J C. Inheritance of a soybean stem-tip necrosis reaction to soybean mosaic virus[J]. J. Hered,1989,80:400-401
    126. Buzzell R I, Tu J C. Inheritance of soybean resistance to soybean mosaic virus[J]. J. Hered,1984, 75 (1):82
    127. Century K S, Lagman R A, Adkisson M, et al. Developmental control of Xa21-mediated disease resistance in rice[J]. Plant J,1999,20 (2):231-236
    128. Chapple C. Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases [J]. Ann Review Plant Biol,1998,49 (1):311-343
    129. Chen J P, Zheng H Y, Lin L, et al. A virus related to Soybean mosaic virus from Pinellia ternata in China and its comparison with local soybean SMV isolates[J]. Archives of Virology,2004,149 (2):349-363
    130. Chen P Y, Buss G R, Roane C W, et al. Allelism among genes for resistance to soybean mosaic virus in strain-differential soybean cultivars[J]. Crop Sci,1991,31 (2):305-309
    131. Chen W, Provart N J, Glazebrook J, et al. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses[J]. Plant Cell 2002,14 (3):559-574
    132. Cheng H, Yang H, Zhang D, et al. Polymorphisms of soybean isoflavone synthase and flavanone 3-hydroxylase genes are associated with soybean mosaic virus resistance[J]. Mol Breeding,2010, 25 (1):13-24
    133. Cho E K, Goodman R M. Evaluation of resistance in soybeans to soybean mosaic virus strains[J]. Crop Sci,1982,22 (6):1133-1136
    134. Cho E K, Goodman R M. Strains of soybean mosaic virus:classification based on virulence in resistant soybean cultivars[J]. Phytopathology,1979,69 (5):467-470
    135. Cho E K, Choi S H, Cho W T. Newly recognized soybean mosaic virus mutants sources of resistance in soybeans[J]. Res Rep,1983,25:18-22
    136. Cho E K, Chung B J, Lee SH. Studies on identification classification of soybean virus diseases in Korea. II. Etiology of a necrotic disease of Glycine max[J]. Plant Dis,1977,61:313-317
    137. Cho S K, Chung H S, Ryu M Y, et al. Heterologous expression and molecular and cellular characterization of CaPUB1 encoding a hot pepper U-box E3 ubiquitin ligase homolog[J]. Plant physiol,2006,142 (4):1664-1682
    138. Cho S K, Ryu M Y, Song C, et al. Arabidopsis PUB22 and PUB23 are homologous U-box E3 ubiquitin ligases that play combinatory roles in response to drought stress[J]. Plant Cell,2008,20 (7):1899-1914
    139. Choi B K, Koo J M, Ahn H J, et al. Emergence of Rsv-resi stance breaking soybean mosaic virus isolates from Korean soybean cultivars[J]. Virus Res,2005,112(1-2):42-51
    140. Choi I Y, Hyten D L, Matukumalli L K, et al. A soybean transcript map:gene distribution, haplotype and single-nucleotide polymorphism analysis[J]. Genetics,2007,176 (1):685-696
    141. Conover R A. Studies of two viruses causing mosaic diseases of soybean[J]. Phytopathology,1948, 38:724-735
    142. Dodds P N, Lawrence G J, Ellis J G. Six amino acid changes confined to the leucine-rich repeat β-strand/β-turn motif determine the difference between the P and P2 rust resistance specificities in flax[J]. Plant Cell,2001,13 (1):163-178
    143. Ebitani T, Takeuchi Y, Nonoue Y, et al. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar [J]. Breeding Sci,2005,55 (1):65-73
    144. Eggenberger A L, Stark D M, Beachy R N. The nucleotide sequence of a soybean mosaic virus coat protein-coding region its expression in E. coli, agrobacterium tumefaciens tobacco callus[J]. J. Gen Virol,1989,70 (7):1853-1860
    145. Ellis J, Dodds P N, Pryor T. The generation of plant disease resistance gene specificities[J]. Trends Plant Sci,2000,5 (9):373-379
    146. Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci,2000,5 (5):199-205
    147. Feldmann K A. Cytochrome P450s as genes for crop improvement[J]. Curr opin plant biol,2001, 4 (2):162-167
    148. Fu S X, Zhan Y, Zhi H J, et al. Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean[J]. Genetica,2006,128 (1):63-69
    149. Gagarinova A G, Babu M, Poysa V, et al. Identification and molecular characterization of two naturally occurring soybean mosaic virus isolates that are closely related but differ in their ability to overcome Rsv4resistance[J]. Virus Res,2008a,138 (1-2):50-56
    150. Gagarinova A G, Babu M, Stromvik M V, et al. Recombination analysis of soybean mosaic virus sequences reveals evidence of RNA recombination between distinct pathotypes[J]. Virol J.,2008b, 5 (143):1-8
    151.Gai J Y, HuYZ, Zhang Y D, et al. Inheritance of resistance of soybeans to four local strains of soybean mosaic virus[M]. Proceedings of World Soybean Research Conference Ⅳ,1989: 1182-1187
    152. Gore M A, Hayes A J, Jeong S C, et al. Mapping tightly linked genes controlling potyvirus infection at the Rsv1 and Rpv1 region in soybean[J]. Genome,2002,45 (3):592-599
    153. Graham M A, Marek L F, Lohnes D, et al. Expression and genome organization of resistance gene analogs in soybean[J]. Genome,2000,43 (1):86-93
    154. Gu K, Yang B, Tian D, et al. R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice[J]. Nature,2005,435 (7045):1122-1125
    155. Hajimorad M R, Eggenberger A L, Hill J H. Evolution of soybean mosaic virus-G7 molecularly cloned genome in Rsvl-genotype soybean results in emergence of a mutant capable of evading Rsv1-mediated recognition[J]. Virology,2003,314 (2):497-509
    156. Hammond K E, Jones J D G. Plant disease resistance genes[J]. Annu Rev Plant Biol,1997,48 (1):575-607
    157. Hayes A J, Ma G R, Buss G R, et al. Molecular marker mapping of Rsv4, a gene conferring resistance to all known strains of soybean mosaic virus[J]. Crop Sci,2000a,40(5):1434-1437
    158. Hayes A J, Jeong S C, Gore M A, et al. Recombination within a nucleotide-binding-site/leucine-rich-repeat gene cluster produces new variants conditioning resistance to soybean mosaic virus in soybeans[J]. Genetics,2004,166 (1):493-503
    159. Hayes A J, Yue Y G, Saghai Maroof M A. Expression of two soybean resistance gene candidates shows divergence of paralogous single-copy genes[J]. Theor Appl Genet,2000b,101 (5):789-795
    160. Hayes A J, Saghai Maroof M A. Targeted resistance gene mapping in soybean using modified AFLPs[J]. Theor Appl Genet,2000c,100 (8):1279-1283
    161.HeCY, Tian A G, Zhang J S, et al. Isolation and characterization of a full-length resistance gene homolog from soybean[J]. Theor Appl Genet,2003,106 (5):786-793
    162. Hill J H, Benner H I. Properties of soybean mosaic virus ribonucleic acid[J]. Phytopathology, 1980,70:236-239
    163. Hong Z, Ueguchi T M, Umemura K, et al. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450[J]. Plant Cell,2003, 15 (12):2900-2910
    164. Hulbert S H, Webb C A, Smith S M, et al. Resistance gene complexes:evolution and utilization[J]. Annu Rev Phytopathol,2001,39 (1):285-312
    165. Hunst P L, Tolin S A. Ultrastructural cytology of soybean infected with mild severe strains of soybean mosaic virus[J]. Phytopathology,1983,73 (4):615-619
    166. Hwang T Y, Sayama T, Takahashi M, et al. High-density integrated linkage map based on SSR markers in soybean[J]. DNA Res,2009,16:213-225
    167. Hwang C F, Williamson V M. Leucine-rich repeat-mediated intramolecular interactions in nematode recognition cell death signaling by the tomato resistance protein Mi[J]. Plant J.,2003, 34 (5):585-593
    168. Hwang T Y, Moon J K, Yu S, et al. Application of comparative genomics in developing molecular markers tightly linked to the virus resistance gene Rsv4 in soybean[J]. Genome,2006,49 (4): 380-388
    169. Ishimaru K, Ono K, Kashiwagi T. Identification of a new gene controlling plant height in rice using the cidate-gene strategy[J]. Planta,2004,218 (3):388-395
    170. Jayaram C H, Hill J H, Miller W A. Complete nucleotide sequences of two soybean mosaic virus strains differentiated by response of soybean containing the Rsv resistance gene[J]. J. Gen Virol, 1992,73 (8):2067-2077
    171.Jeong S C, Hayes A J, Biyashev R M, et al. Diversity and evolution of a non-TIR-NBS sequence family that clusters to a chromosomal "hotspot" for disease resistance genes in soybean[J]. Theor Appl Genet,2001,103 (2):406-414
    172. Jeong S C, Kristipati S, Hayes A J, et al. Genetic and sequence analysis of markers tightly linked to the soybean mosaic virus resistance gene,Rsv3[J]. Crop Sci,2002,42 (1):265-270
    173. Jeong S C, Saghai Maroof M A. Detection genotyping of SNPs tightly linked to two disease resistance loci, Rsvl and Rsv3, of soybean[J]. Plant Breeding,2004,123:305-310
    174. JiaY, Mcadams S A, Bryan G T, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance[J]. The EMBO J.,2000,19 (15):4004-4014
    175. Kanazin V, Marek L F, Shoemaker R C. Resistance gene analogs are conserved clustered in soybean[J]. Proc Nat Acad Sci,1996,93 (21):11746-11750
    176. Kiihl R A, Hartwig E E. Inheritance of reaction to soybean mosaic virus in soybeans[J]. Crop Sci, 1979,19:372-379
    177. Kim J C, Lee S H, Cheong Y H, et al. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants[J]. Plant J.,2001,25 (3):247-259
    178. Kim J S, Lee E J. A new virulent strain of soybean mosaic virus infecting SMV resistant soybean cultivar, Deogyou[J]. Korean J. Plant Pathol,1991,7:37-41
    179. Kim M Y, Van K, Lestari P, et al. SNP identification and SNAP marker development for a GmNARK gene controlling supernodulation in soybean[J]. Theor Appl Genet,2005,110 (6): 1003-1010
    180. Kim YH, Kim OS, Lee B C, et al. G7H, a new soybean mosaic virus strain:its virulence and nucleotide sequence of CI gene[J]. Plant Dis,2003,87(11):1372-1375
    181. Kobayashi A, Sakamoto A, Kubo K, et al. Seven zinc-finger transcription factors are expressed sequentially during the development of anthers in petunia[J]. Plant J.,2002,13 (4):571-576
    182. Kobayashi S, Araki E, Osaki M, et al. Localization, validation and characterization of plant-type QTLs on chromosomes 4 and 6 in rice (Oryza sativa L.)[J]. Field Crops Res,2006,96(1):106-112
    183.Koo J M, Choi B K, Ahn H J, et al. First report of an Rsv resistance-breaking isolate of soybean mosaic virus in Korea[J]. Plant Pathol,2005,54 (4):573-573
    184. Kosaka Y, Fukunishi T. Application of cross-protection to the control of black soybean mosaic disease[J]. Plant Dis,1994,78 (4):339-341
    185. Koshimizu Y, lizuka N. Studies on soybean virus diseases in Japan[J]. Tohoku Agric Exp Stn, 1963,27:1-103
    186. Kubo T, Aida Y, Nakamura K, et al. Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice(Oryza sativa L.)[J]. Breeding Sci,2002,52(4):319-325
    187. Kwon S H, Oh J H. Resistance to a necrotic strain of soybean mosaic virus in soybean[J]. Crop Sci, 1980,20 (3):403-404
    188. Lamothe G R, Tsitsigiannis D I, Ludwig A A, et al. The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato[J]. Plant Cell,2006,18 (4):1067-1083
    189. Li H C, Zhi H J, Gai J Y, et al. Inheritance and gene mapping of resistance to soybean mosaic virus strain SC14 in soybean[J]. J. Plant Biol,2006,48 (12):1466-1472
    190. Li K, Yang Q H, Zhi H J, et al. Identification and distribution of soybean mosaic virus strains in southern China[J]. Plant Dis,2010,94:351-357
    191.Lim S M.Resistance to soybean mosaic virus in soybeans[J]. Phytopathology,1985,75 (2): 199-201
    192. Lim W S, Kim Y H, Kim K H. Complete genome sequences of the genomic RNA of soybean mosaic virus strains G7H and G5[J]. Plant Pathol J.,2003,19 (3):171-176
    193. Lupas A, Van D M, Stock J. Predicting coiled coils from protein sequences[J]. Science,1991, 252:1162-1164
    194.Ma G, Chen P Y, Buss G R, et al.. Genetic study of a lethal necrosis to soybean mosaic virus in PI507389 soybean [J]. J. Hered,2003,94:205-211
    195. Martin G B, Brommon S H, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato[J]. Science,1993,262 (5138):1432-1435
    196. Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proc Natl Acad Sci,1991.88 (21):9828-9832
    197. Moon J K, Jeong S C, Van K J, et al. Marker-assisted identification of resistance genes to soybean mosaic virus in soybean lines[J]. Euphytica,2009,169 (3):375-385
    198. Mortel M, Recknor J C, Graham M A, et al. Distinct biphasic mRNA changes in response to Asian soybean rust infection[J]. Mol Plant-Micro Interact,2007,20(8):887-899
    199. Narayanan N N, Baisakh N, Vera C C M, et al. Molecular breeding for the development of blast and bacterial blight resistance in rice cv. IR50[J]. Crop Sci,2002,42 (6):2072-2079
    200. Nelson D R. Cytochrome P450 and the individuality of species[J]. Arch Biochem Biophy,1999, 369 (1):1-10
    201. Nomura T, Bishop G J. Cytochrome P450s in plant steroid hormone synthesis metabolism[J]. Phytochem Rev,2006,5 (2):421-432
    202. Ohkawa H, Ohkawa Y. Molecular mechanisms of herbicide resistance[J]. Pesticides the future: minimizing chronic exposure of humans the environment,1998:245-252
    203. Ohkawa H, Imanishi H, Shiota N, et al. Molecular mechanisms of herbicide resistance with special emphasis on cytochrome P450 monooxygenases[J]. Plant biotech,1998,15 (4):173-176
    204. Owen F V. Hereditary and environmental factors that produce mottling in soybeans[J]. J. Agr Res, 1927,34:559-587
    205. Parniske M, Hammond K E, Golstein C, et al. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato[J]. Cell,1997, 91:821-832
    206. Pfeiffer T W, Peyyala R, Ren Q, et al. Increased soybean pubescence density:yield and soybean mosaic virus resistance effects[J]. Crop Sci,2003,43 (6):2071-2076
    207. Quiniones S S, Dunleavy J M, Fisher J W. Performance of three soybean varieties inoculated with soybean mosaic virus bean pod mottle virus[J]. Crop Sci,1971,11 (5):662-664
    208. Ren Q, Pfeiffer T W, Ghabrial S A. Soybean mosaic virus incidence level infection time.-interaction effects on soybean[J]. Crop Sci,1997,37 (6):1706-1711
    209. Ross J P. Pathogenic variation among isolates of soybean mosaic virus[J]. Phytopathology,1969, 59:829-832
    210. Rushton P J, Torres J T, Parniske M, et al. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes[J]. EMBO J.,1996,15(20): 5690-5700
    211. Saghai Maroof M A, Jeong S C, Gunduz I, et al. Pyramiding of soybean mosaic virus resistance genes by marker-assisted selection[J]. Crop Sci,2008,48 (2):517-526
    212. Saghai Maroof M A, Tucker D M, Skoneczka J A, et al. Fine mapping and candidate gene discovery of the soybean mosaic virus resistance gene, Rsv4[J]. Plant genome,2010,3 (1):14-22
    213. Sakamoto H, Araki T, Meshi T, et al. Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress[J]. Gene,2000,248 (1-2):23-32
    214. Samuel M A, Mudgil Y, Salt J N, et al. Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis[J]. Plant physiol,2008,147 (4):2084-2095
    215. Sanchez A C, Brar D S, Huang N, et al. Sequence tagged site marker-assisted selection for three bacterial blight resistance genes in rice[J]. Crop Sci,2000,40 (3):792-797
    216. Saruta M, Kikuchi A, Okabe A, et al. Molecular characterization of A2 and D strains of soybean mosaic virus, which caused a recent virus outbreak in soybean cultivar Sachiyutaka in Chugoku and Shikoku regions of Japan[J]. J. Gen Plant Pathol,2005,71 (6):431-435
    217. Satomi Y, Utako Y, Yuichi K, et al. Expression of Xal, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation[J]. Proc Natl Acad Sci USA,1998,95:1663-1668
    218. Seo J K, Lee H G, Choi H S, et al. Infectious in vivo transcripts from a full-length clone of soybean mosaic virus strain G5H[J]. Plant Pathol J.,2009a,25 (1):54-61
    219. Seo J K, Lee H G, Kim K H. Systemic gene delivery into soybean by simple rub-inoculation with plasmid DN A of a soybean mosaic virus-based vector[J]. Arch Virol,2009b,154 (1):87-99
    220. Seo J K, Ohshima K, Lee H G, et al. Molecular variability and genetic structure of the population of soybean mosaic virus based on the analysis of complete genome sequences[J]. Virology,2009c, 393:91-103
    221.Sessa G, Di-Ascenzo M, Loh Y T, et al. Biochemical properties of two protein kinases involved in disease resistance signaling in tomato[J]. J. Biol Chem,1998,273 (25):15860-15865
    222. Sessa G, Martin G B. Signal recognition transduction mediated by the tomato Pto kinase:a paradigm of innate immunity in plants[J]. Microbes infection,2000,2 (13):1591-1597
    223. Shi A N, Chen P Y, Gergerich R, et al. Interaction between two strains of soybean mosaic virus in soybean[J]. Can J. Plant Pathol,2008,30 (3):486-491
    224. Shi A N, Chen P Y, Li D X, et al. Pyramiding multiple genes for resistance to soybean mosaic virus in soybean using molecular markers[J]. Mol Breeding,2009,23 (1):113-124
    225. Shi YH, Hong X Y, Chen J P, et al. Further molecular characterizations of potyviruses infecting aroid plants for medicinal use in China[J]. Arch Virol,2005,150(1):125-135
    226. Shirasu K., Schulze L P. Complex formation, promiscuity multi-functionality:protein interactions in disease-resistance pathways[J]. Trends in Plant Sci,2003,8 (6):252-258
    227. Shoemaker R C, Polzin K, Labate J, et al. Genome duplication in soybean (Glycine subgenus soja)[J]. Genetics,1996,144 (1):329-338
    228. Singh K B, Foley R C, Oate S L. Transcription factors in plant defense stress responses[J]. Curr opin plant biol,2002,5 (5):430-436
    229. Smartt J. A guide to soybean cultivation in northern Rhodesia[J]. Rhodesia Agric,1960,57: 459-463
    230. Song Q J, Jia G F, Zhu Y L, et al. Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR1.0) in soybean[J]. Crop Sci,2010,50:1950-1960
    231. Song Q J, Marek L F, Shoemaker R C, et al. A new integrated genetic linkage map of the soybean[J]. Theor Appl Genet,2004,109 (1):122-128
    232. Song W Y, Wang G L, Chen L L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21[J]. Science,1995,270 (15):1804-1806
    233. Steinlage T A, Hill J H, Nutter J F. Temporal spatial spread of soybean mosaic virus (SMV) in soybeans transformed with the coat protein gene of SMV[J]. Phytopathology,2002,92(5):478-486
    234. Su C F, Lu W G, Zhao T J, et al. Verification and fine-mapping of QTLs conferring days to flowering in soybean using residual heterozygous lines[J]. Chinese Sci Bull,2010,55 (1):1-10
    235. Sun H, Shen T S, Xue F, et al. Molecular characterization and evolutionary analysis of soybean mosaic virus infecting Pinellia ternata in China[J]. Virus Genes,2008,36 (1):177-190
    236. Sun X, Cao Y, Yang Z, et al. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein[J]. Plant J.,2004,37 (4):517-527
    237. Takahashi K, Iizuka N. The distinction of the soybean viral disease[J]. Plant Prot,1965,19(8): 339-342
    238. Takatsuji H, Nakamura N, Katsumoto Y. A new family of zinc finger proteins in petunia:structure, DNA sequence recognition, floral organ-specific expression[J]. Plant Cell,1994,6(7):947-958
    239. Tanabe S, Ashikari M, Fujioka S, et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length[J]. Plant Cell,2005,17 (3):776-790
    240. Tresnaputra U S, Ehara Y. Electron microscopy of soybean leaf cells infected with five strains of soybean mosaic virus[J]. Tohoku J. Agri Res,1989,39 (2-4):61-71
    241.TuJC, Buzzell R I. Stem-tip necrosis:a hypersensitive, temperature dependent, dominant gene reaction of soybean to infection by soybean mosaic virus[J]. Can. J. Plant Sci,1987,67 (3): 661-665
    242. Tuinstra M R, Ejeta G, Goldsbrough P B. Heterogeneous inbred family (HIF) analysis:a method for developing near-isogenic lines that differ at quantitative trait loci[J]. Theor Appl Genet,1997, 95 (5):1005-1011
    243. Van O J W, Voorrips R E. JoinMap(?)3.0, Software for the calculation of genetic linkage maps[J]. Plant Res Inter, Wageningen,2001,
    244. Van R A L, Roth R, De P J G M. Identification of distinct specificity determinants in resistance protein Cf-4 allows construction of a Cf-9 mutant that confers recognition of avirulence protein AVR4[J]. Plant Cell 2001,13 (2):273-285
    245. Voorrips R E. MapChart:software for the graphical presentation of linkage maps and QTLs[J]. J. Hered,2002,93 (1):77-78
    246. Wan J, Zhang S, Stacey G. Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin[J]. Mol Plant Pathol,2004,5 (2):125-135
    247. Wang B J, Wang Y J, Wang Q, et al. Characterization of an NBS-LRR resistance gene homologue from soybean[J]. J. plant physiol,2004,161 (7):815-822
    248. Wang X, Eggenberger A L, Nutter J F W, et al. Pathogen-derived transgenic resistance to soybean mosaic virus in soybean[J]. Mol Breeding,2001,8 (2):119-127
    249. Wang Y, Hobbs H A, Hill C B, et al. Evaluation of ancestral lines of U.S. soybean cultivars for resistance to four soybean viruses[J]. Crop Sci,2005,45 (2):639-644
    250. Warren R F, Henk A, Mowery P, et al. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes[J]. Plant Cell,1998,10 (9):1439-1452
    251.Werck R D, Hehn A, Didierjean L. Cytochromes P450 for engineering herbicide tolerance[J]. Trends Plant Sci,2000,5 (3):116-123
    252. Wingard S A. Hosts and symptoms of ring spot, a virus disease of plants[J]. J. Agri Res,1928, 37:127-153
    253. Woodworth C M, Cole L J. Mottling of soybeans[J]. J Hered,1924,15 (8):349-354
    254. Wrather J A, Anderson T R, Arsyad D M, et al. Soybean disease loss estimates for the top ten soybean-producing countries in 1998[J]. Can. J. Plant Pathol,2001,23:115-121
    255.Xia Z, Tsubokura Y, Hoshi M, et al. An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using a single F2 population[J]. DNA Res,2007,14(6): 257-269
    256. Yamanaka N, Watanabe S, Toda K, et al. Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line[J]. Theor Appl Genet, 2005,110 (4):634-639
    257. Yang H, Huang Y P, Zhi H J, et al. Proteomics-based analysis of novel genes involved in response toward soybean mosaic virus infection[J]. Mol Biol Rep (online),2010:1-11
    258. Yang P, Chen C, Wang Z, et al. A pathogen-and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class Ⅰ chitinase gene promoter[J]. Plant J.,2002,18 (2):141-149
    259. Yang Q H, GAI J Y. Identification, inheritance and gene mapping of resistance to a virulent soybean mosaic virus strain SCI5 in soybean[J]. Plant Breeding (online),2010:1-5
    260. Yu D, Chen C, Chen Z. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J]. Plant Cell,2001,13 (7):1527-1539
    261.YuYG, Buss G R, Saghai Maroof M A. Isolation of a superfamily of cidate disease-resistance genes in soybean based on a conserved nucleotide-binding site[J]. Proc Natl Acad Sci,1996,93 (11):11751-11756
    262. YuYG, Saghai Maroof M A, Buss G R, et al. RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance[J]. Phytopathology,1994,84 (1):60-64
    263. Zeng L R, Qu S, Bordeos A, et al. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity [J]. Plant Cell,2004,16 (10):2795-2808
    264. Zhang G Q, Zeng R Z, Zhang Z M, et al. The construction of a library of single segment substitution lines in rice (Oryza sativa L.)[J]. Rice Genetics Newsletter,2004,21:85-87
    265. Zheng C M, Chen P Y, Gergerich R. Effect of temperature on the expression of necrosis in soybean infected with soybean mosaic virus[J]. Crop Sci,2005,45 (3):916-922
    266. Zhi H J, Gai J Y. Performances germplasm evaluation of quantitative resistance to soybean mosaic virus in soybeans[J]. Agri Sci in China,2004,3 (4):247-253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700