用户名: 密码: 验证码:
淮北平原农田地表径流氮磷流失规律及其模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田氮磷随地表径流流失是引起日益突出的农业面源污染的主要因素。系统地开展农田氮磷径流流失的田间试验与模拟研究,有助于提高对土壤氮磷随径流迁移机制及其定量描述的认识,对减轻农业面源污染具有重要的理论意义和实用价值。
     本论文基于自然降雨条件下的野外田间观测试验,分析了不同作物种植模式和施肥模式对农田不同形态氮磷随径流流失的影响。评价和应用EPIC模型讨论农田耕作和施肥管理措施对土壤侵蚀和硝态氮与可溶性磷流失的影响,开发降雨产流预报方法。建立能代表前期降雨在数量和时间上对产流影响的改进SCS模型和构建基于幂函数的土壤侵蚀和氮磷流失预测方法。
     本研究取得的主要结论和创新点如下:
     1.作物种植模式显著影响田面水土和氮磷流失量。与小麦-裸地相比,小麦-玉米、小麦-棉花和小麦-大豆分别减少了24%、26%和58%的年均径流量及15%、48%和58%的年均土壤侵蚀量。尽管硝态氮、可溶性氮和总氮浓度最小的处理为小麦-玉米,但氮磷年流失量最小的小麦-大豆处理比小麦-玉米减少了6%的硝态氮流失量、31%的可溶性氮流失量、44%的总氮流失量、60%的可溶性磷流失量和63%的总磷流失量。铵态氮、硝态氮和可溶性氮峰值的流失量分别占3年总流失量的64%、58%和41%以上,而不同形态磷素浓度和流失量随时间变化最小的处理为小麦-大豆。颗粒态氮和可溶性磷是农田地表径流氮磷流失的主要形态。故在淮北平原的气候和作物种植条件下汛期适当增加大豆种植面积有利于减少由水土和氮磷流失引起的面源污染。
     2.施肥模式影响农田径流氮磷流失量。当季不施肥对玉米的产量影响不明显,却分别减少了20%与30%的玉米总氮浓度与流失量及20%和18%的可溶性磷和总磷流失量。对于棉花,当季不施肥提高了13%的径流量,降低了23%的产量,减少了径流硝态氮、可溶性氮与总氮的浓度和硝态氮流失量及总磷与可溶性磷的浓度和流失量。追肥对玉米和棉花的产量影响不明显,却减少了两者的径流和土壤侵蚀量,提高了两者的硝态氮、可溶性氮与总氮的浓度。故在淮北平原的土壤和气候条件下,玉米和棉花施用底肥或追肥过程中适当减少施肥量可作为减少农田氮磷流失的管理措施。
     3.通过假设前期影响日雨量存在阈值且日雨量影响系数以指数函数递减,重新概化了前期降雨对产流的影响,提出了改进的SCS地表径流计算方法。与原SCS模型相比,改进SCS模型的模拟精度明显提高,能够模拟出不同作物种植模式下的次径流变化。与原SCS模型相比,改进后模型的模拟效率从小于0.4变为0.4-0.8且R2值也提高了24%以上。
     4.基于降雨雨量分级和径流模型模拟,并结合天气预报建立了降雨产流的预报方法。利用EPIC模型模拟出了试验站25年的日降雨产流数据,按照天气预报的雨量等级划分标准进行产流发生概率统计,结合前1日的降雨条件建立了不同量级降雨的产流几率表。结果表明这种方法能够有效地预测出当地是否产流。
     5.对比分析发现,与SCS改进方法和幂函数方法相比,EPIC模型的模拟精度较高。基于幂函数的方法能由径流量拟合出不同作物种植模式下的土壤侵蚀量及总氮、可溶性氮和颗粒态氮的流失量;不同形态磷素流失量与径流量的拟合效果较差。而EPIC模型能较为准确地模拟地表径流、土壤侵蚀量、硝态氮和可溶性磷流失量在不同作物种植模式和次径流间的变化。应用EPIC模型模拟表明,免耕和地表秸秆覆盖可大量减少小麦-裸地的土壤侵蚀量,小麦-玉米和小麦-大豆的硝态氮和可溶性磷流失量随着施肥量的增加而增加。
Nitrogen (N) and phosphorus (P) losses by surface runoff from croplands have been one of the major sources of the agricultural non-point source pollution. Experimental and modeling research on N and P losses by surface runoff have important theoretical significance and application value for understanding the transport mechanism of N and P as well as reducing agricultural non-point source pollution.
     N and P losses by surface runoff under different cropping systems and fertilization modes were evaluated based on the field experiment under natural rainfall. Then, the EPIC model was assessed with the field experimental data for evaluating the effect of tillage and fertilization practices on sendiment and nitrate and dissolved P (DP) losses. The SCS model was modified by incorporating the variations of amount and time of antecedent rainfall, and the power function was investigated to predict N and P losses and sediment with runoff.
     The conclusions and innovations obtained in this study are as follows:
     1. Cropping systems significantly influenced surface runoff, sediment, and N and P losses. Wheat-corn, wheat-cotton, and wheat-soybean reduced surface runoff of24%,26%, and58%, and sediment of15%,48%, and58%, respectively, compared with wheat-fallow. The lowest concentrations of nitrate, dissolved N (DN) and total N (TN) were from the wheat-corn; however, the lowest N and P losses were from the wheat-soybean reducing nitrate loss by6%, DN loss by31%, TN loss by44%, DP loss by60%, and total P (TP) loss by63%, compared with wheat-corn. The losses in peak events accounted for>64%for ammonium,58%for nitrate, and41%for DN of the total losses occurring during the3-year experimental period, and the least temporal variations of the P concentrations and losses were observed from wheat-soybean. Particular N and DP are the dominant forms of N and P in runoff from croplands, respectively. Therefore, selecting wheat-soybean as the main double cropping system appears to be a practical method for controlling runoff, sediment, and N and P losses from croplands in Huaibei Plain.
     2. Fertilization modes affected N and P losses by surface runoff. No-fertilizer reduced TN concentration by20%, TN loss by30%, DP loss by20%, and TP loss by18%, for corn. For soybean, No-fertilizer increased runoff of13%, and decreased yield of23%, losses of nitrate, DP, and TP, and concentrations of nitrate, DN, TN, DP, and TP. Side-dressing decreased runoff and sediment, and increased concentrations of nitrate, DN, and TN. Therefore, to reduce corn fertilization rate for corn and cotton appears to be a practices for reducing N and P losses in Huaibei Plain.
     3. Assuming the influencing extent of antecedent precipitation on runoff decreases daily following exponential function as antecedent precipitation is below the threshold, the antecedent moisture condition was updated and the SCS method was modified. The modified SCS method increased the computational accuracy, and successfully predicted surface runoff on a daily basis for all cropping systems. For example, the the modeling efficiency was<0.4for the original SCS method and0.4-0.8for the modified SCS method, and the modified SCS method increased the R2by24%, compared with the original SCS method.
     4. Runoff forecast method was developed with rainfall classification, weather forecast, and runoff simulation. The daily runoff was predicted by EPIC model with daily precipitation data during the25years, and then the frequency of runoff occurrence was calculated according to daily rainfall intensity range and1-day antecedent rainfall. The runoff forecast method was approved to forecast effectively the occurrence of runoff in Huaibei Plain.
     5. Runoff, sediment, nitrate loss, and DP loss were predicted more accurately with EPIC model than the modified SCS method and the power function method. However, power functions were proved to be used for the estimation of sediment, DN loss, PN loss, and TN loss. The simulation result of EPIC model showed that no tillage and residue cover reduced sediment from wheat-fallow, and losses of nitrate and DP increased with fertilization rates for wheat-corn and wheat-soybean.
引文
[1]Alberts, E.E., Schuman, G.E., Burwell, R.E., Seasonal runoff losses of nitrogen and phosphorus from Missouri Valley Loess watersheds. Journal of Environmental Quality 1978, 7 (2),203-208.
    [2]Alexander, R., Murdoch, P., Smith, R., Streamflow-induced variations in nitrate flux in tributaries to the Atlantic Coastal Zone. Biogeochemistry 1996,33 (3),149-177.
    [3]Ali, I., Khan, F., Bhatti, A.U., Soil and nutrient losses by water erosion under mono-cropping and legume inter-cropping on sloping land. Pakistan Journal of Agricultural Research 2007,20 (3-4),161-166.
    [4]Araya, T., Cornelis, W.M., Nyssen, J., et al., Effects of conservation agriculture on runoff, soil loss and crop yield under rainfed conditions in Tigray, Northern Ethiopia. Soil Use and Management 2011,27 (3),404-414.
    [5]Asselman, N.E.M., Fitting and interpretation of sediment rating curves. Journal of Hydrology 2000,234 (3-4),228-248.
    [6]Atia, A.M., Mallarino, A.P., Agronomic and environmental soil phosphorus testing in soils receiving liquid swine manure. Soil Science Society of America Journal 2002,66 (5), 1696-1705.
    [7]Avalos, J.M.M., Fouz, P.S., Vaquez, E.V., et al., Crop residue effects on organic carbon, nitrogen, and phosphorus concentrations and loads in runoff water. Communications in Soil Science and Plant Analysis 2009,40 (1-6),200-213.
    [8]Barnett, A.P., Carreker, J.R., Abruna, F., et al., Soil and nutrient losses in runoff with selected cropping treatments on tropical soils. Agronomy Journal 1972,64 (3),391-395.
    [9]Bertol, I., Engel, F.L., Mafra, A.L., et al., Phosphorus, potassium and organic carbon concentrations in runoff water and sediments under different soil tillage systems during soybean growth. Soil & Tillage Research 2007,94 (1),142-150.
    [10]Blanco-Canqui, H., Gantzer, C.J., Anderson, S.H., et al., Tillage and crop influences on physical properties for an epiaqualf. Soil Science Society of America Journal 2004,68 (2), 567-576.
    [11]Bochet, E., Poesen, J., Rubio, J.L., Runoff and soil loss under individual plants of a semi-arid Mediterranean shrubland:influence of plant morphology and rainfall intensity. Earth Surface Processes and Landforms 2006,31 (5),536-549.
    [12]Brown, K.W., Duble, R.L., Thomas, J.C., Influence of Management and Season on Fate of N Applied to Golf Greensl. Agronomy Journal 1977,69 (4),667-671.
    [13]Burt, T.P., Pinay, G., Linking hydrology and biogeochemistry in complex landscapes. Progress in Physical Geography 2005,29 (3),297-316.
    [14]Burwell, R., Schuman, G., Heinemann, H., et al., Nitrogen and phosphorus movement from agricultural watersheds. Journal of Soil and Water Conservation 1977,32 (5),226-230.
    [15]Castillo, V.M., Martinez-Mena, M., Albaladejo, J., Runoff and soil loss response to vegetation removal in a semiarid environment. Soil Science Society of America Journal 1997,61(4),1116-1121.
    [16]Catt, J.A., Howse, K.R., Farina, R., et al., Phosphorus losses from arable land in England. Soil Use and Management 1998,14,168-174.
    [17]Chow, V.T., Maidment, D.R., Mays, L.W.,1988. Applied hydrology.
    [18]Chu, S.T., Infiltration during an unsteady rain. Water Resources Research 1978,14 (3), 461-466.
    [19]Chun, J.A., Cooke, R.A., Kang, M.S., et al., Runoff Losses of Suspended Sediment, Nitrogen, and Phosphorus from a Small Watershed in Korea. Journal of Environmental Quality 2010,39 (3),981-990.
    [20]Clesceri, L.S., Greenberg, A.E., Eaton, A.D.,1999. Standard methods for the examination of water and wastewater,20 ed. American Public Health Association, American Water Works Association, Water Environment Federation, Washington DC.
    [21]Cogle, A.L., Keating, M.A., Langford, P.A., et al., Runoff, soil loss, and nutrient transport from cropping systems on Red Ferrosols in tropical northern Australia. Soil Research 2011, 49 (1),87-97.
    [22]Cooke, J.G., Sources and sinks of nutrients in a New Zealand hill pasture catchment. Ⅱ. Phosphorus. Hydrological Processes 1988,2 (2),123-133.
    [23]Cox, F.R., Hendricks, S.E., Soil test phosphorus and clay content effects on runoff water quality. Journal of Environmental Quality 2000,29 (5),1582-1586.
    [24]Dillaha, T.A., Reneau, R.B., Mostaghimi, S., et al., Vegetative filter strips for agricultural nonpoint source pollution control. Transactions of the Asae 1989,32 (2),513-519.
    [25]Djodjic, F., Bergstrom, L., Ulen, B., et al., Mode of transport of surface-applied phosphorus-33 through a clay and sandy soil. Journal of Environmental Quality 1999,28 (4), 1273-1282.
    [26]Dougherty, W.J., Fleming, N.K., Cox, J.W., et al., Phosphorus transfer in surface runoff from intensive pasture systems at various scales:A review. Journal of Environmental Quality 2004,33 (6),1973-1988.
    [27]Dougherty, W.J., Milham, P.J., Havilah, E.J., et al., Phosphorus fertilizer and grazing management effects on phosphorus in runoff from dairy pastures. Journal of Environmental Quality 2008,37 (2),417-428.
    [28]Douglas, C.L., King, K.A., Zuzel, J.F., Nitrogen and phosphorus in surface runoff and sediment from a wheat-pea rotation in northeastern Oregon. Journal of Environmental Quality 1998,27 (5),1170-1177.
    [29]Drury, C.F., Tan, C.S., Reynolds, W.D., et al., Managing tile drainage, subirrigation, and nitrogen fertilization to enhance crop yields and reduce nitrate loss. Journal of Environmental Quality 2009,38 (3),1193-1204.
    [30]Edwards, A.C., Withers, P.J.A., Soil phosphorus management and water quality:a UK perspective. Soil Use and Management 1998,14,124-130.
    [31]Edwards, D.R., Larson, B.T., Lim, T.T., Runoff nutrient and fecal coliform content from cattle manure application to fescue plots. Journal of the American Water Resources Association 2000,36 (4),711-721.
    [32]Eghball, B., Gilley, J.E., Phosphorus and nitrogen in runoff following beef cattle manure or compost application. Journal of Environmental Quality 1999,28 (4),1201-1210.
    [33]Eke, A.U., Coleman, T.L., Bishnoi, U.R., et al., Soil loss under row cropping of sweet potato, soybean and two small fruit crops in northern alabama. Journal of Sustainable Agriculture 1990,1 (1),41-54.
    [34]Fierer, N.G., Gabet, E.J., Carbon and nitrogen losses by surface runoff following changes in vegetation. Journal of Environmental Quality 2002,31 (4),1207-1213.
    [35]Fleming, N.K., Cox, J.W., Carbon and phosphorus losses from dairy pasture in South Australia. Australian Journal of Soil Research 2001,39 (5),969-978.
    [36]Forster, D.L., Rausch, J.N., Evaluating agricultural nonpoint-source pollution programs in two Lake Erie tributaries. Journal of Environmental Quality 2002,31 (1),24-31.
    [37]Franklin, D., Truman, C., Potter, T., et al., Nitrogen and phosphorus runoff losses from variable and constant intensity rainfall simulations on loamy sand under conventional and strip tillage systems. Journal of Environmental Quality 2007,36 (3),846-854.
    [38]Frossard, E., Cochron, A., Oberson, A., et al., Processes governing phosphorus availability in temperate soils. Journal of Environmental Quality 2000,29,15-23.
    [39]Fujii, S., Shivakoti, B.R., Shichi, K., et al., Analysis of parameter variations in L-Q equations for river runoff processes from the viewpoint of spatial and temporal conditions. Water Science & Technology 2006,53 (10),141-152.
    [40]Gao, Y., Zhu, B., Zhou, P., et al., Effects of vegetation cover on phosphorus loss from a hillslope cropland of purple soil under simulated rainfall:a case study in China. Nutrient Cycling in Agroecosystems 2009,85 (3),263-273.
    [41]Gascho, G.J., Wauchope, R.D., Davis, J.G., et al., Nitrate-nitrogen, soluble, and bioavailable phosphorus runoff from simulated rainfall after fertilizer application. Soil Science Society of America Journal 1998,62 (6),1711-1718.
    [42]Gaudreau, J.E., Vietor, D.M., White, R.H., et al., Response of turf and quality of water runoff to manure and fertilizer. Journal of Environmental Quality 2002,31 (4),1316-1322.
    [43]Gburek, W.J., Sharpley, A.N., Hydrologic controls on phosphorus loss from upland agricultural watersheds. Journal of Environmental Quality 1998,27 (2),267-277.
    [44]Gentry, L.E., David, M.B., Royer, T.V., et al., Phosphorus transport pathways to streams in tile-drained agricultural watersheds. Journal of Environmental Quality 2007,36 (2), 408-415.
    [45]Gillingham, A.G., Thorrold, B.S., Wheeler, D.M., et al.,1997. Factors influencing phosphate losses in surface runoff water, in:Furness, H. (Ed.), Proc. of the 24th NZFMRA Tech. Conf.,. New Zealang Fertiliser Manufacturer's Res. Assoc., Invercargill.
    [46]Girmay, G., Singh, B.R., Nyssen, J., et al., Runoff and sediment-associated nutrient losses under different land uses in Tigray, Northern Ethiopia. Journal of Hydrology 2009,376 (1-2),70-80.
    [47]Grande, J.D., Karthikeyan, K.G., Miller, P.S., et al., Corn residue level and manure application timing effects on phosphorus losses in runoff. Journal of Environmental Quality 2005,34(5),1620-1631.
    [48]Greenhill, N.B., Peverill, K.I., Douglas, L.A., Nutrient concentrations in runoff from pasture in Westernport, Victoria. Australian Journal of Soil Research 1983,21 (2),139-145.
    [49]Gumbs, F.A., Lindsay, J.I., Runoff and soil loss in trinidad under different crops and soil management. Soil Science Society of America Journal 1982,46 (6),1264-1266.
    [50]Gupta, H.V., Sorooshian, S., Yapo, P.O., Status of automatic calibration for hydrologic models:Comparison with multilevel expert calibration. Journal of Hydrologic Engineering 1999,4(2),135-143.
    [51]Han, J.G., Li, Z.B., Li, P., et al., Nitrogen and phosphorous concentrations in runoff from a purple soil in an agricultural watershed. Agricultural Water Management 2010,97 (5), 757-762.
    [52]Hart, M.R., Quin, B.F., Nguyen, M.L., Phosphorus runoff from agricultural land and direct fertilizer effects:A review. Journal of Environmental Quality 2004,33 (6),1954-1972.
    [53]Haygarth, P.M., Jarvis, S.C., Soil derived phosphorus in surface runoff from grazed grassland lysimeters. Water Research 1997,31 (1),140-148.
    [54]Haygarth, P.M., Jarvis, S.C.,1999. Transfer of phosphorus from agricultural soils, Advances in Agronomy, Vol 66. Academic Press Inc, San Diego, pp.195-249.
    [55]Haygarth, P.M., Sharpley, A.N., Terminology for phosphorus transfer. Journal of Environmental Quality 2000,29 (1),10-15.
    [56]He, Z.L., Zhang, M.K., Stoffella, P.J., et al., Phosphorus concentrations and loads in runoff water under crop production. Soil Science Society of America Journal 2006,70 (5), 1807-1816.
    [57]Heathwaite, A.L., Dils, R.M., Characterising phosphorus loss in surface and subsurface hydrological pathways. Science of the Total Environment 2000,251,523-538.
    [58]Hubbard, R.K., Erickson, A.E., Ellis, B.G., et al., Movement of diffuse source pollutants in small agricultural watersheds of the Great Lakes Basin. Journal of Environmental Quality 1982,11 (1),117-123.
    [59]Khiari, L., Parent, L.E., Pellerin, A., et al., An agri-environmental phosphorus saturation index for acid coarse-textured soils. Journal of Environmental Quality 2000,29 (5), 1561-1567.
    [60]Kim, J.S., Oh, S. Y., Oh, K.Y., Nutrient runoff from a Korean rice paddy watershed during multiple storm events in the growing season. Journal of Hydrology 2006,327 (1-2), 128-139.
    [61]Kleinman, P.J.A., Salon, P., Sharpley, A.N., et al., Effect of cover crops established at time of corn planting on phosphorus runoff from soils before and after dairy manure application. Journal of Soil and Water Conservation 2005,60 (6),311-322.
    [62]Kleinman, P.J.A., Sharpley, A.N., Moyer, B.G., et al., Effect of mineral and manure phosphorus sources on runoff phosphorus. Journal of Environmental Quality 2002,31 (6), 2026-2033.
    [63]Kleinman, P.J.A., Sharpley, A.N., Veith, T.L., et al., Evaluation of phosphorus transport in surface runoff from packed soil boxes. Journal of Environmental Quality 2004,33 (4), 1413-1423.
    [64]Kroes, J.G., Roelsma, J.,1998. ANIMO 3.5:user's guide for the ANIMO version 3.5 nutrient leaching model, Wageningen, SC-DLO, Techn.Doc.46,98pp.
    [65]Kronvang, B., Bechmann, M., Pedersen, M.L., et al., Phosphorus dynamics and export in streams draining micro-catchments:Development of empirical models. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 2003,166 (4),469-474.
    [66]Krueger, T., Freer, J., Quinton, J.N., et al., Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands:a critical note on modelling of phosphorus transfers. Hydrological Processes 2007,21 (4),557-562.
    [67]Krutz, L.J., Locke, M.A., Steinriede, R.W., Jr., Interactions of tillage and cover crop on water, sediment, and pre-emergence herbicide loss in glyphosate-resistant cotton: implications for the control of glyphosate-resistant weed biotypes. Journal of Environmental Quality 2009,38 (3),1240-1247.
    [68]Lambert, M.G., Devantier, B.P., Nes, P., et al., Losses of nitrogen, phosphorus, and sediment in runoff from hill country under different fertiliser and grazing management regimes. New Zealand Journal of Agricultural Research 1985,28 (3),371-379.
    [69]Legates, D.R., McCabe Jr, G.J., Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation. Water Resources Research 1999,35 (1), 233-241.
    [70]Lemunyon, J.L., Gilbert, R.G., The concept and need for a phosphorus assessment tool. Journal of Production Agriculture 1993,6 (4),483-486.
    [71]Magdoff, F.R., Hryshko, C., Jokela, W.E., et al., Comparison of phosphorus soil test extractants for plant availability and environmental assessment. Soil Science Society of America Journal 1999,63 (4),999-1006.
    [72]Maguire, R.O., Sims, J.T., Measuring Agronomic and Environmental Soil Phosphorus Saturation and Predicting Phosphorus Leaching with Mehlich 3. Soil Sci. Soc. Am. J.2002, 66 (6),2033-2039.
    [73]McDowell, R.W., Minimising phosphorus losses from the soil matrix. Current Opinion in Biotechnology 2012,23 (6),860-865.
    [74]McDowell, R.W., Drewry, J.J., Paton, R.J., et al., Influence of soil treading on sediment and phosphorus losses in overland flow. Australian Journal of Soil Research 2003,41 (5), 949-961.
    [75]Miller, G.T.,1992. Living in the Environment:An Introduction to Environmental Science.
    [76]Moriasi, D.N., Arnold, J.G., Van Liew, M.W., et al., Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the Asabe 2007,50 (3),885-900.
    [77]Murphy, J., Riley, J.P., A modified single solution method for the determination of phosphate in natural waters Analytica Chimica Acta 1962,27 (1),31-36.
    [78]Nash, D., Hannah, M., Halliwell, D., et al., Factors affecting phosphorus export from a pasture-based grazing system. Journal of Environmental Quality 2000,29 (4),1160-1166.
    [79]Nash, D., Murdoch, C., Phosphorus in runoff from a fertile dairy pasture. Australian Journal of Soil Research 1997,35 (2),419-429.
    [80]Nash, J.E., Sutcliffe, J.V., River flow forecasting through conceptual models part Ⅰ-A discussion of principles. Journal of Hydrology 1970,10 (3),282-290.
    [81]Ojeda, G., Tarrason, D., Ortiz, O., et al., Nitrogen losses in runoff waters from a loamy soil treated with sewage sludge. Agriculture Ecosystems & Environment 2006,117 (1),49-56.
    [82]Olness, A., Rhoades, E.D., Smith, S.J., et al., Fertilizer nutrient losses from rangeland watersheds in Central Oklahoma. Journal of Environmental Quality 1980,9(1),81-86.
    [83]Owino, J.O., Owido, S.F.O., Chemelil, M.C., Nutrients in runoff from a clay loam soil protected by narrow grass strips. Soil& Tillage Research 2006,88 (1-2),116-122.
    [84]Parn, J., Pinay, G., Mander, U., Indicators of nutrients transport from agricultural catchments under temperate climate:A review. Ecological Indicators 2012,22,4-15.
    [85]Pautler, M.C., Sims, J.T., Relationships between soil test phosphorus, soluble phosphorus, and phosphorus saturation in Delaware soils. Soil Science Society of America Journal 2000, 64 (2),765-773.
    [86]Philip, J., The theory of infiltration:1. The infiltration equation and its solution. Soil Science 1957,83 (5),345-358.
    [87]Pionke, H., Gburek, W., Sharpley, A., et al.,1997. Hydrological and chemical controls on phosphorus loss from catchments, Phosphorus loss from soil to water. Proceedings of a workshop, Wexford, Irish Republic,29-31 September 1995. CAB INTERNATIONAL, pp. 225-242.
    [88]Pionke, H.B., Gburek, W.J., Sharpley, A.N., Critical source area controls on water quality in an agricultural watershed located in the Chesapeake Basin. Ecological Engineering 2000,14 (4),325-335.
    [89]Pionke, H.B., Gburek, W.J., Sharpley, A.N., et al., Flow and nutrient export patterns for an agricultural hill-land watershed. Water Resources Research 1996,32 (6),1795-1804.
    [90]Pote, D.H., Daniel, T.C., Moore, P.A., Jr., et al., Relating Extractable Soil Phosphorus to Phosphorus Losses in Runoff. Soil Science Society of America Journal 1996,60 (3), 855-859.
    [91]Pote, D.H., Daniel, T.C., Nichols, D.J., et al., Relationship between phosphorus levels in three ultisols and phosphorus concentrations in runoff. Journal of Environmental Quality 1999,28(l),170-175.
    [92]Puustinen, M., Tattari, S., Koskiaho, J., et al., Influence of seasonal and annual hydrological variations on erosion and phosphorus transport from arable areas in Finland. Soil & Tillage Research 2007,93 (1),44-55.
    [93]Rawls, W.J., Onstad, C.A., Richardson, H.H., Residue and tillage effect on SCS runoff curve numbers. Transactions, American Society of Agricultural Engineers 1980,23 (2), 357-361.
    [94]Reddy, G.Y., Mc Lean, E.O., Hoyt, G.D., et al., Effects of soil, cover crop, and nutrient source on amounts and forms of phosphorus movement under simulated rainfall conditions. Journal of Environmental Quality 1978,7 (1),50-54.
    [95]Rostagno, C.M., Sosebee, R.E., Biosolids application in the Chihuahuan Desert:effects on runoff water quality. Journal of Environmental Quality 2001,30 (1),160-170.
    [96]Ruan, H., Ahuja, L.R., Green, T.R., et al., Residue cover and surface-sealing effects on infiltration:numerical simulations for field applications. Soil Science Society of America Journal 2001,65 (3),853-861.
    [97]Russell, E.J.,1950. Soil conditions & plant growth,8th ed, Longmans, Green, London.
    [98]Ryder, M.H., Fares, A., Evaluating cover crops (sudex, sunn hemp, oats) for use as vegetative filters to control sediment and nutrient loading from agricultural runoff in a Hawaiian watershed. Journal of the American Water Resources Association 2008,44 (3), 640-653.
    [99]Salvagiotti, F., Cassman, K.G., Specht, J.E., et al., Nitrogen uptake, fixation and response to fertilizer N in soybeans:A review. Field Crops Research 2008,108 (1),1-13.
    [100]Saraswathy, R., Suganya, S., Singaram, P., Environmental impact of nitrogen fertilization in tea eco-system. Journal of Environmental Biology 2007,28 (4),779-788.
    [101]SAS Institute, I.,2004. SAS OnlineDoc 9.1.3 Cary. NC.
    [102]Schuman, G.E., Burwell, R.E., Piest, R.F., et al., Nitrogen losses in surface runoff from agricultural watersheds on Missouri Valley Loess. Journal of Environmental Quality 1973, 2 (2),299-302.
    [103]Sharpley, A., Daniel, T.C., Sims, J.T., et al., Determining environmentally sound soil phosphorus levels. Journal of Soil and Water Conservation 1996,51 (2),160-166.
    [104]Sharpley, A., Foy, B., Withers, P., Practical and innovative measures for the control of agricultural phosphorus losses to water:An overview. Journal of Environmental Quality 2000,29(1),1-9.
    [105]Sharpley, A.N., Dependence of Runoff Phosphorus on Extractable Soil Phosphorus. J Environ Qual 1995,24 (5),920-926.
    [106]Sharpley, A.N., Chapra, S.C., Wedepohl, R., et al., Managing agricultural phosphorus for protection of surface waters:issues and options. J Environ Qual 1994,23 (3),437-451.
    [107]Sharpley, A.N., Daniel, T.C., Edwards, D.R., Phosphorus movement in the landscape. J. Prod. Agric 1993,6 (4),492-500.
    [108]Sharpley, A.N., Kleinman, P.J.A., Heathwaite, A.L., et al., Phosphorus loss from an agricultural watershed as a function of storm size. Journal of Environmental Quality 2008, 37 (2),362-368.
    [109]Sharpley, A.N., Smith, S.J.,1991. Effects of cover crops on surface water quality, in: Hargrove, W.L. (Ed.), Cover crops for clean water, Ankeny, I A, pp.41-50.
    [110]Sharpley, A.N., Syers, J.K., Tillman, R.W., Transport of ammonium-and nitrate-nitrogen in surface runoff from pasture as influenced by urea application. Water, Air and Soil Pollution 1983,20 (4),425-430.
    [111]Shuman, L.M., Phosphorus and nitrate nitrogen in runoff following fertilizer application to turfgrass. Journal of Environmental Quality 2002,31 (5),1710-1715.
    [112]Sim, J.T., Kleinman, P.J.A.,2005. Managing agricultural phosphorus for environmental protection, in:Sim, J.T., Sharpley, A.N. (Eds.), Phosphorus:agriculture and the environment, Madison, Wisconsin, pp.1021-1068.
    [113]Sims, J.L., Environmental soil testing for phosphorus. J. Prod. Agric 1993,6,501-507.
    [114]Sims, J.T., Maguire, R.O., Leytem, A.B., et al., Evaluation of Mehlich 3 as an agri-environmental soil phosphorus test for the Mid-Atlantic United States of America. Soil Science Society of America Journal 2002,66 (6),2016-2032.
    [115]Smith, S.J., Schepers, J.S., Porter, L.K., Assessing and managing agricultural nitrogen losses to the environment. Advances in soil sciences 1990,14 (14),1-43.
    [116]Srinivasan, M.S., Gburek, W.J., Hamlett, J.M., Dynamics of stormflow generation-A hillslope-scale field study in East-Central Pennsylvania, USA. Hydrological Processes 2002, 16 (3),649-665.
    [117]Tang, J.-L., Zhang, B., Gao, C., et al., Hydrological pathway and source area of nutrient losses identified by a multi-scale monitoring in an agricultural catchment. Catena 2008,72 (3),374-385.
    [118]Thomas, R.B., Monitoring baseline suspended sediment in forested basins:the effects of sampling on suspended sediment rating curves. Hydrological Sciences Journal/Journal des Sciences Hydrologiques 1988,33 (5),499-514.
    [119]Tian, Y.H., Yin, B., Yang, L.Z., et al., Nitrogen runoff and leaching losses during rice-wheat rotations in Taihu Lake Region, China. Pedosphere 2007,17 (4),445-456.
    [120]Tiemeyer, B., Kahle, P., Lennartz, B., Nutrient losses from artificially drained catchments in North-Eastern Germany at different scales. Agricultural Water Management 2006,85 (1-2), 47-57.
    [121]Tiessen, K.H.D., Elliott, J.A., Yarotski, J., et al., Conventional and Conservation Tillage: Influence on Seasonal Runoff, Sediment, and Nutrient Losses in the Canadian Prairies. J Environ Qual 2010,39 (3),964-980.
    [122]Tiscareno-Lopez, M., Velasquez-Valle, M., Salinas-Garcia, J., et al., Nitrogen and organic matter losses in no-till corn cropping systems. Journal of the American Water Resources Association 2004,40 (2),401-408.
    [123]Tomer, M.D., Meek, D.W., Jaynes, D.B., et al., Evaluation of nitrate nitrogen fluxes from a tile-drained watershed in central Iowa. J Environ Qual 2003,32 (2),642-653.
    [124]Torbert, H.A., Potter, K.N., Hoffman, D.W., et al., Surface residue and soil moisture affect fertilizer loss in simulated runoff on a heavy clay soil. Agronomy Journal 1999,91 (4), 606-612.
    [125]Truman, C.C., Strickland, T.L., Variable Rainfall Intensity and Tillage Effects on Runoff, Sediment, and Carbon Losses from a Loamy Sand under Simulated Rainfall. J Environ Qual 2007,35,1495-1502.
    [126]Udawatta, R.P., Motavalli, P.P., Garrett, H.E., et al., Nitrogen losses in runoff from three adjacent agricultural watersheds with clay pan soils. Agriculture Ecosystems & Environment 2006,117(1),39-48.
    [127]USDA-ARS,2004. Hydrologic Soil-Cover Complexes, SCS National Engineering Handbook, Section 4:Hydrology, Washington, DC, pp.9.1-9.14.
    [128]Vadas, P.A., Good, L.W., Moore, P.A., et al., Estimating phosphorus loss in runoff from manure and fertilizer for a phosphorus loss quantification tool. Journal of Environmental Quality 2009,38 (4),1645-1653.
    [129]Vadas, P.A., Kleinman, P.J.A., Sharpley, A.N., et al., Relating soil phosphorus to dissolved phosphorus in runoff:A single extraction coefficient for water quality modeling. Journal of Environmental Quality 2005,34 (2),572-580.
    [130]Vadas, P.A., White, M.J., Validating soil phosphorus routines in the SWAT model. Transactions of the Asabe 2010,53 (5),1469-1476.
    [131]Van Liew, M.W., Arnold, J.G., Garbrecht, J.D., Hydrologic simulation on agricultural watersheds:Choosing between two models. Transactions of the American Society of Agricultural Engineers 2003,46 (6),1539-1551.
    [132]Wang, X., Gao, H., Tullberg, J., et al., Traffic and tillage effects on runoff and soil loss on the Loess Plateau of northern China. Soil Research 2008,46 (8),667-675.
    [133]Wang, X., Harmel, R.D., Williams, J.R., et al., Evaluation of epic for assessing crop yield, runoff, sediment and nutrient losses from watersheds with poultry litter fertilization. Transactions of the Asae 2006,49 (1),47-59.
    [134]Ward, R.C., On the response to precipitation of headwater streams in humid areas. Journal of Hydrology 1984,74 (1-2),171-189.
    [135]Whitaker, F.D., Heinemann, H.G., Burwell, R.E., Fertilizing corn adequately with less nitrogen. Journal of Soil & Water Conservation 1978,33 (1),28-32.
    [136]Williams, J.R.,1995. the EPIC model, in:Singh, V.P. (Ed.), Computer models of watershed hydrology, water resources publications., highlands ranch, pp.909-1000.
    [137]Withers, P.J.A., Ulen, B., Stamm, C., et al., Incidental phosphorus losses-are they significant and can they be predicted? Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 2003,166 (4),459-468.
    [138]Yin, L., Wang, X., Pan, J., et al., Evaluation of APEX for daily runoff and sediment yield from three plots in the middle Huaihe river watershed, China. Transactions of the Asabe 2009,52(6),1833-1845.
    [139]Zapata, F., Danso, S.K.A., Hardarson, G., et al., Time course of nitrogen fixation in field-grown soybean using nitrogen-15 methodologyl. Agronomy Journal 1987,79 (1), 172-176.
    [140]Zeng, S.C., Su, Z.Y., Chen, B.G., et al., Nitrogen and phosphorus runoff losses from orchard soils in South China as affected by fertilization depths and rates. Pedosphere 2008, 18(1),45-53.
    [141]Zhang, M.K., Wang, L.P., He, Z.L., Spatial and temporal variation of nitrogen exported by runoff from sandy agricultural soils. Journal of Environmental Sciences-China 2007,19 (9), 1086-1092.
    [142]Zhu, J.C., Gantzer, C.J., Anderson, S.H., et al., Runoff, soil, and dissolved nutrient losses from no-till soybean with winter cover crops. Soil Science Society of America Journal 1989, 53 (4),1210-1214.
    [143]Zollweg, J.A., Gburek, W.J., Pionke, H.B., et al.,1995. GIS-based delineation of source areas of phosphorus within agricultural watersheds of the northeastern USA,231 ed, pp. 31-39.
    [144]白美健,许迪,李益农,等,畦面微地形空间变异性分析.水利学报2006,37(7),813-819.
    [145]卞立平,焦隽,李慧,等,南京地区水稻田N素径流流失模拟模型.生态与农村环境学报2008,24(3),89-93.
    [146]曹志洪,林先贵,杨林章,等,论“稻田圈”在保护城乡生态环境中的功能Ⅰ.稻田土壤磷素径流迁移流失的特征.土壤学报2005,42(5),799-804.
    [147]陈力,刘青泉,坡面降雨入渗产流规律的数值模拟研究.泥沙研究2001(4),61-67.
    [148]陈绳甲,美国土保局产流模型的改进.水电能源科学1989,7(1),78-83.
    [149]陈文英,毛致伟,沈万斌,等,农业非点源污染环境影响及防治.环境科学与管理2005,30(2),43-45.
    [150]陈西平,黄时达,涪陵地区农田径流污染输出负荷定量化研究.环境科学1991,12(3),75-79.
    [151]陈欣,郭新波,采用AGNPS模型预测小流域磷素流失的分析.农业工程学报2000,16(5),44-47.
    [152]段永惠,张乃明,张玉娟,农田径流氮磷污染负荷的田间施肥控制效应.水土保持学报2004,18(3),130-132.
    [153]符素华,刘宝元,吴敬东,等,北京地区坡面径流计算模型的比较研究.地理科学 2002,22(5),604-609.
    [154]付伟章,史衍玺,施用不同氮肥对坡耕地径流中N输出的影响.环境科学学报2005,25(12),1676-1681.
    [155]郭庆荣,张秉刚,丘陵赤红壤降雨入渗产流模型及其变化特征.水土保持学报2001,15(1),62-65.
    [156]国家环境保护总局,2002.地表水环境质量标准,北京.
    [157]贺宝根,高效江,农田降雨径流污染模型探讨—以上海郊区农田氮素污染模型为例.长江流域资源与环境2001,10(002),159-165.
    [158]黄东风,王果,李卫华,等,不同施肥模式对小白菜生长、营养累积及菜地氮、磷流失的影响.中国生态农业学报2009,17(4),619-624.
    [159]黄金良,洪华生,张珞平,等,基于GIS的九龙江流域农业非点源氮磷负荷估算研究.农业环境科学学报2004,23(5),866-871.
    [160]黄满湘,章申,唐以剑,等,模拟降雨条件下农田径流中氮的流失过程.土壤与环境2001,10(1),6-10.
    [161]黄满湘,章申,张国梁,等,北京地区农田氮素养分随地表径流流失机理.地理学报2003,58(1),147-154.
    [162]黄涛,荣湘民,刘强,等,不同施肥模式对春玉米产量、品质与氮肥利用及玉米地氮流失的影响.土壤2010,42(6),915-919.
    [163]黄兴法,坡面降雨径流的一种数值模拟方法.中国农业大学学报1997,2(2),45-50.
    [164]贾蕊,陆迁,何学松,我国农业污染现状、原因及对策研究.中国农业科技导报2006,8(1),59-63.
    [165]李常斌,秦将为,李金标,计算CN值及其在黄土高原典型流域降雨-径流模拟中的应用.干旱区资源与环境2008,22(8),67-70.
    [166]李定强,王继增,广东省东江流域典型小流域非点源污染物流失规律研究.土壤侵蚀与水土保持学报1998,4(3),12-18.
    [167]李恒鹏,金洋,李燕,模拟降雨条件下农田地表径流与壤中流氮素流失比较.水土保持学报2008,22(2),6-9.
    [168]李杰友,王佩兰,黄土区小流域坡面流模拟.河海大学学报1990,18(6),17-17.
    [169]梁新强,陈英旭,李华,等,雨强及施肥降雨间隔对油菜田氮素径流流失的影响.水土保持学报2006,20(6),14-17.
    [170]梁新强,田光明,李华,等,天然降雨条件下水稻田氮磷径流流失特征研究.水土保持学报2005,19(1),59-63.
    [171]林文超,庞良玉,罗春燕,等,平衡施肥及雨强对紫色土养分流失的影响.生态学报2009,29(10),5552-5560.
    [172]刘宏斌,施肥对北京市农田土壤硝态氮累积与地下水污染的影响[D].北京:中国农业科学院博士学位论文2002.
    [173]刘润堂,许建中,冯绍元,等,农业面源污染对湖泊水质影响的初步分析.中国水利2002,6,54-56.
    [174]刘贤赵,康绍忠,邵明安,黄土区坡地降雨入渗产流中的滞后机制及其模型研究.农业 工程学报1999,15(4),95-99.
    [175]刘阳,王锡魁,由降雨侵蚀引起的山坡面水土流失预测的数学模型.吉林大学学报:地球科学版2002,32(2),174-176.
    [176]戚隆溪,黄兴法,坡面降雨径流和土壤侵蚀的数值模拟.力学学报1997,29(3),343-348.
    [177]宋孝玉,沈冰,史文娟,等,黄土区不同下垫面农田降雨入渗及产流关系的数值模拟.农业工程学报2005,21(1),1-5.
    [178]汤有光,郭轶锋,吴宏伟,等,考虑地表径流与地下渗流耦合的斜坡降雨入渗研究.岩土力学2004,25(9),1347-1352.
    [179]唐莲,白丹,农业活动非点源污染与水环境恶化.环境保护2003,3,18-202.
    [180]童菊秀,杨金忠,农田地表径流溶解态污染物迁移解析模拟.江苏大学学报:自然科学版2008,29(5),381-385.
    [181]汪涛,朱波,武永锋,等,不同施肥制度下紫色土坡耕地氮素流失特征.水土保持学报2006,19(5),65-68.
    [182]王贵作,张忠学,基于一维圣维南运动方程的黑土区坡耕地径流模型研究.水土保持研究2007,14(2),231-232.
    [183]王继荣,暴雨径流关系的模拟和应用.海河水利1988,1,52-55.
    [184]王建中,刘凌,燕文明,坡面氮素流失模型的建立与应用.水电能源科学2009,26(6),45-47.
    [185]王鹏,高超,姚琪,等,太湖丘陵地区农田氮素迁移的时空分布特征.环境科学2006,27(8),1671-1675.
    [186]王全九,王文焰,黄土坡面溶质随径流迁移相应函数模型.水利学报1994(11),18-21.
    [187]王小治,高人,钱晓晴,等,利用大型径流场研究太湖地区稻季氮素的径流排放.农业环境科学学报2007,26(3),831-835.
    [188]王晓燕,高焕文,李洪文,旱地保护性耕作地表径流和土壤水分平衡模型.干旱地区农业研究2003,21(3),97-103.
    [189]肖强,张维理,王秋兵,等,太湖流域麦田土壤氮素流失过程的模拟研究.植物营养与肥料学报2005,11(6),731-736.
    [190]薛金凤,夏军,梁涛,等,颗粒态氮磷负荷模型研究.水科学进展2005,16(3),334-337.
    [191]晏维金,尹澄清,孙濮,等,磷氮在水田湿地中的迁移转化及径流流失过程.应用生态学报1999,10(3),312-316.
    [192]晏维金,章申,唐以剑,模拟降雨条件下沉积物对磷的富集机理.环境科学学报2000,20(3),332-337.
    [193]杨建英,赵廷宁,孙保平,等,运动波理论及其在黄土坡面径流过程模拟中的应用.北京林业大学学报1993,15(1),1-11.
    [194]袁艺,史培军,土地利用对流域降雨-径流关系的影响—SCS模型在深圳市的应用.北京师范大学学报(自然科学版)2001,37(1),131-136.
    [195]张光辉,蒋定生,邵明安,用非饱和土壤物理参数模拟坡面产流过程研究.山地学报 2001,19(1),14-18.
    [196]张国华,张展羽,左长清,等,坡地自然降雨入渗产流的数值模拟.水利学报2007,38(6),668-673.
    [197]张美华,王晓燕,秦福来,SCS模型在密云石匣试验小区降雨径流量估算中的应用.首都师范大学学报(自然科学版)2004,25(12),155-158.
    [198]张培文,刘德富,郑宏,等,降雨条件下坡面径流和入渗耦合的数值模拟.岩土力学2004,25(1),109-113.
    [199]张兴昌,邵明安,坡地土壤氮素与降雨、径流的相互作用机理及模型.地理科学进展2000,19(2),128-135.
    [200]张兴昌,邵明安,黄占斌,等,不同植被对土壤侵蚀和氮素流失的影响.生态学报2000,20(6),1038-1044.
    [201]张秀英,孟飞,丁宁,SCS模型在干旱半干旱区小流域径流估算中的应用.水土保持研究2003,10(4),172-174.
    [202]张亚丽,张兴昌,邵明安,等,降雨强度对黄土坡面矿质氮素流失的影响.农业工程学报2004,20(3),55-58.
    [203]章北平,东湖面源污染负荷的数学模型.武汉城市建设学院学报1996,13(1),1-8.
    [204]周翠宁,任树梅,闫美俊,曲线数值法(SCS模型)在北京温榆河流域降雨-径流关系中的应用研究.农业工程学报2008,24(3),87-90.
    [205]朱继业,高超,朱建国,不同农地利用方式下地表径流中氮的输出特征.南京大学学报:自然科学版2007,42(6),621-627.
    [206]庄一鸽,刘新仁,胡方荣,湿润地区地下水丰富流域降雨径流模型.华东水利学院学报1980,2,3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700