施用有机肥对土壤磷组分和农田磷流失的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着我国畜禽养殖业的高速发展,畜禽粪便产生磷量大幅度增长,目前已达1000万吨,相当于当年化肥投入磷素总量的90%。随着畜禽养殖产业带的发展,在我国部分农区,农田对畜禽粪尿产生磷的承载量急剧增长,对我国集约化农区100多个乡镇的调查结果显示:80年代初期耕地承载畜禽粪尿磷量约为20 kg P_2O_5/ha,而目前平均为114 kg P_2O_5/ha,一些乡镇超过600 kg P_2O_5/ha。
     已有研究显示农田超量施用化学磷肥,在降雨导致农田产生径流和淋溶条件下,会导致农田磷素流失。新近的研究还显示:畜禽有机肥磷的主要组分为水溶态磷及易溶态磷,大量施用有机肥也会导致农田磷素流失。为了解有机肥用量对不同形态土壤磷含量的影响,阐明由于施用有机肥引起土壤磷素的变化对农田磷素流失的作用,在中国农业科学院廊坊试验站(东经116°35′37″,北纬39°36′04″),设置了有机肥用量田间试验和原位人工模拟降雨试验。有机肥试验进行于2008-2009年,种植作物为春玉米-冬小麦-夏玉米,肥料为畜禽有机肥,磷用量为0(对照)、75、225 kg P/ha三个水平,重复4-6次,有机肥含磷量为4.49 g/kg,其中水溶性总磷、水溶性无机磷、水溶性有机磷、Olsen浸提剂浸提磷分别为19.9 %、18.4、1.5 %、66.1%。肥料均在玉米播种前一次性施入,表施后翻耕。田间原位模拟降雨试验于2009年8月上旬进行,设置了120mm/h,60mm/h两个雨强,分别模拟大雨造成的地表径流和持续降雨形成的渗漏两类流失过程,雨量均为120mm。
     研究结果显示:随有机肥磷用量水平的提高,0-5 cm和5-20 cm土层土壤全磷、土壤全磷、水溶性总磷、水溶性无机磷、水溶性有机磷、Olsen-P含量均显著提高。
     就不同形态土壤磷而言,有机肥磷用量对高水溶性土壤磷含量的影响大于对低水溶性土壤磷含量的影响。有机肥磷用量为75 kg/ha时,0-5cm土层中水溶性无机磷、土壤水溶性总磷、水溶性有机磷、Olsen-P较对照分别提高了1320.6 %、1044.2 %、631.3 %、479.4 %,其中土壤水溶性无机磷由对照的0.65 mg P/kg提高到9.24 mg P/kg,而土壤全磷仅提高了19.0 %,由对照的636.3 mg P/kg提高到757.5 mg P/kg。有机肥磷用量为225 kg/ha时,0-5cm土层中水溶性无机磷、土壤水溶性总磷、水溶性有机磷、Olsen-P较对照分别提高了3755.2 %、2536.1 %、715.7 %、1603.1 %,其中土壤水溶性无机磷提高到25.08 mg P/kg,而土壤全磷提高到1069.8 mg P/kg,较对照仅提高了68.1 %。
     就两种土层而言,有机肥磷用量对表层土壤磷含量的影响显著高于对下层的影响。有机肥磷用量为75 kg/ha时,0-5 cm土层中各种形态土壤磷含量分别较对照平均增加了698.9 %,而其在5-20 cm土层中的平均增加仅为154.7 %;在0-5 cm土层中土壤水溶性总磷含量从由对照的1.09 mg P/kg提高到12.43 mg P/kg,土壤全磷含量从由对照的636.3 mg P/kg提高到757.5 mg P/kg。有机肥磷用量为225 kg P/ha时,0-5 cm土层中各种形态土壤磷含量较对照平均增加了1735.6 %,而其在5-20 cm土层中的平均增加仅为634.2 %,在0-5 cm土层中土壤水溶性总磷含量从由对照的1.09 mg P/kg提高到28.63 mg P/kg,土壤全磷含量从由对照的636.3 mg P/kg提高到1069.8mg P/kg。
     田间原位人工模拟降雨试验结果显示,在土壤磷含量,特别是表层高水溶性土壤磷含量随着有机肥磷用量增加而呈高倍增加条件下,渗漏流失液中的总磷、水溶性总磷、水溶性无机磷、颗粒磷含量均显著增加,其中增加幅度最大为水溶性无机磷,当有机肥磷用量为225 kg/ha时,农田渗漏流失液中的总磷、水溶性总磷、水溶性无机磷、水溶性有机磷、颗粒磷含量分别为8.12 mg P/L、3.48 mg P/L、3.21 mg P/L、0.28 mg P/L、4.64 mg P/L,较不施肥处理的(1.18 mg P/L、0.11 mg P/L、0.06 mg P/L、0.05 mg P/L、1.07 mg P/L)增加了588.9 %、3126.6 %、5529.5 %、446.4 %、333.0 %。当有机肥磷用量为225 kg/ha时,一次模拟降雨条件下引起的农田渗漏流失的总磷、水溶性总磷、水溶性无机磷、水溶性有机磷、颗粒磷量分别为3.57 kg P/ha、1.59 kg P/ha、1.46 kg P/ha、0.12 kg P/ha、1.98 kg P/ha,较对照(0.69 kg P/ha、0.06 kg P/ha、0.03 kg P/ha、0.03 kg P/ha、0.63 kg P/ha)分别增加了414.7 %、2398.3 %、4268.4 %、312.2 %、214.6 %。
     随有机肥磷用量和土壤表层高水溶性土壤磷含量的增加,径流流失液中仅总磷含量呈显著增加。当有机肥磷用量为225 kg/ha时,径流流失液总磷含量从对照的0.79 mg P/L增加到1.64 mg P/L,增幅达107.1 %,径流流失总磷量则由对照的0.58 kg P/ha增加到1.15 kg P/ha,增幅98.0 %,显著低于渗漏流失方式。模拟降雨试验中径流流失液中水溶性总磷、水溶性无机磷、水溶性有机磷、颗粒磷含量变异较大,在不同有机肥磷用量、不同土壤磷含量条件下,未能呈现显著变化。
     综上所述,可以看出农田施用含高量水溶态及易溶态磷的畜禽有机肥,土壤表层水溶性磷的含量将大幅度提高,增幅可达10-49倍,有机肥用量越大,对土壤表层水溶性磷含量的影响越大。而随着土壤表层水溶性磷含量的提高,持续降雨条件下,农田水溶性磷的渗漏流失将大幅度增加,在一次模拟降雨条件下农田水溶性磷的渗漏流失量可以从0.06提升至1.59 kg P/ha,增幅达到25.0倍。为此在充分利用畜禽粪便氮磷养分资源、减少畜禽业排污的同时,还要注意科学施用畜禽有机肥,有效控制施用有机肥引起的农田磷素流失。
In recent years, with the rapid development of the breeding industry in China, the amount of animal manure phosphorus has increased to 10 million tons, which was equivalent to 90 % of the total input of chemical phosphorus in the same year. This has caused rapid growth of manure phosphorus applying to farmland in some agricultural regions. The investigation from more than 100 towns in intensive agricultural areas showed that: at present, the amount of manure phosphorus applied to farmland has increased to 114 kg P_2O_5/haon average, and higher than 600 kg P_2O_5/hain some special towns, while it was just about 20 kg P_2O_5/hain the early 1980s.
     The pre-existing researches showed when the number of phosphate fertilizer in the cropland was overdressing; the phosphate fertilizer could wash away on condition that rainfall leads to run off and leaching. The new researches showed that the main components of phosphorus in manure were water soluble phosphorus and free soluble phosphorus, and using manure excessively could lead the phosphorus in cropland to run off. to realize how the amount of manure influence the kinds of phosphorus contents, and expound the changes of soil phosphorus from manure on the effects of wastage of cropland phosphorus, the author designed the field experiments and manual simulation rainfall in situ experiments in LangFang experiment station of CAAS(116°35′37″E , 39°36′04″N ). The manure experiment began between 2008 and 2009, which grew spring maize - winter wheat– summer maize with manure which contained phosphorus 4.49 g/kg, among the amount of phosphorus, water soluble total phosphorus, water soluble inorganic phosphorus, water soluble organic phosphorus and the phosphorus of Olsen extraction agent extracting was 19.9%, 18.4%, 1.5%, 66.1%, separately, and there were three standards in the amount of phosphorus: 0(contrast), 75, 225 kg P/ha, and every standard repeated four to six. The manure used disputably before maize seeding and ploughing after surface application. The simulation rainfall in situ experiments began in the first ten-day period of August, 2009, the experiment designed two rainfall intensity of 120mm/h and 60mm/h, and imitated the processes of the surface runoff from heavy rain and leakage from sustained rainfall, and both the rainfall were 120mm.
     The results showed that with the increase of manure use level, all the contents of soil total phosphorus, water soluble total phosphorus, water soluble inorganic phosphorus, water soluble organic phosphorus, the phosphorus of Olsen extraction agent extracting in 0-5cm and 5-20cm enhanced observably. Regarding different morphology soil phosphorus, the phosphorus use level in manure on effect of the content of high water soluble soil phosphorus was greater than the content low water soluble soil phosphorus. When the use level of manure phosphorus is 75 kg P/ha, water soluble inorganic phosphorus, soil water soluble total phosphorus, water soluble organic phosphorus, Olsen-P in 0-5cm soil horizon is greater than contrast, and separately1320.6 %, 1044.2 %, 631.3 %, 479.4 %, among them, soil water soluble inorganic phosphorus increases from 0.65 mg P/kg in contrast to 9.24 mg P/kg, while soil total phosphorus only increases 19.0 %, from 636.3 mg P/kg in contrast to 757.5 mg P/kg. When the use level of manure phosphorus is 225 kg P/ha, water soluble inorganic phosphorus, soil water soluble total phosphorus, water soluble organic phosphorus, Olsen-P in 0-5cm soil horizon is greater than contrast, and separately 3755.2 %, 2536.1 %, 715.7 %, 1603.1 %, among them, soil water soluble inorganic phosphorus increases to 25.08 mg P/kg, while soil total phosphorus increases to 1069.8 mg P/kg, only increases 68.1 %.
     In respect of two type soil horizon, the use level of manure phosphorus effect on surface horizon is greater observably than subsurface horizon. When the use level of manure phosphorus is 75 kg P/ha, all kinds of morphology phosphorus in 0-5cm increase 698.9 % on average than the contrast, while only 154.7 % on average in 5-20cm; the content of soil water soluble total phosphorus in 0-5cm increases from 1.09 mg P/kg in contrast to 12.43 mg P/kg, the content of soil total phosphorus increases from 636.3 mg P/kg in contrast to 757.5 mg P/kg. When the use level of manure phosphorus is 225 kg P/ha, all kinds of morphology phosphorus in 0-5 cm increase 1735.6 % on average than the contrast, while only 634.2 % on average in 5-20 cm; the content of soil water soluble total phosphorus in 0-5cm increases from 1.09 mg P/kg in contrast to 28.63 mg P/kg, the content of soil total phosphorus increases from 636.3 mg P/kg in contrast to 1069.8 mg P/kg.
     The result of manual simulation rainfall in situ experiments showed that on the condition of the content of soil phosphorus, especially the content of high water soluble soil phosphorus increases with the increased manure, all of the content of the total phosphorus of leakage and runoff, water soluble total phosphorus, water soluble inorganic phosphorus and particulate phosphorus increase observably, among them, the content of water soluble inorganic phosphorus is greatest. When the use level of manure phosphorus is 75 kg P/ha, the content of the total phosphorus of leakage and runoff, water soluble total phosphorus, water soluble inorganic phosphorus and particulate phosphorus is 8.12 mg P/L, 3.48 mg P/L, 3.21 mg P/L, 0.28 mg P/L, 4.64 mg P/L, separately, and increase 588.9 %、3126.6 %、5529.5 %、446.4 %、333.0 % ,than the contrast (1.18 mg P/L, 0.11 mg P/L, 0.06 mg P/L, 0.05 mg P/L, 1.07 mg P/L). When the use level of manure phosphorus is 225 kg P/ha, the content of the total phosphorus of leakage and runoff, water soluble total phosphorus, water soluble inorganic phosphorus and particulate phosphorus from one imitation rainfall is 3.57 kg P/ha, 1.59 kg P/ha, 1.46 kg P/ha, 0.12 kg P/ha, 1.98 kg P/ha separately, and increase 414.7 %, 2398.3 %, 4268.4 %, 312.2 %, 214.6 % than the contrast (0.69 kg P/ha, 0.06 kg P/ha, 0.03 kg P/ha, 0.03 kg P/ha, 0.63 kg P/ha).
     With the increase of the use level of manure phosphorus and the content of high water soil phosphorus in soil surface horizon, only the content of the total phosphorus in runoff liquid increase observably. When the use level of manure phosphorus is 225 kg P/ha, the content of the total phosphorus in runoff liquid increase from 0.79 mg P/L in contrast to 1.64 mg P/L, increase by 107.1 %, the content of the total phosphorus in runoff liquid increase from 0.58 kg P/ha to 1.15kg P/ha, increase by 98.0 %, and lower observably than runoff. The variation of the content of the water soluble total phosphorus, water soluble inorganic phosphorus, water soluble organic phosphorus, particulate phosphorus is greater, while on the condition of different use level of manure and the content of soil phosphorus, the variation is not observably.
     In conclusion, when using livestock manure with high water soluble phosphorus and free soluble phosphorus, the content of water soluble phosphorus in soil surface horizon will increase by a wide margin, increase by 10-49 times, the more using manure, the greater it effects on the content of water soluble phosphorus in soil surface horizon. While with the enhancing of the content of water soluble phosphorus in soil surface horizon, on the condition of continue rainfall, the leakage wastage of water soluble phosphorus in field will increase by a wide margin, which will increase from 0.06 kg P/ha to 1.59 kg P/ha in one imitation rainfall, and increase by 25.0 times. Therefore, at the same time of using fully phosphorus nutrient resource from livestock and reducing livestock pollution, we notice to use livestock manure scientific and control effectively the runoff of phosphorus in field arise from manure.
引文
1.安卫红,张淑民.石灰性土壤无机磷的分级及其有效性的研究[J].土壤通报,1991,22(1):34-37.
    2.曹志洪,林先贵,等.太湖流域土-水间的物质交换与水环境质量[M].北京:科学出版社,2006.
    3.曹志洪,林先贵,杨林章,等.论“稻田圈”在保护城乡生态环境中的功能Ⅰ稻田土壤磷素径流迁移流失的特征[J].土壤学报,2005,42(5):799-804.
    4.程全国.面源污染物对环境的影响及趋势分析[J].辽宁城乡环境科技,2000,20(5):4-6.
    5.杜佳佳.土壤磷素分级及植物有效性研究[D].南京:2008.
    6.范业宽,胡晓玲,李世俊.Bowman-Cole提取石灰性土壤稳定性与中度活性有机磷方法的改进[J].华中农业大学学报,1997,16(5):345-348.
    7.范业宽,李世俊. Bowman-Cole石灰性土壤有机磷分组法的改进[J].土壤通报,2004, 35(6):734-750.
    8.高超,张桃林.欧洲国家控制农业养分污染水环境的管理措施[J].农村生态环境,1999, 15(2):50-53.
    9.高超,张桃林,吴蔚东.农田土壤中的磷向水体释放的风险评价[J].环境科学学报, 2001, 21(3 ):344-34
    10.高超,朱继业,朱建国,等.不同土地利用方式下的地表径流磷输出及其季节性分布特征[J].环境科学学报,2005,25(11):1543-1549.
    11.高超,张桃林.面向环境的土壤磷素测定与表征方法研究进展[J].农业环境保护,2000 , 19(5):282- 2851.
    12.高定,陈同斌,刘斌等.我国畜禽养殖业粪便污染风险与控制策略[J].研究,2006,25(2):311-319.
    13.辜来章,郝淑英.农田径流污染特征及模型化研究[J].中国农村水利水电,1996(09):32-35.
    14.国家环境保护总局自然生态司.全国规模化畜禽养殖业污染情况调查及防止对策[M].北京:中国环境科学出版社,2002.
    15.国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法(第三版).北京:中国环境科学出版社,1998.
    16.郭晓冬,安战士.石灰性土壤无机磷有效性的研究[J].土壤通报,1991,22(5):201-203.
    17.郭宗楼,陈敏娇.农村水污染防治技术措施浅析[J].中国农业工程学会2005年学术年会论文集[M].2005:29-32.
    18.贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制[J].环境科学,1998(19):87-91.
    19.贺铁,李世俊.Bowman2Cole土壤有机磷分组法的探讨[J].土壤学报,1987,24(2):152-159.
    20.何小凤,谢英荷.土壤磷素形态及分级方法研究概述[J].科学之友,2007,1(B):148-149.
    21.何振立,朱祖祥,袁可能,等.土壤对磷的吸持特性及其与土壤供磷指标之间的关系[J].土壤学报,1988,25(4):397-404 .
    22.胡佩,周顺桂,刘德辉.土壤磷素分级方法研究评述[J].土壤通报,2003,34(3):229-232.
    23.黄东风,王果,陈超.农业面源污染研究概况及发展趋势[J].中国农村小康科技,2006(11):39-45.
    24.黄满湘,章申,晏维金.农田暴雨径流侵蚀泥沙对氮磷的富集机理[J].土壤学报,2003,40(2):306-310.
    25.姜翠玲,崔广柏.湿地对农业非点源污染的去除效应[J].农业生态环境,2000,16(3):55-57.
    26.蒋仁成,厉志华.有机肥和无机肥在提高黄潮土肥力中的作用研究[J].土壤学报,1990,27(2):179-185.
    27.蒋柏藩,顾益初.石灰性土壤分级的测定方法[J].土壤,1990,22(2):101-102.
    28.李昌静,卫钟鼎.地下水水质及其污染[M].北京:中国建筑工业出版社,1983.
    29.李贵宝,尹澄清,周怀东.中国“三湖”的水环境问题和防治对策与管理[J].水问题论坛,2001,(3):36-39.
    30.李和生,马宏瑞,赵春生.根际土壤有机磷组分及其有效性分析[J].土壤通报,1998,29(3):116-118.
    31.李怀恩,沈晋,刘玉尔.流域非点源污染模型的建立与应用实例[J].环境科学学报,1997,17(2):141-147.
    32.李昌纬.译根兹布勒哥一列别捷夫法测定土壤矿质磷的分组成份(内部资料).1979.
    33.李俊良,韩琅丰.有机肥料有效磷不同测定方法的比较研究[J].土壤通报,1996,27(1):46-48.
    34.李远,王晓霞.我国农业面源污染的环境管理:背景及演变[J].环境保护,2005(4):23-27.
    35.刘宏斌.施肥对北京市土壤硝态氮累积与地下水污染的影响[D].北京:2002.
    36.刘建玲,张福锁,杨奋翮.北方耕地和蔬菜保护地土壤磷素状况研究[J].植物营养与肥料学报,2000,6(2):179-186.
    37.刘晓利,许俊香,王方浩.畜禽系统中氮素平衡计算参数的探讨[J].运用生态学报, 2006,17(3):417- 423.
    38.鲁如坤.植物营养与施肥原理[M].北京:农业出版社,2000:201-202.
    39.吕耀.农业生态系统中氮素造成的非点源污染[J].农业环境保护,1998,17(1):35-39.
    40.莫淑勋,钱菊芳,钱承梁.猪粪与有机肥料中磷素养分循环再利用的研究[J].土壤学报,1991,28(3):309-315.
    41.潘根兴,焦少俊,李恋卿,等.低施磷水平下不同施肥对太湖地区黄泥土磷迁移性的影响[J].环境科学,2005,24(3):91-95.
    42.盛海君,夏小燕,杨丽琴,等.施磷对土壤速效磷含量及径流磷组成的影响[J].生态学报,2004,24(12):2837-2840.
    43.孙羲,章永松.有机肥料和土壤有机磷对水稻的营养效果[J].土壤学报,1992,29(4):365~369.
    44.宋春萍,李轶,徐爱国,张维理.有机肥磷素分级方法的研究评述[J].安徽农业科学,2007,35(34):10973-10974.
    45.宋维峰,王克勤.面源污染防治研究现状与对策[J].见:农业部科技教育司,中国农学会编.农业面源污染与综合防治—全国农业面源污染与综合防治学术研讨会论文集[M].北京:中国农学通报期刊社,2004,51-52.
    46.汪炎炳,徐建文.秸秆还田培肥改土试验研究[J].土壤通报,1991,22(4):171-173.
    47.王少平,陈满荣,俞立中,等.GIS在农业非点源污染中的应用[J].农业环境保护,2000,19(5):289-292.
    48.王涛.滇池流域施用有机肥农田氮磷流失模拟研究[M].北京:中国农业科学院,2006.
    49.王涛,张维理,张怀志.滇池流域人工模拟降雨条件下农田施用有机肥对磷素流失的影响[J].植物营养与肥料学报, 2008, 14(6):1092-1097.
    50.王晓燕.农业非点源污染及其控制管理[J].全国农业面源污染与综合防治学术研讨会论文集,2004:9-13.
    51.王旭东,李祖荫,张一平.不同有机物肥料施入土壤后的磷素转化能力的差异[J].土壤通报,1998,29(3):113-115.
    52.武淑霞.我国农村畜禽养殖业氮磷排放变化特征及其对农业面源污染的影响[D].北京:中国农业科学院,2005.
    53.夏星辉,周劲松,杨志峰.黄河流域河水氮污染分析[J].环境科学学报,2001,21(5):563-568.
    54.熊恒多,李世俊,范业宽.酸性稻田土壤中有机磷分级的讨论[J].土壤学报,1993,30(4):390-399.
    55.晏维金,章申,唐以剑.模拟降雨条件下沉积物对磷的富集机理[J].环境科学学报,2000,20(3):332-337.
    56.姚来银,许朝晖.养猪废水氮磷污染及其深度脱氮除磷技术探讨[J].福建环境,2003,20(1):23-26.
    57.杨胜天,程红光,步青松,等.全国土壤侵蚀量估算及其在吸附态氮磷流失量匡算中的应用[J].环境科学学报,2006,26(3):366-374.
    58.杨学云,古巧珍,马路军,等.塿土土磷素淋移的形态研究[J].土壤学报,2005,42(5):792-798.
    59.尹金来,沈其荣,周春霖,等.猪粪和磷肥对石灰性土壤有机磷组分及有效性的影响[J].土壤学报,2001,38(3)295-300.
    60.曾悦,洪华生,陈伟琪,等.畜禽养殖区磷流失对水环境的影响及其防治措施[J].农村生态环境,2004,20(3):77-80.
    61.张继宗.太湖和网地区不同类型农田氮磷流失特征[D].北京:中国农业科学院,2006.
    62.张认连.模拟降雨研究水网地区农田氮磷的流失[M].北京:中国农业科学院,2004.
    63.张漱茗,于淑芳.石灰性土壤中磷形态和有效性的研究[J].土壤肥料,1992,(3):1-4.
    64.张水龙,庄季屏.农业非点源污染研究现状与发展趋势[J].生态学杂志,1998,17(6):51-55.
    65.张维理,田哲旭,张宁,等.中国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87.
    66.张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策I.21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004a,37(7):1008-1017.
    67.张维理,徐爱国,冀宏杰,等.中国农业面源污染形势估计及控制对策Ⅲ.中国农业面源污染控制中存在问题分析[J].中国农业科学,2004b,37(7):1026-1033.
    68.张为政,陈魁卿.有机肥对土壤有机磷组分及其有效性的影响[J].东北农学院学,1988,19(2):112-118.
    69.张志剑,朱荫湄,王珂,等.水稻田土-水系统中磷素行为及其环境影响研究[J].应用生态学报,2001,12(2):229-232.
    70.赵林萍.施用有机肥农田氮磷流失模拟研究[D].华中农业大学, 2009.
    71.赵同科,张强.农业非点源污染现状、成因及防治对策[J].全国农业面源污染与综合防治学术研讨会论文集[M].中国农学通报,2004,(11):14-17.
    72.赵晓齐,鲁如坤.有机肥对土壤磷素吸附的影响[J].土壤学报,1991,28(1):7-13.
    73.中国环境年鉴编辑委员会.中国环境年鉴[M].北京:中国环境年鉴社,2003.
    74.中国农业年鉴编辑委员会.中国农业年鉴[M].北京:中国农业出版社,2003.
    75.周健.试论农业非点源污染的危害[J].农业环境保护,1990,9(1):22-25.
    76.朱建国,郭红岩,王晓蓉.非点源污染研究及控制对策[J].面向农业与环境的土壤科学,2004:336-352.
    77.朱立安,王继增,胡耀国,等.畜禽养殖非点源污染及其生态控制[J].水土保持通报,2005,25.
    78.朱铁群.我国水环境农业非点源污染防治研究简述[J].农村生态环境,2000,16(3):55-57.
    79.朱文转,李传红.南方农村集约化养殖场污染及其防治[J].重庆环境科学,1999,21 (6): 33-35.
    80.朱有为,段丽丽.浙江省农业面源污染现状与对策[J].见:农业部科技教育司,中国农学会编.农业面源污染与综合防治—全国农业面源污染与综合防治学术研讨会论文集[M].北京:中国农学通报期刊社,2004,51-52.
    81.朱兆良.合理使用化肥充分利用有机肥发展环境友好的施肥体系[J].中国科学院院刊, 2003,(2):89-93.
    82.朱兆良,孙波.中国农业面源污染控制对策研究[J].环境保护,2008(394):4-6.
    83. Barnett . G. M. Phosphorus forms in animal manure [ J ] . Bioresource Technology. 1994. 49 :139-148.
    84. Barnett . G. M. Manure P fractionation [ J ] . Bioresource Technology , 1994b. 49 :149-155.
    85. Berge D, Fjeid E, Hindar A AR A, KASTE. Nitrogen retention in two Norwegian watercourses of different trophic status [J]. Ambio, 1997,26: 282- 288.
    86. Boers P C M. Nutrient emissions from agriculture in the Netherlands: causes and remedies. Water Science and Technology, 1996, 33: 81.
    87. Bowman R A, Cole C V. Transformation of organic phosphorus substrates in soils as evaluated by NaHCO3-extraction [J].Soil Sci, 1978a, 125:49-54.
    88. Bowman R A, and Cole C V.An exploratory method for fractionation of organic phosphorus from grassland soils[J]. Soil Sci, 1978b, 125:95-101.
    89. Carpenter,S R, Caraco N F, Correll D L, et al. Non point pollution of surface waters with phosphorus and nitrogen.Ecological Application, 1998, 8: 559-568.
    90. Chang S C , M L Jackson. Fractionantion of soil phosphorus[J]. Soil Sci, 1957, 84: 133-144.
    91. Correll D L. Phosphorus: a rate limiting nutrient in surface waters [J]. Poult. Sci., 1999, 78: 674-682.
    92. Cosgrove D J. Metabolism of organic phosphates in soil[A]. Molaren A D, Peterson G H.Soil Biochemistry[C].New York: Dekker Press,1967,216-228.
    93. Daniel TC , Sharpley AN, Stewart SJ ,et al. Environmental impact of animal manure management in the southern plains[R]1Presented at the International Summer Meeting, 20– 23, June ,Spokane ,Washington. Paper No. 934011. American Society of Agriculture Engineers,1993.
    94. Dennis L., Corwin, et al. Non-point pollution modeling based on GIS, Soil & Water Conservation. 1998, 1: 75-88.
    95. Department of Soil Science, University of Wisconsin2Madison. Determining the phosphorus index for a field [OL]. http : / / www. Omafra. Gov. on. ca/ english/ engineer/ facts/ 05- 0671htm. 2004.
    96. Department of Soil Science, University of Wisconsin2Madison. The wisconsin phosphorus index [OL]. http : / / wpindex.soils.wisc.edu/assets/ calculations071 2004.
    97. Dou. Z , J . D. Toth , D. T. Galligan , C. F. Ramberg , J . D. Ferguson.Laboratory procedure for characterizing manure phosphorus [J ] . Journal of Environmental Quality. 2000. 29 :508~514
    98. Department of Soil, Water, and Climate, University of Minnesata. Minnesata phosphorus site risk index program user’guide [OL], http : / / www. Mnpi. Umn.edu.2006.
    99. European Environment Agency. Europe’s water quality general1y improving but agricu1ture still the main chal1enge. http //www. eea. eu. int, 2003.
    100. Foy, R.H., P. J. A. Withers. The contribution of agricultural phosphorus to eutrophication. Proceedings No. 365 of the Fertilizer Society, Peterborough, UK.1995.
    101. Guppy C N, Menzies N W, Moody P W, et al. A simplified, sequential, phosphorus fractionation method [J]. Communications in Soil Science & Plant Analysis, 31 (11214). 2000.1981-1991.
    102. Hedley M J, Steward J W B, Chauhan B S. Changes in inorganic and organic soil phosphorous fractions induced by cultivation practices and by laboratory incubations [J]. Soil sci. Soc. Am. J., 1982, 46: 970-976.
    103. Holford I. C. R.et al. The high and low energy phosphate adsorbing surface in calcareous soils [J]. J. Soil Sci., 1975, 26:407-417.
    104. Hong J K,Yamane K. Proposal for a more suitable method to extract soil organic phosphorus[J]. Soil Sci Plant Nutr,1980,26;383-390.
    105. Hooda PS, Moynagh M, Svoboda IF ,et al. Phosphorus loss in drainflow fromintensively managed grassland soils [J ]. J Environ Qual, 1999, 28(4) :1235-1242.
    106. Hooda PS, Truesdale VW, Edwards AC,et al. Manuring and fertilization effects on phosphorus accumulation in soils and potential environmental implications[J]. Advances in Environmental Research, 2001, 5 (1):13-21.
    107. Ivanoff D B, Reddy K R, Robinson S. Chemical fractionation of organic phosphorus in selected Histosds[J]. Soil Soi., 1998,163(1):36-45.
    108. Iyamuremye F, Dick R P, Baham J. Organic amendments and phosphorus dynamicsⅡ. Distribution of soil phosphorus fractions[J]. Soil Sci,1996, 161:(7):436-443.
    109. Jackman R H, Black C A. Solubility of iron,aluminum,calcium and magnesium inositol phosphates at different pH values[J]. Soil Sci.1951a, 72:179-186.
    110. Jackman R H, Black C A. Hydrolysis of iron aluminum, calcium and magnesium inositol phosphates at different pH values [J]. Soil Sci.1951b, 72:261-266.
    111. Kleinman P J A, Needelman B A, Sharpley A N, McDowell R W. Using soil phosphorus profile data to assess phosphorus leaching potential in manured soils[J]. Soil Sci. Soc. Am. J. , 2003, 67:215-224.
    112. Kronvang, B. Gertebjerg, R. Grant et al. Nationwide monitoring of nutrients and their ecological effects: state of the Danish aquatic environment. Ambio, 1993, 22:176-187.
    113. Lena B V. Nutrient preserving in riverine transitional strip. Journa1 of Human Environment, 1994, 3 (6):342-347.
    114. Li Y, Zhang J B. Agricultural diffuse pollution from fertilizer and pesticides in China. Wat. Sci. Tech, 1999, 39(3):25-32.
    115. Lucero DW, Martens DC, Mckenna JR, et al. Accumulation and movement of phosphorus from poultry litter applicaion on a starr clay loam [J]. Commun Soil Sci Plant Anal, 1995, 26: 1709-1718.
    116. McDowell R., Sharpley A. N,, and Gordon Folmar. Phosphorus Export from an Agricultural Watershed: Linking Source and Transport Mechanisms[J]. J. Environ. Qual., 2001 ,30:1587-1595.
    117. Maguire R O, Sims J T. Soil testing to predict phosphorus leaching[J]. J. Environ. Qual, 2000, 31 (5):1601-1609.
    118. Meek B. D. Graham L. E., Donovan T. J. Mayberry K. S. Phosphorus Availability in a Calcareous Soil After High Loading Rates of Animal Manure1[J]. Soil Sci Soc Am J 43:741-744.
    119. Ministry of the Environment of Finland. Sources, processes and effects of water po11ution: Nutrient 1oad on water courses. http://www.vyh.fi/eng/environ/sustdev/indicat/inditau.htm, 2003.
    120. Novotny Vladimir, Olem Harvey. Water quality: prevention, identification and management of diffuse pollution [M]. New York:Van Nastrand Reinhold Company, 1993.
    121. Novotny Vladimir, Cheaters G. Handbook of Nonpoint pollution, Source and Management [M].New York: Van Nostrand Reinhold Company.1993, 2.
    122. Parry, R.. Agricultural phosphorus and water quality: a U.S. environmental protection agency perspective. J. Environ. Qual., 1998, 27:256-261.
    123. Peperzak. P , A. G. Caldwell , R. R. Hunziker , C. A. Black. Phosphorus fractions in manure[J ] . Soil Science. 1959. 87 :293-302
    124. Paul J A Withers,Eunice l Lord. Agricultural nutrient inputs to rivers and groundwater in the UK : policy,environmental management and research needs. The Science of the Total Environment,2002,282~283:9-2
    125. Petersen G W,Corey R B. A modified Chang and Jackson procedure for routine fractionation of inorganic soil phosphatesv. Soil sci. Soc. Am. proc., 1966, 30:563-565.
    126. Pote, D. H., Daniel T.C., Sharpley A.N., et al. Relating extractable phosphorus to phosphorus losses in runoff [J]. Soil Sci. Soc. Am. J. 1996(60):855-859.
    127. Pote DH, Daniel TC, Nichols DJ, et al. Relationship between phosphorus levels in three ultisols and phosphorus concentrations in runoff [J]. J Environ Qual,1999,28 (1) :170-175.
    128. Potter R L, Jordan C F, Guedes R M, et al. Assessment of a phosphorus fraction method for soil: problems for further investigation[J]. Agriculture, Ecosystems and Environment, 1991, 34:453-463.
    129. Sarpley A N. Assessing phosphorus bioavailability in agricultural soils and runoff [J].FertilizerResearch.,1993,36:259-272.
    130. Saunders, W M. and Williams E G. Observation on the determination of total organic phosphorus in soil. J. Soil Sci. 1955(6):254-267.
    131. Sharpley A N, Chapra S C R, Wedepohl R, Sims J T, Daniel T C, Reddy K R. Managing agricultural phosphorus for protection of surface waters, issues and options. Journal of Environmental Quality,1994,23:427~451.
    132. Sharpley A. N., McDowell R. W., and Kleinman P. J. A.. Amounts, Forms, and Solubility of Phosphorus in Soils Receiving Manure [J]. Soil Science Society of America Journal, 200468 :2048-2057.
    133. Sharpley, A. N., Daniel T. C., Sims J.T., et al. Determining environmentally sound soil phosphorus levels [J]. J. Soil Water Conserve. 1996(51):160-166.
    134. Sharpley A. N., Moyer Barton. Phosphorus forms in manure and compost and their release during simulated rainfall [J]. Journal of Environmental Quality, 2000. 29 :1462-1469.
    135. Sims JT. Phosphorus soil testing: innovation for water quality protection [J ]. Commun Soil Sci Plant Anal, 1998 ,29(11-14) :1471-1489.
    136. Sims J T, Ewards A C, Schoumans O F and Simard R R. Integrating soil phosphorus testing into environmentally based agricultural management practices [J]. J. Environ. Qual., 2000, 29 (1): 60-711.
    137. Sims JT, Simard RR, Joern BC. Phosphorus loss in agricultural drainage: historical perspective and current research [J]. J Environ Qual,1998,27(2) :277-293.
    138. Singh B B. Phosphorus sorption and desorption characteristics of soil as affected by organic residues. Soil sci Soc Am 1979,132:389-395.
    139. Syers J K, Smillie G W, Williams J D H. Calcium fluoride formation during extraction of calcareous soils with fluoride:Ⅰ. Implications of inorganic P fractionation schemes[J].Soil Sci. Soc. Am. Proc., 1972, 36:20-25.
    140. Tiessen H, Moir JO. Characterization of available P by sequential extraction//Carter MR, ed. Soil Sampling and Methods of Analysis. Boca Raton: CRC Press,1993:75-86.
    141. Tiessen H, Stewart J W B, Bettany J R. Cultiation effects on the amounts and concentration of carbon, nitrogen and phosphorus in grassland soil [J]. Agron.J., 1982, 74:831-835.
    142. US Environmental protection agency, Chesapeake Bay: A framework for action.Chesapeake Bay program. Environmental protection agency Chesapeake Bay Liaison office, Annapolis, Maryland, 1983.
    143. U S Environmental Protection Agency. Liquid assets: a summertime perspective on the importance of clean water to the Nation’s Economy, Office of Water. Washington DC: US EPA 1996: 23.
    144. US Environmental Protection Agency. National water quality inventory. Report to Congress Executive Summary.W Washington DC: U S. EPA 1995: 497.
    145. US Environmental Protection Agency. Non—Point Source Pollution from Agriculture. http://www.epa.gov/region8/water/nps/npsurb.html, 2003.
    146. Uunk, E.J.B. Eutrophication of surface waters and contribution from agriculture. Proceedings of the Fertilizer Society, Peterbotough, united kindom.1991, 56.
    147. Uunk E J B. Eutrophication of surface waters and the contribution of agriculture. Proceeding of the Fertilizer Society, 1991, 303:55.
    148. Vadas P A, Kleinman P J A, Sharpley A N, Turner B L. Relating soil phosphorus to dissolved phosphorus in runoff: A single extraction cefficient for water quality modeling [J ].J. Environ. Qual., 2005, 34 (2) : 572-580.
    149. Van der Molen, K.T., A. Breeuwsma, P.C.M. Boers. Agricultural nutrient losses to surface water in the Netherlands: impact, stratrgies, and perspectives. Jenviron. Qual., 1998, 27: 4-11.
    150. Vervoort RW, Radcliffe DE, Cabrera ML, et al. Nutrient losses in surface and subsurface flow from pasture applied poultry litter and compost poultry litter [J]. Nutrient Cycling in Agroecosystems, 1998, 50 (1-3) :287-290.
    151. Vighi M, Chiaudani G. Eutrophication in Europe, the role of agricultural activities. In: Hodgson E. Reviews of Environmental Toxicology. Amsterdam:E1sevier, 1987:213-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700