吉林省天牛科昆虫分类学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天牛科Cerambycidae是鞘翅目Coleoptera中最大的科之一,全世界约有45000种,是鞘翅目昆虫中形态变异最具多样性的类群之一。到2005年止,中国天牛记录已有3100余种。天牛科昆虫绝大多数取食植物,部分种类的天牛是林木的重要害虫,严重危害果树和观赏类树木;其它种类的天牛危害落叶树和阔叶树,少部分的天牛危害农作物。大多数种类的天牛在自然生态系统中具有重要的生态价值。由于天牛与其寄主植物紧密的协同进化,天牛可以作为森林健康和多样性的重要生物指示信号。
     本研究共整理鉴定出吉林省天牛科昆虫7亚科102属223种,并对吉林省天牛科昆虫的区系组成及分布特点进行了分析。在所整理鉴定的223种天牛中,各分布区的种类由多至少依次为东北区222种,华北区111种,蒙新区108种,华中区79种,华南区60种,西南区42种,青藏区16种。各亚科所占比例分别为沟胫天牛亚科35属84种,占总种数的37.67%;天牛亚科26属55种,占总种数24.66%;锯天牛亚科4属4种,占总种数1.79%;花天牛亚科32属67种,占总种数30.04%;幽天牛亚科3属6种,占总种数2.69%;椎天牛亚科1属1种,占总种数0.45%;膜花天牛亚科1属6种,占总种数2.69%。
     自从天牛科这一分类单元建立以来,对于天牛科亚科之间的系统发育关系这一问题国内外许多学者提出个许多不同的见解,至今尚无定论。本文主要就吉林省分布数量较多的4亚科天牛间的系统发育关系进行探讨,试图解决这4个亚科与其它亚科的相互关系,并对传统分类学提出的观点的可靠性进行验证。本研究共采用4亚科31属36种天牛进行研究。
     1生物化学方面:采用聚丙烯酰胺凝胶电泳技术对3亚科9属11种天牛的酯酶同工酶进行研究,探讨酯酶同工酶技术应用于天牛亚科级阶元分类的有效性。结论如下:
     (1)从酶带数量上来看,沟胫天牛亚科相对数量较多,9-13条不等;花天牛亚科酶带数量较少,2-6条不等,多为3条。从酶活性来看,沟胫天牛亚科类群酶活性强于其它两个亚科。
     (2)聚类分析结果表明,根据酶带的迁移率,3亚科昆虫有效地归为3个分支,其中天牛亚科和花天牛亚科亲缘关系较近,聚为一个分支,后与沟胫天牛亚科相聚。在标本数量足够多的情况下,利用酯酶同工酶分析天牛亚科之间的亲缘关系是可行的。但在解决近缘属种的关系问题上,酯酶同工酶存在一定的局限性。
     (3)由于所选取的分类单元数量较少,对于天牛科亚科间关系这一系统发育问题,还需结合形态学手段及分子生物学手段得到的结果联合起来分析,才能得到更为可靠的结果。
     2分子生物学方面:提取了天牛科4亚科31属36种昆虫的总DNA。采用3对通用引物扩增了2段线粒体基因部分序列和1段核基因部分序列,获得长度为771bp的COI基因序列36条,长度为501bp的16SrDNA基因序列36条,长度为772bp的28SrDNA基因序列32条;采用Clustal v1.8、Bioedit v7.0.9和MEGA 4.0软件对DNA序列的碱基组成、碱基替换及遗传距离进行分析;基于28SrDNA基因序列和3段基因联合数据集采用PAUP 4.0的MP法、NJ法、PHYML v2.4.4的ML法以及MrBayes 3.1.2的贝叶斯法分别重建系统发育树,研究得到以下结果:
     (1)共向GenBank数据库提交新序列104条,涉及天牛科4亚科31属36种,包含3种基因。
     (2)在天牛科内线粒体基因序列为“AT”碱基丰富序列,线粒体基因序列的颠换高于转换,而核基因序列的转换稍高于颠换。
     (3)本论文基于28SrDNA基因序列的建树结果有效的将锯天牛亚科、花天牛亚科、沟胫天牛及天牛亚科聚在不同的分支,从分子角度证明了4亚科的单系性。
     (4)本论文基于联合基因系统发育树的结果与王乔和蒋书楠(1991)以植物学和古地理学为依据,结合形态特征和天牛生物学特性讨论天牛科主要亚科的演化关系部分结果一致。认为沟胫天牛亚科和天牛亚科是较为原始的类群,锯天牛亚科和花天牛亚科是较为进化的类群。
     3触角感器显微结构方面:
     本论文结果表明,曲纹花天牛和橡黑花天牛雄性锥形感器2的数量显著多于雌性。在其它类群的昆虫中,也发现同种昆虫雌雄个体感器数量存在差异的现象。同属的两种天牛,不同类型感器在数量、分布上存在差异。
     目前,由于不同学者对昆虫触角感器的分类和命名采用的标准不同,不同描述也存在着较大的差异。触角感器作为分类特征和系统发育研究的依据仍存在一定的局限性。此外,有研究发现,昆虫感器的数量并不是固定不变的,例如蝗虫,会因发育阶段不同,生理状态不同而改变。目前国内外学者对昆虫触角感器的研究大多集中于单一种类昆虫感器的类型、数量及分布上,并没有对触角感器作为昆虫分类研究和系统发育研究的可靠性作出定论。
     本论文通过现代生物学技术对基于形态学角度的天牛科传统分类学观点进行了验证,现代生物学技术具有准确、客观、灵敏等优点,弥补了传统形态学方法的缺点和不足。DNA序列数据具有明确的遗传基础,其数据量的大小仅受基因的大小限制。形态数据的优点在于它可以从化石和保存的标本上得到,并可从个体发育角度进行解释。而且,有些问题只能通过形态特征来解决,另一些问题则要应用分子数据来解决。大量研究表明,将分子与形态结合起来比单一方法可对问题作出更好的描述和解释。
Longicorn beetles (Coleoptera: Cerambycidae), with more than 45000 known species, comprised one of the largest and most diverse groups of Coleoptera. The total number of longicorn beetles recorded from China has exceeded 3100 species up to 2005. Most longicorn beetles feed on plants. Several species of cerambycid beetles are known to damage living trees, and may seriously affect orchards and ornamental trees; others may damage coniferous or hardwood lumber, and a few taxa can damage row crops. The majority of species occur within uncultivated or forested habitats and are of great ecological importance within these natural ecosystems. Because of their close evolutionary linkage to their host plants, cerambycid beetles may be valuable bio-indicators of forest health and diversity.
     223 species representing 64 genera of 7 subfamilies of Cerambycidae in Jilin Province were identified and compiled in this study. The faunal composition and distribution characters were analysed. The 223 species are distributed in 7 subregions. 222 speices in Northeast China subregion, 111 speices in North China subregion, 108 speices in Mongolia Xinjiang subregion, 79 speices in Middle China subregion, 60 speices in South China subregion, 42 speices in Southwest China subregion, and 16 speices in Qinghai Xizang subregion. 84 species of 35 genera of Lamiinae account for 37.67%; 55 species of 26 genera of Cerambycinae account for 24.66%; 4 species of 4 genera of Prioninae account for 1.79%; 67 species of 32 genera of Lepturinae account for 30.04%; 6 species of 3 genera of Aseminae account for 2.69%; 1 species of 1 genera of Spondylidinae account for 0.45%; 6 species of 1 genera of Necydalinae account for 2.69%.
     Although the phylogenetic hypotheses of the subfamilial relationships of Cerambycidae were put forward by many scholars since Cerambycidae was found, the higher classification of the Cerambycidae has not been sufficiently elucidated so far. The phylogenetic relationships of 4 subfamilies broadly distributed in Jilin Province were reconstructed in this study. We also tested the traditional classification views on Cerambycidae through modern bio-technology. 36 species of 31 genera of 4 subfamilies in Cerambycidae were analysed in this study.
     1 Biochemistry
     In this part, the EST isoenzyme of 11 species longicorn beetles of 9 genera of 3 subfamilies were analyzed by using the technique of vertical slab poly-acrylamidae gel electrophoresis, and clustering analysis of these species was researched based on their relative mobilities to test if EST isoenzyme analyses can be feasible to resolve the phylogenetic relationships of Cerambycidae at the subfamily level. The results are as follows:
     (1) The number of the isoenzyme bands of Lamiinae ranged from 9 to 13 and the number of the isoenzyme bands of Lepturinae ranged from 9 to 13. The enzyme activity of Lamiinae was stronger the other two subfamilies.
     (2) The 11 species of 3 subfamilies were grouped in 3 clades based on relative mobilities by clustering analysis. The results indicated that it was feasible to reconstruct the phylogenetic relationships of Cerambycidae using this method when the taxon was enough. However, the clustering analysis based on their relative mobilities cannot solve the phylogenetic relationships at the genera level.
     (3) The clustering analysis results of Cerambycidae based on their relative mobilities of the isoenzyme bands were consistent with the results inferred from morphological classification at subfamily level. Because the number of species in Cerambycidae is so large, it is necessary to solve the phylogenetic relationships combined with different methods.
     2 Molecular Biology
     Total genomic DNA was extracted from 36 species of 31 genera of 4 subfamilies in Cerambycidae. Amplification of the 2 fragment mitochondrial genes (COI 771bp; 16SrDNA 501bp) and 1 fragment ribosomal gene (28SrDNA 772bp) was performed using 3 pairs of universal primer. The base composition, base substitution and genetic distance of DNA sequences were analysed using Clustal v1.8, Bioedit v7.0.9 and MEGA 4.0 software. The phylogenetics relationships were reconstructed from the nuclear 28S ribosomal DNA and combined data using PAUP4.0 (maximum parsimony method, neighbor joining method), PHYML v2.4.4 (maximum likelihood method) and MrBayes 3.1.2 (Bayesian inference method). The results are as follows:
     (1) We submitted 104 new DNA sequences of 3 genes to GenBank, covering 36 species of 25 genera of Cerambycidae.
     (2) The family Cerambycidae is“AT”base-bias in the DNA sequences of mitochondrial genes, and transversion is higher than transition, but transition is higher than transversion in ribosomal gene sequences.
     (3) The phylogenetic trees were inferred from the nuclear 28S ribosomal DNA. The species of the 4 subfamilies were divided into 4 clades. The monophyly of the 4 subfamilies was resolved respectively.
     (4) The phylogenetics relationships inferred from combined gene sequences in our study were partically congruent with the results of previous investigations based on botany, geography, morphological and biology characteristics of Cerambycidae by Wang and Jiang (1991). Lamiinae and Cerambycinae are the older groups and Prioninae and Lepturinae are the younger groups.
     3 Fine structure of antennal sensilla
     The average number of sensilla basiconica type 2 of Leptura arcuata Panzer and Leptura aethiops Poda on the antennae of the males was significant greater than that on the antennae of the females. The differences of the number of antennal sensilla between males and females were also found in other insects. The number and distribution of antennal sensilla of both species of the longicorn beetles in one genera were different.
     Because different scholars classified the sensilla into various types based on different standard and the descripition of the same type of the sensilla bear differences. So it is cautious to apply the characters of sensilla to identify specimen and solve the phylogenetics relationships of insects.
     We tested the traditional classification views on Cerambycidae through modern bio-technology. Modern bio-technology bear the characters of accuracy, impersonality and delicacy and play as a remedy for the traditional classification. DNA sequences have explicit genetic foundation. The amount of the DNA data was controlled by the size of gene. The merits of morphological data lie in that these data could be collected from fossil and specimen. And morphological data can be explained from individual growth. Some questions only can be solved by morphological characters, and the other questions only can be solved by molecular data. A large amounts of research demonstrated that the results of phylogenetics analyses based on molecular and morphological connected data were more convinced compared with the sole analyses.
引文
[1]Hua L Z, Hajime N, Saemulson G A, et al. Iconography of Chinese Longicorn Beetles (1406 Species) in color[M]. Guangzhou: Sun Yat-sen University Press, 2009. 1-474.
    [2]White A. Longicornia I. Catalogue of the coleopterous insects in the collection of the British Museum Vol. 7 [M]. London: Taylor and Francis, British Museum, 1853. 1-174.
    [3]Gressitt J L. Longicorn beetles of China. Longicornia, Vol. 2[M]. Paris: Paul Lechevalier, 1951. 47-126.
    [4]Linsley E G. The Cerambycidae of North America. Part I. Introduction. University of California Publications in Entomology[M]. CA-Berkeley: University of California Press, 1961, 18: 1-97.
    [5]Linsley E G, Chemsak J A. The Cerambycidae of North America. Part VI, No. 1. Taxonomy and classification of the subfamily Lepturinae. University of California Publications in Entomology[M]. CA-Berkeley: University of California Press, 1972, 69: 1-138.
    [6]Kojima K, Hayashi M. Insects life in Japan. Vol. 1. Longicorn beetles Lepturinae[M]. Hoikusha Publishing Co, 1969. 7-40.
    [7]Gressitt J L, Rondon J A. Cerambycidae of Laos (Disteniidae, Prioninae, Philinae, Aseminae, Lepturinae, Cerambycinae) [J]. Pacific Insects Monograph, 1970, 24: 1-314.
    [8]Lobanov A L, Danilevsky M L, Murzin S V. Systematic list of longicorn beetles (Coleoptera, Cerambycidae) of the USSR. 1(in Russian)[J]. Entomologicheskoe Obozrenie, 1981, 60: 784-803.
    [9]Obhayashi N, Sato M, Kojima K. Illustrated guide to identification longicorn beetles of Japan[M]. Tokyo: Tokai Univ Press, 1992. 423-457.
    [10]Craighead F C. North American cerambycid-larvae[J]. Bulletin of the Canada Department of Agriculture (n.s.), 1923, 27: 82-100.
    [11]Mamaev B M, Danilevsky M L. Larvae of timber beetles (in Russian)[M]. Moscow: Nauka, 1975. 105-148.
    [12]Nakamura S. Morphological and taxonomic studies of the Cerambycid pupae of Japan (Coleoptera: Cerambycidae)[J]. Miscellaneous Reports of the Hiwa Museum for Natural History, 1981, 20: 1-159.
    [13]Svacha P, Danileysky M L. Cerambucoid larvae of Europe and Soviet Union[J]. Acta Univ. Carolinae. Biologica Pt.1., 30(1-2):1-73; Pt. 3., 32(1-2):1-205.
    [14]Napp D S. Phylogenetic relationships among the subfamilies of Cerambycidae (Coleoptera, Chrysomeloidea) [J]. Rev Bras Entomol, 1994, 38: 265-419.
    [15]Lawrence J F, Newton A F. Families and subfamilies of Coleoptera (with selected genera, notes, references and data on family-group names). In J. Pakaluk & S. Slipinsky (Eds) Biology, Phylogeny, and Classification of Coleoptera: Papers Celebrating the 80th Birthday of Roy A. Crowson[M]. Warsaw (Poland): Museum I Instytut Zoologii PAN, 1995. 779-1007.
    [16]Forchhammer P. Evolution of diurnal activity in some of the higher taxa of long-horned beetles in relation to continental drift[J]. Nat Jutl, 1981, 19: 91-106.
    [17]Forchhammer P, Wang Q. An analysis of the subfamily distribution and composition of the longicorn beetles (Coleoptera: Cerambycidae) in the provinces[J]. J Biogeogr, 1987, 14: 583-593.
    [18]An S L, Kwon Y J. Classification of the genus Pidonia from Korea (Coleoptera, Cerambycidae) [J]. Insecta Koreana, 1991, 8: 30-59.
    [19]Shoda E, Kubota K, Makihara H. Geographical structuring of morphological characters in Semanotus japonicus (Coleoptera: Cerambycidae) in Japan[J]. Appl Entomol Zool, 2003, 38(3): 369-377.
    [20]Kuboki M. Notes on the endophallus in some longicorn beetles (Coleoptera, Cerambycidae)1, Fivelepturine species[J]. Elytra, 1980, 7(2): 23-27.
    [21]Kuboki M. Notes on the endophallus in some Lepturine from Japan (Coleoptera, Cerambycidae)[J]. Kita-Kyushu no koncuh, kokura, 1981, 27:101-104, pls 7-10.
    [22]Hubweber L, Schmitt M. Differences in genitalia structure and function between subfamilies of longhorn beetles (Coleoptera: Cerambycidae)[J]. Genetica, 2010, 138: 37-43.
    [23]吴蔚文.天牛科雄外生殖器基本结构及标本制作[J].森林病虫通讯, 1984, 4: 33-35.
    [24]吴蔚文.雄性外生殖器的特征编制了亚科级分类检索表[J].森林病虫通讯, 1985, 4: 43-47.
    [25]吴蔚文,蒋书楠.星天牛属雄性外生殖器的分类研究(鞘翅目:天牛科)[J].昆虫学报, 1989, 32(2): 211-220.
    [26]吴蔚文,蒋书楠.天牛科雄性外生殖器的新类型-狭天牛属雄性外生殖器的研究[J].昆虫学报, 1993, 36(1): 81-93.
    [27]吴蔚文,蒋书楠.狭胸天牛雄性外生殖器分类研究—附一新种[J].昆虫学报, 2000, 43(1): 78-87.
    [28]刘惠霞,张克斌,黄刚,等.黄斑星天牛生殖系统的形态解剖[J].西北林学院学报, 1992, 7(3): 80-84.
    [29]蒋书楠,陈力.中国动物志.第二十一卷:鞘翅目天牛科花天牛亚科[M].北京:科学出版社, 2001.
    [30]王文凯.脊虎天牛属雄性外生殖器的分类研究[J].湖北农学院学报, 2002, 22 (3): 202-205.
    [31]王文凯.绿虎天牛属雌雄生殖器的比较研究[J].中国森林病虫, 2002, 21 (5): 3-7.
    [32]冯波,陈力,吴贵怡.中国土天牛属雄性外生殖器研究(鞘翅目,天牛科,锯天牛亚科,锯天牛族)[J].动物分类学报, 35 (1) : 117-126.
    [33]殷幼平.天牛消化道的解剖形态研究[J].西南农业大学学报, 1986, 3: 111-121.
    [34]殷幼平.天牛消化道的组织学研究[J].西南农业大学学报, 1986, 3: 104-110.
    [35]殷幼平.天牛科消化道的比较解剖特征在分类学上的意义[J].昆虫分类学报, 1987, 9(4): 313-320.
    [36]刘惠霞,张克斌,黄刚,等.黄斑星天牛消化道的形态解剖[J].西北林学院学报, 1992, 7(3): 75-79.
    [37]周嘉熹,张克斌.光肩星天牛与黄斑星天牛幼虫消化道外形比较[J].西北林学院学报, 1995, 10(2): 71-73.
    [38]郝赤,阎春仙,张冠华,等.大牙土天牛消化道系统的形态解剖[J].山西农业大学学报, 1999, 19(1): 7-12.
    [39]陈斌.星天牛属的数值分类研究初探(鞘翅目:天牛科) [J].动物分类学报, 1989, 14(1): 96-103.
    [40]陈斌.黄斑星天牛和光肩星天牛的数值分类研究(鞘翅目:天牛科) [J].昆虫学报, 1989, 32(3): 341-349.
    [41]陈斌,吴蔚文.天牛科雄性外生殖器的数值分类研究[J].西南农业大学学报, 1986, 3: 15-21.
    [42]王文凯.沟胫大牛亚科后翅翅脉特征在系统分类学上的意义[J].湖北农学院学报, 2000, 20(2): 120-125.
    [43]郭迪金.中国天牛科天牛牛亚科的分类研究[D]: [硕士学位论文].重庆:西南大学, 2002.
    [44]冯波.中国锯天牛亚科分类与区系研究[D]: [硕士学位论文].重庆:西南大学, 2007.
    [45]田立超.中国天牛亚科昆虫基于后翅和生殖器的分类研究[D]: [硕士学位论文].重庆:西南大学, 2007.
    [46]王乔.沟胫天牛亚科楔天牛族(Saperdini)起源的研究[J].西南农业大学学报, 1986, 3: 58-65.
    [47]王乔.世界并脊天牛属的区系分析(鞘翅目:天牛科) [J].动物分类学报, 1992, 17 (4): 439-453.
    [48]王乔.墨天牛属的生物地理学研究[J].林业科学, 1988, 24 (3): 297-304.
    [49]Wang Q, Thornton I W B, New T R. A cladistic analysis of the phoracanthine genus PhoracanthaNewman (Coleoptera:Cerambycidae: Cerambycinae) with discussion of biogeographic distribution and pest status[J]. Annals of the Entomological Society of America, 1999, 92(5): 631-638.
    [50]Wang Q. Taxonomy, phylogeny and distribution of the longicorn beetle genus, Allotisis (Coleoptera: Cerambycidae)[J]. J Natur Hist, 2000, 34(8): 1684-1711.
    [51]程惊秋.楝星天牛胸部摩擦和鞘翅振动发声及其声学特性的研究[J].昆虫学报, 1993, 36(2): 150-157.
    [52]程惊秋.桔褐天牛和桑粒肩天牛幼虫声行为的研究[J].林业科学, 1993, 29(4): 307-312.
    [53]华立中.天牛幼虫的外部形态及亚科检索图[J].昆虫知识, 1991, 2: 109-112.
    [54]刘平,嵇保中,刘曙雯,等.桑天牛染色体核型及制备材料的选择[J].南京林业大学学报(自然科学版), 2010, 34(6): 5-8.
    [55]刘平,嵇保中,刘曙雯,等.松墨天牛和光肩星天牛染色体核型[J].昆虫知识, 2010, 47(2): 299-307.
    [56]董抗震,杨星科.天牛科高级阶元分类研究进展[J].昆虫知识, 2003, 40: 211-217.
    [57]王乔,蒋书楠.天牛科昆虫高级分类阶元实体的进化研究(英文)[J].昆虫分类学报, 1991, 8(2): 93-114.
    [58]蒋京闽,宋玉霞.两种天牛的过氧化物酶同工酶的比较研究[J].昆虫知识, 1988, 5: 293-294.
    [59]孙竹生.天牛科同工酶研究[J].西南农业大学学报, 1989, 11(3): 253-256.
    [60]徐卫,李伟东,林明光,等.芒果等热带作物天牛酯酶同工酶的比较研究[J].热带作物学报, 1995, 16: 71-78.
    [61]周嘉熹,杨雪彦,崔敏,等.黄斑星天牛和光肩星天牛幼虫两种同功酶的测定[J].西北林学院学报, 1995, 10(2): 67-70.
    [62]李庆.天牛科纤维素酶同工酶研究[J].林业科学, 1996, 32(2): 140-143.
    [63]唐桦,郑哲民.光肩星天牛与黄斑星天牛酯酶同工酶的比较研究[J].北京林大学报, 2002, 24(1): 66-68.
    [64]安榆林,黄晓明,杨晓军,等.光肩星天牛及其近缘种mtDNA序列和基因特点[J].南京林业大学学报(自然科学版), 2004, 28(4): 6-12.
    [65]Cesari M, Marescalchi O, Francardi V, et al. Taxonomy and phylogeny of European Monochamus species: first molecular and karyological data[J]. Journal of Zoological Systematics and Evolutionary Research, 2005, 43(1): 1-7.
    [66]任洪宝.蒙古高原草天牛属部分种类线粒体Cytb基因分子进化与系统学研究[D]:[硕士学位论文].呼和浩特:内蒙古师范大学, 2005.
    [67]师丽敏.天牛科发育关系-基因条码构建及测序中假基因的研究[D]:[硕士学位论文].南京:南京林业大学, 2006.
    [68]胡艳红.利用RAPD技术和ITS-2序列研究11种天牛的亲缘关系[D]:[硕士学位论文].哈尔滨:东北林业大学, 2006.
    [69]安榆林,杨晓军,林晓佳,等.光肩星天牛mtDNACOI基因遗传差异的研究[J].林业科学, 2006, 42(5): 77-83.
    [70]安榆林,刁彩华,朱宏斌,等.墨天牛属三个近缘种的RAPD分析[J].南京林业大学学报, 1998, 22(4): 35-38.
    [71]唐桦.天牛科部分种类分子系统学以及光肩星天牛等害虫天敌与不育技术的研究[D]:[博士学位论文].西安:陕西师范大学, 2002.
    [72]安榆林,王保德,杨晓军,等.光肩星天牛种群间及其近缘种遗传关系的RAPD研究(英文)[J].昆虫学报, 2004, 47(2): 229-235.
    [73]Kelley M B, Wingard S W, Szalanski A L, et al. Molecular diagnostics of Enaphalodes rufulus (Coleoptera: Cerambycidae)[J]. Florida Entomologist, 2006, 89(2): 251-256.
    [74]高江勇,杨晓军,林晓佳,等.利用RAPD研究星天牛地理种群间亲缘关系[J].南京林业大学学报(自然科学版), 2007, 31(1): 128-130.
    [75]Berkov A. The impact of redefined species limits in Palame (Coleoptera: Cerambycidae: Lamiinae: Acanthocinini) on assessments of host, seasonal, and stratum specificity[J]. Biological Journal of the Linnean Society, 2002, 76(2): 195-209.
    [76]Natsumi K, Kazuyoshi F. Phylogenetic analysis of the phoretic association between Bursaphelenchus conicaudatus (Nematoda: Aphelenchoididae) and Psacothea hilaris (Coleoptera: Cerambycidae)[J]. Nematology, 2002, 4(6): 759-771.
    [77]Shoda E, Kubota K, Makihara H. Geographical structuring of mitochondrial DNA in Semanotus japonicus (Coleoptera: Cerambycidae)[J]. Appl Entomol Zool, 2003, 38 (3): 339-345.
    [78]Smith C I, Farrell B D. Range expansions in the flightless longhorn cactus beetles, Moneilema gigas and Moneilema armatum, in response to Pleistocene climate changes[J]. Molecular Ecology, 2005, 14(4): 1025-1044.
    [79]Smith C I, Farrell B D. Phylogeography of the longhorn cactus beetle Moneilema appressum LeConte (Coleoptera: Cerambycidae): was the differentiation of the Madrean sky islands driven by Pleistocene climate changes?[J]. Molecular Ecology, 2005, 14(10): 3049-3065.
    [80]Kawai M, Shoda-Kagay E, Maehar T, et al. Genetic Structure of Pine Sawyer Monochamus alternatus (Coleoptera: Cerambycidae) Populations in Northeast Asia: Consequences of the Spread of Pine Wilt Disease[J]. Environmental Entomology, 2006, 35(2): 569-579.
    [81]Nakamine H, Takeda M. Molecular phylogeny and phylogeography of flightless beetles Parechthistatus gibber and Hayashiechthistatus inexpectus (Coleoptera: Cerambycidae) inferred from mitochondrial COI gene sequences[J]. Entomological Science, 2008, 11: 239-246.
    [82]Nakamine H, Takeda M. Molecular phylogenetic relationships of flightless beetles belonging to the genus Mesechthistatus Breuning, (Coleoptera: Cerambycidae) inferred from mitochondrial COI gene sequences[J]. Journal of Insect Science, 2008, 8: 1-11.
    [83]Carter M E, Smith M T, Harrison R. Patterns of genetic variation among population of the Asian Longhorned Beetle (Coleoptera: Cerambycidae) in China and Korea[J]. Annals of the Entomological Society of America, 2009, 102(5): 895-905.
    [84]Carter M E, Smith M T, Turgeon J J. Analysis of genetic diversity in an invasive population of Asian long-horned beetles in Ontario, Canada[J]. The Canadian Entomologist, 2009, 141(6): 582-594.
    [85]Carter M E, Smith M T, Harrison R. Genetic analyses of the Asian longhorned beetle (Coleoptera, Cerambycidae, Anoplophora glabripennis), in North America, Europe and Asia[J]. Biological Invasions, 2009, 12 (5): 1165-1182,
    [86]Koutroumpa F A, Lieutier F, Roux-Morabito G. Incorporation of mitochondrial fragments in the nuclear genome (Numts) of the longhorned beetle Monochamus galloprovincialis (Coleoptera, Cerambycidae)[J]. Journal of Zoological Systematics and Evolutionary Research, 2009, 47(2), 141-148.
    [87]Toki W, Kubota K. Molecular Phylogeny Based on Mitochondrial Genes and Evolution of Host Plant use in the Long-Horned Beetle Tribe Lamiini (Coleoptera: Cerambycidae) in Japan[J]. Environmental Entomology, 2010, 39(4): 1336-1343.
    [88]Feng B, Chen L, E Y L, et al. Phylogenetic analysis of the Prionini (Coleoptera: Cerambycidae: Prioninae) from China based on mitochondrial ribosomal RNA genes and Cytochrome oxidase I gene[J]. Zootaxa, 2010, 2487: 1-18.
    [89]Fu D Y, Hu S J, Ye H, et al. Pine wilt disease in Yunnan, China: Evidence of non-local pine sawyer Monochamus alternatus (Coleoptera:Cerambycidae) populations revealed by mitochondrial DNA[J]. Insect Science, 2010, 17, 439-447.
    [90]王直诚.东北天牛志[M].长春:吉林科学技术出版社, 2003.
    [91]孟庆繁,高文韬.长白山访花甲虫[M].北京:中国林业出版社, 2008.
    [92]陈世骧,谢蕴贞,邓国藩.中国经济昆虫志第一册鞘翅目天牛科(一)[M].北京:科学出版社, 1959. 1-120.
    [93]蒲富基.中国经济昆虫志第十九册鞘翅目天牛科(二) [M].北京:科学出版社, 1980.
    [94]蒋书楠,蒲富基,华立中.中国经济昆虫志第三十五册鞘翅目天牛科(三) [M].北京:科学出版社, 1985.
    [95]陈力.西南农业大学馆藏天牛标本的整理分类和区系分析[D]:[硕士学位论文].重庆:西南农业大学, 1994.
    [96]张俊香,陈力.中国虎天牛族区系初步研究(鞘翅目天牛科天牛亚科)[J].西南农业大学学报(自然科学版), 2005, 27(2): 155-158.
    [97]付利娟.中国绿天牛族昆虫分类与区系研究[D]: [硕士学位论文].重庆:西南大学, 2006.
    [98]陈力,李竹,冯波.中国锯天牛亚科区系研究(鞘翅目:天牛科)[J].西南大学学报(自然科学版), 2010, 32(4): 1-5.
    [99]王之劲.沟胫天牛族中国沟胫天牛亚科沟胫天牛族分类与区系研究[D]: [硕士学位论文].重庆:西南大学, 2008.
    [100]宋雅琴,陈力.中国楔天牛族昆虫区系的初步分析(鞘翅目天牛科沟胫天牛亚科)[J].西南农业学报, 2008, 21(2): 498-502.
    [101]蒋书楠.云南生物考察报告(鞘翅目天牛科)[J].昆虫学报, 1963, 12(1): 61-76.
    [102]李友恭,陈顺立,林思明.福建省天牛科昆虫名录[J].福建林学院科技, 1981, 1: 72-82.
    [103]王乔,蒋书楠.四川卧龙保护区天牛区系[J].昆虫分类学报, 1988, 5, 131-146.
    [104]张鹏春.大兴安岭林区天牛科昆虫区系的调查研究[J].内蒙古林业调查设计, 1990, 3: 21-27.
    [105]章士美,陈其瑚.浙江的天牛科昆虫及其区系结构[J].江西农业大学学报, 1992, 14, 1: 24-29.
    [106]吴鸿,吴明生.华东百山祖昆虫(鞘翅目天牛科) [M].北京:中国林业出版社, 1995. 251-256.
    [107]左玉香.湖南天牛科昆虫区系分析[J].湖南林业科技, 1996, 23(1): 43-46.
    [108]杨星科.长江三峡库区昆虫[M].重庆:重庆出版社, 1997. 805-834.
    [109]王文凯.湖北省天牛总科昆虫初步名录[J].湖北农学院学报, 1998, 18 (4) : 305-310.
    [110]祁诚进,李继佩,姚文生.山东天牛名录[J].山东林业科技, 1999, 5: 22-27.
    [111]能乃扎布.内蒙古昆虫[M].呼和浩特:内蒙古人民出版社, 1999.
    [112]郎杏茹,高汉中,白耀宇,等.西北地区天牛区系特点及形成原因探讨[J]. 1997, 12(suppl): 1-6.
    [113]姜双林,薛林贵.陇东子午岭林区天牛科昆虫区系研究[J].甘肃农业大学学报, 35(2): 181-184.
    [114]黄建华,周善义,王绍能.广西猫儿山自然保护区天牛科昆虫名录[J].广西师范大学学报(自然科学版), 2002, 20(3): 64-68.
    [115]许佩恩,能乃扎布.蒙古高原天牛彩色图谱[M].北京:中国农业大学出版社, 2007.
    [116]袁淑珍,张永宏,李凯兵.蒙古高原花天牛亚科昆虫区系的初步分析[J].江西农业学报, 2010, 22(9): 101-102.
    [117]袁淑珍,张永宏,李凯兵.蒙古高原天牛亚科昆虫种类组成及区系分析[J].昆虫知识, 2010, 47(5): 974-977.
    [118]张凤岭.吉林省东部林区重要害虫天牛[J].吉林林业科技, 1988, 5: 23-27.
    [119]高文韬,孙万才,王旭东,等.吉林省天牛科(Cerambycidae)昆虫区系初析[J].吉林林学院学报, 1994, 10(1): 25-33.
    [120]具诚.吉林省生物种类与分布[M].长春:东北师范大学出版社, 1997. 380-388.
    [121]陈力,蒋书楠,高文韬.中国天牛科二新记录种[J].昆虫分类学报, 1999, 21(2):118.
    [122]高文韬,孟庆繁,郑兴波,等.长白山北坡访花天牛区系研究[J].昆虫知识, 2005, 42(6): 691-695.
    [123]陈力,高文韬,孟庆繁.中国天牛科一新记录种[J].昆虫分类学报, 2007, 29(2): 135-136.
    [124]王志明,皮忠庆,侯彬.吉林省墨天牛属昆虫种类记述[J].吉林农业大学学报, 2007, 29(1): 41-43.
    [125]高文韬,孟庆繁,李燕,等.花天牛亚科二中国新记录种(鞘翅目,天牛科)[J].东北林业大学学报, 2009, 37(9): 120-121.
    [126]Pascoe F P. Longicornia Malayana; or, a descriptive catalogue of the species of the three longicorn families Lamiidae, Cerambycidae and Prionidae, collected by Mr. A. R. Wallace in the Malay Archipelago[J]. The Transactions of the Entomological Society of London (third series) 3, 1864: 1-96.
    [127]Gahan C J. Longicorn Coleoptera from Burma[J]. Ann Musciv Civ Genova, 1895, 34: 32-59.
    [128]Plavilshchkov N N. Fauna USSR, Insecta Coleoptera: Cerambycidae. Vol. 21. Lepturinae[M]. Moscow: Acad Sci, 1936. 105-477.
    [129]Danilevsky M L, Meroshnikov A L. Timber Beetles of Caucasus (in Russian) [M]. Krasnoder: Krasnoder Station of forest Protection. 1985. 120-163.
    [130]Samuelson G A, Gressitt J L. The Cerambycidae (Coleoptera) of the Ryukyu Archipelago I[J]. Pacific Insects, 1965, 7(1): 47-81.
    [131]Samuelson G A. The Cerambycidae (Coleoptera) of the Ryukyu Archipelago II, Lamiinae[J]. Pacific Insects, 1965, 7(1): 82-130.
    [132]Makihara H. Cerambycidae of Kuroshima Island, with descriptions of two new species and two new subspecies (Coleoptera)[J]. Esakia, 1977, 10: 45-69.
    [133]?zdikmen H. The longicorn beetles of Turkey (Coleoptera: Cerambycidae) Part I-Black sea region[J]. Mun Ent Zool, 2007, 2(2): 179-422.
    [134]Danilevsky, M L. A check-list of longicorn beetles (Coleoptera, Cerambycoidea) of Europe[M].. Ljubljana: Slovensko Entomolo?ko Dru?tvo ?tefana Michielija, 2007. 1-127 .
    [135]MonnéM A, Bezark L G. Checklist of the Cerambycidae (Coleoptera) of the Western Hemisphere[EB/OL]. http://www.hovore.com, 2007-01-31.
    [136]Bousquet Y, Heffern D J, Bouchard P, et al. Catalogue of family-group names in Cerambycidae (Coleoptera)[J]. Zootaxa, 2009, 2321: 1-80.
    [137]张荣祖.中国动物地理[M].北京:科学出版社, 1999.
    [138]唐艳龙,杨忠岐,魏建荣,等.栗山天牛研究进展[J].中国森林病虫, 2010, 29(3): 29-33.
    [139]黄原.分子系统学——原理、方法及应用[M].北京:中国农业出版社, 1998.
    [140]郭晓霞,郑哲民,于广志.酯酶同工酶多态性及其在昆虫分类学中的应用价值[J].昆虫知识, 2007, 37(6): 371-374.
    [141]李绍文.马铃薯叶甲属六个种的等位基因酶变异[J].昆虫学报, 1989, 32(3): 263-270.
    [142]聂传朋,李焰焰,崔亚东,等.叶甲科三亚科十三种叶甲酯酶同工酶的研究(鞘翅目,叶甲总科)[J].动物分类学报, 2007, 32 (1): 143-146.
    [143]Nowierski R M, McDermott G J, Bunnell J E, et al. Isozyme analysis of Aphthona species (Coleoptera: Chrysomelidae) associated with different Euphorbia species (Euphorbiaceae) and environmental types in Europe[J]. Annals of the Entomological Society of America, 1996, 89 (6): 858-868.
    [144]McDonald I C, Krysan J L, Johnson O A. Genetics of Diabrotica (Coleoptera: Chrysomelidae): inheritance of xanthine dehydrogenase, hexokinase, malate dehydrogenase, and esterase allozymes in two subspecies of D. longicornis[J]. Annals of the Entomological Society of America, 1982, 75(4): 460-464.
    [145]Piedrahita O, Ellis R, Bogart J P. Electrophoretic identification of the larvae of Diabrotica barberi and D. virgifera virgifera (Coleoptera: Chrysomelidae)[J]. Annals of the Entomological Society of America, 1985, 72 (4): 537-540.
    [146]邹平,叶辉,谭德勇,等.云南纵坑切梢小蠹四个地理种群同工酶比较研究[J].遗传, 1999, 21(6): 27-31.
    [147]周楠,毋亚梅,刘嘉宝,等.松纵坑切梢小蠹酯酶同工酶研究[J].云南林业科技, 2000, 93(4): 49-53.
    [148]谢寿安,吕淑杰,袁锋,等.华山松大小蠹不同龄期幼虫酯酶同工酶的比较研究[J].湖北农学院学报, 2002, 22(5): 387-393.
    [149]梁靓,段立清,尹凤民,等. 7种小蠹虫酯酶同工酶的比较研究[J].植物保护, 2007, 33(6): 70-74.
    [150]Carter M C, Robertson J L, Haack R A, et al. Genetic relatedness of North American populations of Tomicus piniperda (Coleptera: Scolytidae) [J]. Journal of Economic Entomology, 1996, 89 (6): 1345-1353.
    [151]杨秀芬,宗良炳.异色瓢虫(Harmonia axyridis)不同色斑型酯酶同工酶研究[J].河北农业大学学报, 1991, 14(1): 55-60.
    [152]汪桂玲,蒋葵,黄原. 5种瓢虫酯酶同工酶种间及种内变异的比较研究[J].陕西师大学报, 1998, 26(3): 91-94.
    [153]张迎春,郑哲民,杨建雄,等.五种瓢虫酯酶同工酶的比较研究及其在分类上的应用(鞘翅目:瓢虫科) [J].昆虫分类学报, 1999, 21(2): 123-127.
    [154]张思宇,迟德富,李鹤.不同色斑型异色瓢虫的同工酶比较[J].昆虫知识, 2008, 45(3): 426-431.
    [155]Ajiro K, Morishige H, Ikari T. Inheritance mode and geographic variation of esterase isozymes in yellow-spotted longicorn beetle, Psacothea hilaris (Pascoe) (Coleoptera: Cerambycidae)[J]. Bull Facul Agricul, Tottri Univ, 1995, 48: 9-15.
    [156]Sawamura N, Ajiro K, Kobara R, et al. Differences between the strains or sexes in various isozymes of the yellow-spotted longicorn beetle, Psacothea hilaris (Pascoe) (Coleoptera: Cerambycidae)[J]. Bull Facul Agricul, Tottri Univ, 1995, 48: 1-7.
    [157]李鹤,施宗伟,沈佐锐.三种瘤背豆象幼虫酯酶同工酶的比较研究[J].昆虫知识, 2001, 38(1): 62-64.
    [158]Martins E, Contel E P. African dung beetle Onthophagus gazella Fabricius (Coleoptera: Scarabaeidae) esterase isozymes. [J]. Brazilian journal of biology, 2001, 61 (4): 645-650.
    [159]Suzuki H, Sato Y, Fujiyama S, et al. Biochemical systematics of Japanese fireflies of the subfamily Luciolinae and their flash communication systems[J]. Biochem Genet, 1996, 34(5-6): 191-200.
    [160]Urbanelli S, Sallicandro P, De Vito E, et al. Molecular reexamination of the taxonomy of Ochthebius (Calobius) (Coleoptera: Hydraenidae) from the Mediterranean and Macaronesian Regions[J]. Annals of the Entomological Society of America , 1996, 89(5): 623-636.
    [161]Hennig W. Phylogenetic systematics[M]. Urbana: University of Illiois Press, 1966.
    [162]钟杨,李伟,黄德世.分支分类的理论与方法[M].北京:科学出版社, 1994.
    [163]程家安,唐振华.昆虫分子科学[M].北京:科学出版社, 2001.
    [164]Zuckerkandl E, Pauling L. Evolutionary Divergence and Convergence in Proteins. In: Evolving Genes and Proteins (Bryson and H J Vogel eds) V[M]. New York: Academic Press, 1965. 97-166.
    [165]Wiely E A, Johnson G D, Dimmick W W. The phylogenetic relationships of Lampridiform fishes (Teleostei: Acanthomorpha), based on a total evidence analysis of morphological and molecular data[J]. Molecular Phylogenetics and Evolution, 1998, 10: 417-425.
    [166]Nei M, Kumar S.吕宝忠,钟杨,高丽萍,等译.分子进化与系统发育[M].北京:高等教育出版社,2002.
    [167]杨子恒.计算分子进化[M].上海:复旦大学出版社, 2008.
    [168]Sokal R R, Michener C D. A statistical method for evaluating systematic relationship[J]. Sci Bull, 1958, 38: 1409-1438.
    [169]Edwards A W F, Cavalli-Sforza L L. The reconstruction of evolution[J]. Heredity, 1963, 18: 104-105.
    [170]Saitou N, Nei M. The neighbor-joining method: a new method for reconstruction phylogenetic trees [J]. Mol Biol Evol, 1987, 4: 406-425.
    [171]Eck R V, Dayhoff M O. Atlas of protein sequence and structure[M]. National Biomedical Research Foundation, Silver Spring, MD, 1961,161.
    [172]Fitch W M. Toward defining the course of evolution: minimum change for a specific tree topology [J]. Systematic Zoology, 1971, 20: 406-416.
    [173]Hartigan J A. Minimum evolution fits to a given tree[J]. Biometrics, 1973, 29: 53-65.
    [174]Cavalli-Sforza L L, Edwards A W F. Phylogenetic analysis: models and estimation procedures[J]. Evolution, 1967, 21: 550-570.
    [175]Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach[J]. Journal of Molecular Evolution, 1981, 17: 368-376.
    [176]Akaike H. A new look at the statistical model identification[J]. Automatic Control, IEEE Transactions on, 1974, 19: 716-723.
    [177]Rannala B, Yang Z. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference[J]. Journal of Molecular Evolution, 1996, 43: 304-311.
    [178]Huelsenbeck J P, Bollback J P. Empirical and hierachical Bayesian estimation of ancestral states[J]. Syst Biol, 2001, 50: 351-366.
    [179]Farrell B D, Sequeira A S. Evolutionary Rates in the Adaptive Radiation of Beetles on Plants[J]. Evolution, 2004, 58(9): 1984-2001.
    [180]Ober KA. Phylogenetic relationships of the carabid subfamily Harpalinae (Coleoptera) based on molecular sequence data[J]. Molecular Phylogenetics and Evolution, 2002, 24: 228-248.
    [181]Ober KA. Maddison D R. Phylogenetic relationships of tribes within Harpalinae (Coleoptera: Carabidae) as inferred from 28S ribosomal DNA and the wingless gene[J]. Journal of Insect Science, 2008, 8(63): 1-32.
    [182]Kim K, Hong M Y, Kim M J, et al. Complete mitochondrial genome sequence of the yellow-spotted long-horned beetle Psacothea hilaris (Coleoptera: Cerambycidae) and phylogenetic analysis among coleopteran insects[J]. Mol Cells, 2009, 27, 429-441.
    [183]Lunt D H, Zhang D X, Szymura J M, et al. The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies[J]. Insect Molecular Biology, 1996, 5(3): 153-165.
    [184]成新跃,周红章,张广学.分子生物学技术在昆虫系统学研究中的应用[J].动物分类学报, 2000, 25 (2): 121-133.
    [185]Brown W M, Prager M, Wang A, et al. Mitochondrial DNA sequences of primates: tempo and mode of evolution[J]. Journal of Molecular Evolution, 1982, 18: 225-239.
    [186]Vogler A P, Welsh A. Phylogeny of North American Cicindela Tiger Beetles Inferred from Multiple Mitochondrial DNA Sequences[J]. Molecular Phylogenetics and Evolution, 1997, 8(2): 225-235.
    [187]Cognato A I, Sperling A H. Phylogeny of Ips DeGeer Species (Coleoptera: Scolytidae) Inferred from Mitochondrial Cytochrome Oxidase I DNA Sequence[J]. Molecular Phylogenetics and Evolution, 2000, 14(3): 445-460.
    [188]Gomez-Zurita J, Juan C, Petitpierre E. The Evolutionary History of the Genus Timarcha (Coleoptera, Chrysomelidae) Inferred from Mitochondrial COII Gene and Partial 16S rDNA Sequences[J]. Molecular Phylogenetics and Evolution, 2000, 14(2): 304-317.
    [189]Maus C, Peschke K, Dobler S. Phylogeny of the Genus Aleochara Inferred from Mitochondrial Cytochrome Oxidase Sequences (Coleoptera: Staphylinidae)[J]. Molecular Phylogenetics and Evolution, 2001, 18(2): 202-216.
    [190]Ribera I, Nilsson A N, Vogler A P. Phylogeny and historica biogeography of Agabinae diving beetles (Coleoptera) inferred from mitochondrial DNA sequences[J]. Molecular Phylogenetics and Evolution, 2004, 30: 545-562.
    [191]Martinez-Navarro E M, Galián J, Serrano J. Phylogeny and molecular evolution of the tribe Harpalini (Coleoptera, Carabidae) inferred from mitochondrial cytochrome-oxidase I[J]. Molecular Phylogenetics and Evolution, 2005, 35:127-146.
    [192]Forgie S A, Kryger U, Bloomer P, et al. Evolutionary relationships among the Scarabaeini (Coleoptera: Scarabaeidae) based on combined molecular and morphological data[J]. Molecular Phylogenetics and Evolution, 2006, 40: 662-678.
    [193]Sota T, Bocak L, Masakazu Hayashi. Molecular phylogeny and historical biogeography of the Holarctic wetland leaf beetle of the genus Plateumaris[J]. Molecular Phylogenetics and Evolution, 2008, 46: 183-192.
    [194]Bologna M A, Oliverio M, Pitzalis M, et al. Phylogeny and evolutionary history of the blister beetles (Coleoptera, Meloidae)[J]. Molecular Phylogenetics and Evolution, 2008, 48: 679-693.
    [195]Angelini D R., Jockusch E L. Relationships among pest flour beetles of the genus Tribolium (Tenebrionidae) inferred from multiple molecular markers[J]. Molecular Phylogenetics and Evolution, 2008, 46:127-141.
    [196]Kolsch G, Pedersen B V. Molecular phylogeny of reed beetles (Col.,Chrysomelidae, Donaciinae): The signature of ecological specialization and geographical isolation[J]. Molecular Phylogenetics and Evolution, 2008, 48: 936-952.
    [197]黄永成,李伟丰,陆温,等.长蠹科几种检疫性害虫的ND4基因序列及系统进化[J].昆虫学报, 2001, 44(4): 494-500.
    [198]刘晓丽,任国栋. 9种拟步甲16S rDNA部分序列及其亲缘关系[J].河北大学学报(自然科学版), 2004, 24(4): 399-405.
    [199]付景,张迎春. 27种瓢虫mtDNACOI基因序列分析及系统发育研究(鞘翅目:瓢虫科)[J].昆虫分类学报, 2006, 28(3): 179-186.
    [200]郑福山,杜予州,王志杰,等.基于线粒体COI基因序列的小萤叶甲属部分种类分子系统学研究(鞘翅目:叶甲科:萤叶甲亚科)[J].昆虫学报, 2007, 50 (5): 501-507.
    [201]代金霞,张大治.基于线粒体COII和Cytb基因序列的8种漠甲系统发育关系[J].昆虫知识, 2008, 45(4): 554-558.
    [202]代金霞,张大治,杨俊杰.拟步甲科部分种类Cytb基因序列比较及系统发育分析[J].宁夏大学学报(自然科学版), 2008, 29(1): 74-77.
    [203]吴卫,李冠.新疆十种萤叶甲亚科(鞘翅目:叶甲科)昆虫的分子系统发育关系及在生活型进化上的应用[J].昆虫学报, 2010, 35 (3): 523-529.
    [204]Hillis D M, Dixon M T. Ribosomal DNA: molecular evolution and phylogenetic inference[J]. Quaterly Review of Biology, 1991, 66: 411-453.
    [205]Gillespie J J, Munro J B, Heraty J M, et al. A secondary structural model of the 28SrRNA expansion segments D2 and D3 for Chalcidoid Wasps (Hymenoptera:Chalcidoidea)[J]. Mol Biol Evol, 2005, 22: 1593-1608.
    [206]Lin C P, Danforth B N. How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets[J]. Molecular Phylogenetics and Evolution, 2004, 30 (3): 686-702.
    [207]Lawrence J F, Britton E B. Australia Beetles[M]. Carleton: Melbourne University Press, 1991. 1-137.
    [208]Beutel R, Hass F. Phylogenetic relationships of the suborders of Coleptera (Insecta) [J]. Clasdistics, 2000, 16: 103-141.
    [209]葛斯琴,杨星科,李文柱,等.鞘翅目系统演化关系研究进展[J].动物分类学报, 2003, 28 (4): 599-605.
    [210]Shull V L, Vogler A P, Baker M D, et al. Sequence alignment of 18S ribosomal RNA and the basalrelationships of adephagan beetles: evidence for monophyly of aquatic families and the placement of Trachypachidae[J]. Systematic Biology, 2001, 50(6): 945-969.
    [211]Caterino M S, Shull V L, Hammond P M, et al. Basal relationships of Coleoptera inferred from 18S rDNA sequences[J]. Zoologica Scripta, 2002, 31: 41-49.
    [212]Hughes J, Longhorn S J, Theodorides K, et al. Dense taxonomic EST sampling and its applications for molecular systematics of the Coleoptera (Beetles) [J]. Molecular Biology and Evolution, 2006, 23(2): 268-278.
    [213]Hunt T, Bergsten J, Levkanicova Z, et al. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation[J]. Science, 2007, 318 (5858): 1913-1916.
    [214]Farrell.“Inordinate fondness”Explained: Why are these so many beetles? [J]. Science, 1998, 281: 555-559.
    [215]Kim C G, Zhou H Z, Imura Y, et al. Pattern of morphological diversification in the Leptocarabus ground beetles Coleoptera, Carabidae as deduced from mitochondrial ND5 gene and nuclear 28S rDNA sequences[J]. Mol Biol Evol, 2000, 17: 137-145.
    [216]Gomez-Zurita J, Juan C, Petitpierre E. Sequence, secondary structure and phylogenetic analyses of the ribosomal internal transcribed spacer 2 (ITS2) in the Timarcha leaf beetles (Coleoptera: Chrysomelidae) [J]. Insect Molecular Biology, 2000, 9 (6): 591-604.
    [217]Sota T, Takami Y, Monteith G B. Phylogeny and character evolution of endemic Australian carabid beetles of the genus Pamborus based on mitochondrial and nuclear gene sequences[J]. Molecular Phylogenetics and Evolution, 2005, 36: 391-404.
    [218]Sagemami-Oba R, Oba Y, Ohira H. Phylogenetic relationships of click beetles (Coleoptera: Elateridae) inferred from 28S ribosomal DNA: Insights into the evolution of bioluminescence in Elateridae[J]. Molecular Phylogenetics and Evolution, 2007, 42: 410-421.
    [219]Sagemami-Oba R, Takahashi N, Oba Y. The evolutionary process of bioluminescence and aposematism in cantharoid beetles (Coleoptera: Elateroidea) inferred by the analysis of 18S ribosomal DNA[J]. Gene, 2007, 400: 104-113.
    [220]Monaghan M T, Inward D J, Hunt T, et al. A molecular phylogenetic analysis of the Scarabaeinae (dung beetles)[J]. Molecular Phylogenetics and Evolution, 2007, 45: 674-692.
    [221]Gómez-Zurita J, Hunt T, Kopliku F, et al. Recalibrated tree of leaf beetles (Chrysomelidae) indicates independent diversification of angiosperms and their insect herbivores[J]. PloS ONE, 2007, 2: 1-8.
    [222]Gómez-Zurita J, Garneria I, Petitpierre E. Molecular Phylogenetics and evolutionary analysis of body shape in the genus Crytonus (Coleoptera, Chrysomeloidae)[J]. Journal of Zoological Systematics and Evolutionary Research, 2007, 45: 317-328.
    [223]Gómez-Zurita J, Hunt T, Vogler A P. Multilocus ribosomal RNA phylogeny of the leaf beetles (Chrysomelidae)[J]. Cladistics, 2008, 24: 34-50.
    [224]Marvaldi A E, Duckett C N, Kjer K M, et al. Structural alignment of 18S and 28SrDNA sequences provides insights into phylogeny of Phytophaga (Coleoptera: Curculionoidea and Chrysomeloidea)[J]. Zoologica scripta, 2009, 38: 63-77.
    [225]Ruiz C, Jordal B, Serrano J. Molecular phylogeny of the tribe Sphodrini (Coleoptera: Carabidae) based on mitochondrial and nuclear markers[J]. Molecular Phylogenetics and Evolution, 2009, 50: 44-58.
    [226]Sasakawa K, Kubota K. Phylogeny of ground beetles subgenus Nialoe (s. lat.) Tanaka (Coleoptera: Carabidae; genus Pterostichus): A molecular phylogenetic approach[J]. Entomological Science, 2009, 12: 303-313.
    [227]江世宏,陈晓琴,吴深健.基于28SrDNA的叩甲科分子系统发育关系研究[J].昆虫学报, 2009, 52 (1): 74-83.
    [228]Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual[M]. New York: Coldspring Harbor Laboratory Press, Cold Spring Harbor, 1989.
    [229]Simon C, Frati F, Beckenbach A, et al. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers[J]. Annals of the Entomological Society of America, 1994, 87: 651-701.
    [230]Kim C G, Zhou H Z, Imura Y, et al. Pattern of morphological diversification in the Leptocarabus ground beetles Coleoptera, Carabidae as deduced from mitochondrial ND5 gene and nuclear 28SrDNA sequences[J]. Mol Biol Evol, 2000, 17: 137 - 145.
    [231]Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Res, 1997, 25: 4876-4882.
    [232]Swofford D L. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4 [M]. Massachusetts: Sinauer Associates, Sunderland, 2002.
    [233]Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular evolutionary genetics analysis (MEGA) Software Version 4.0[J]. Mol Biol Evol, 2007, 24, 1596-1599.
    [234]Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data [J]. Molecular Phylogenetics and Evolution, 1997, 14: 685-695.
    [235]Huelsenbeck J P, Ronquist F. MRBAYES, Bayesian inference of phylogenetic trees[J]. Bioinformatics, 2001, 17: 754-755.
    [236]Posada D, Crandall K A. MODELTEST: testing the model of DNA substitution[J]. Bioinformatics, 1998, 14: 817-818.
    [237]Yang Z, Rannala B. Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method[J]. Journal of Molecular Evolution, 1997, 14: 717-724.
    [238]Huelsenbeck J P, Ronquist F, Nielsen R, et al. Bayesian inference of phylogeny and its impact on evolutionary biology[J]. Science, 2001, 294: 2310-2214.
    [239]Liu H, Beckenbach A T. Evolution of the cytochrome oxidase II gene among 10 orders of insects[J]. Molecular Phylogenetics and Evolution, 1992, 1: 41-52.
    [240]Juan C, Oromi P, Hewitt G M. Mitochondrial DNA phylogeny and sequential colonisation of Canary Islands by darkling beetles of the genus Pimelia (Tenebrionidae)[J]. Proceedings of the Royal Society of London B (Biological Sciences), 1995, 261, 173-180.
    [241]邹方振,郝家胜,黄敦元,等.基于线粒体ND1和16SrRNA基因序列探讨中国蝴蝶12科的系统发育关系(鳞翅目:双孔次亚目:蝶类)[J].昆虫学报, 2009, 52(2): 191-201.
    [242]Jordal B H. Reconstructing the phylogeny of Scolytinae and close allies: major obstacles and prospects for a solution[J]. USDA For Serv Proc, 2007, 45: 3-9.
    [243]Mestrovic N, Mravinac B, Plohl M, et al. Preliminary phylogeny of Tribolium beetles (Coleoptera: Tenebrionidae) resolved by combined analysis of mitochondrial genes [J]. Eur J Entomol, 2006, 103: 709-715.
    [244]Pons J, Vogler A P. Complex pattern of coalescence and fast evolution of a mitochondrial rRNA pseudogene in a recent radiation of tiger beetles[J]. Mol Biol Evol, 2005, 22: 991-1000.
    [245]Richly E, Leister D. Numts in sequenced eukaryotic genomes[J]. Mol Biol Evol, 2004, 21: 1081-1084.
    [246]Crick F H C. The Nucleic Acid, Vol.3[M]. Academic Press, 1960.
    [247]Brandrup J, Immergut E H. Polymer Handbook[M]. New York: Interscience publishers, 1974. 337-360.
    [248]Adams M J, Antoniw J F. Codon usage bias amongst plant viruses[J]. Archives of Virology, 2003, 149: 113-135.
    [249]Caterino M S, Cho S, Sperling F A H. The current state of insect molecular systematics: a thriving tower of babel[J]. Annu Rev Entomo, 2001, 45: 1-54.
    [250]Altner H, Prillinger L. Ultrastructure of invertebrate chemo-, thermo-, and hygroreceptors and itsfunctional significance[J]. Int Rev Cytol, 1980, 67: 69-139.
    [251]Steinbrecht R A. Pore structures in insect olfactory sensilla: a review of data and concepts[J]. Int J Insect Morphol Embryol, 1997, 26: 229-245.
    [252]Keil T A. Morphology and development of the peripheral olfactory organs. In: Hansson BS (ed) Insect olfaction[M]. New York: Springer, Berlin Heidelberg, 1999. 5-47.
    [253]Schneider D. Insect antennae[J]. Annu Rev Entomol, 1964, 9: 103-122.
    [254]韩风英,李江颂,裴建文.八种蜻蜓触角感受器的研究[J].山西大学学报(自然科学版), 1994, 17(4): 428-432.
    [255]Hu F, Zhang G N, Wang J J. Scanning electron microscopy studies of antennal sensilla of bruchid beetles, Callosobruchus chinensis (L.) and Callosobruchus maculatus (F.) (Coleoptera: Bruchidae)[J]. Micron, 2009, 40: 320-326.
    [256]Li N, Ren B Z, Liu M. The study on antennal sensilla of eight Acrididae species (Orthoptera: Acridoidea) in Northeast China[J]. Zootaxa, 2007, 1544: 59-68.
    [257]郝家胜,殷先兵,苏成勇,等. 12科国产蝶类代表种类触角的扫描电镜观察及其系统学意义[J].安徽师范大学学报(自然科学版), 2007, 30 (3): 354-360.
    [258]肖波,方宁,张妍妍,等.蜚蠊目(六足总纲,昆虫纲)八种昆虫触角感受器的扫描电镜观察[J].动物分类学报, 2009, 34 (2): 292-300.
    [259]邵奇妙,张龙,李文,等.东亚飞蝗触角感受器的外部形态及分布[J].中国农业大学学报, 2002, 7(1): 83-88.
    [260]Renthal R, Velasquez D, David Olmos, et al. Structure and distribution of antennal sensilla of the red imported fire ant[J]. Micron, 2003, 34: 405-413.
    [261]Nakanishi A, Nishino H, Watannabe H, et al. Sex-specific antennal sensory system in the ant Camponotus japonicus: structure and distribution of sensilla on the flagellum[J]. Cell Tissue Res, 2009, 338: 79-97.
    [262]苏翠荣,蔡自力.大别山越南蜉触角感受器的扫描电镜观察[J].昆虫学报, 1994, 37(4): 382-384.
    [263]Silva C C A, Capdeville G D, Moraes M C B, et al. Morphology, distribution and abundance of antennal sensilla in three stink bug species (Hemiptera: Pentatomidae)[J]. Micron, 2010, 41: 289-300.
    [264]Shambaugh G F, Frazier J L, Castell E M, et al. Antennal sensilla of seventeen aphid species (Homoptera : Aphidinae) [J]. Int J Insect Morphol Embryol, 1978, 7(5-6): 389-404.
    [265]Volkovitsh M G. The comparative morphology of antennal structures in Buprestidae (Coleoptera): evolutionary trends, taxonomic and phylogenetic implications Part1[J]. Acta Musei Moraviae Scientiae Biologicae (Brno), 2001, 86: 43-169.
    [266]Kim J L, Yamasaki T. Sensilla of Carabus (Isiocarabus) fiducarius saishutoicus Csiki (Coleoptera: Carabidae) [J]. Int J Insect Morphol Embryol, 1996, 25: 153-172.
    [267]Merivee E, Ploomi A, Rahi M, et al. Antennal sensilla of the ground beetle Platynus dorsalis (Pontoppidan, 1763) (Coleoptera: Carabidae) [J]. Microsc Res Technol, 2001, 55: 339-349.
    [268]Merivee E, Ploomi A, Rahi M, et al. Antennal sensilla of the ground beetle Bembidion properans Steph. (Coleoptera: Carabidae) [J]. Micron, 2002, 33: 429–440.
    [269]刘桂清,田明义.奇步甲触角感器电镜扫描观察和触角电位反应[J].华南农业大学学报, 2008, 29 (2): 50-55.
    [270]Merivee E. Antennal sensilla of the female and male elaterid beetle Agriotes obscurus L. (Coleoptera: Elateridae)[J]. Proc Estonian Acad Sci Biol, 1992, 41: 189-215.
    [271]Merivee E, Rahi M, Luik A. Antennal sensilla of the click beetle, Melanotus villosus (Geoffroy)(Coleoptera: Elateridae) [J]. Int J Insect Morphol Embryol, 1999, 28: 41-51.
    [272]Merivee E, Rahi M, Bresciani J, et al. Antennal sensilla of the click beetle, Limonius Aeruginosus (Olivier) (Coleoptera: Elateridae) [J]. Int J Insect Morphol Embryol, 1998, 27: 311-318.
    [273]毋亚梅,周楠,张立新,等.松纵坑切梢小蠹成虫触角的扫描电镜观察[J].西南林学院学报, 2000, 20(1): 40-47.
    [274]王玉刚,张真,王鸿斌,等.红脂大小蠹成虫触角扫描电镜的观察[J].林业科学研究, 2003, 16(6): 726-730.
    [275]陈辉,李宗波,唐明.华山松大小蠹成虫触角感受器的扫描电镜观察[J].林业科学, 2006, 42(11): 156-159.
    [276]杨群芳,韩菊兰,李庆.光滑足距小蠹成虫触角感受器的电镜扫描观察[J].昆虫知识, 2010, 47(3): 520-524.
    [277]Hallberg E. Sensory organs in Ips typographus (Insecta: Coleoptera) fine structure of antennal sensilla[J]. Protoplasma, 1982, 111: 206-214.
    [278]Inouchi J, Shibuyaa T, Matsuzakia O, et al. Distribution and fine structure of antennal olfactory sensilla in Japanese dung beetles, Geotrupes auratus Mtos. (Coleoptera: Geotrupidae) and Copris pecuarius Lew. (Coleoptera: Scarabaeidae)[J]. Int J Insect Morphol Embryol, 1987, 16: 177-187.
    [279]Srivastava S,Omkar. Scanning electron microscopy of antennae of Coccinella septempunctata (Coccinellidae: Coleoptera)[J]. Entomologia Sinica, 2003, 10(4), 271-279.
    [280]韩宝瑜,陈宗懋,王梅.七星瓢虫和异色瓢虫3变种成虫触角感器扫描电镜观察[J].华东昆虫学报, 2000, 91: 24-28.
    [281]刘建武,迟德富,王广利,等.奇变瓢虫触角的电镜扫描观察[J].东北林业大学学报, 2006, 34(4): 114-117.
    [282]Jourdan H, Barbier R, Bernard J. et al. Antennal sensilla and sexual dimorphism of the adult ladybird beetle Semiadalia undecimnotata Schn. (Coleoptera: Coccinellidae)[J]. Int J Insect Morphol Embryol, 1995, 24: 307-322.
    [283]Smith C M, Frazierb J L, Coonset L B, et al. Antennal sensilla of the clover head weevil Hypera Meles (F.) (Coleoptera: Curculionidae)[J]. Int J Insect Morphol Embryol, 1976, 5: 349-355.
    [284]姚永生,袁国辉,罗梅浩.铜绿丽金龟成虫触角感受器的超微结构观察[J].华东农学报, 2004, 19(3): 96-99.
    [285]Crook D J, Kerr L M, Mastro L M. Distribution and Fine Structure of Antennal Sensilla in Emerald Ash Borer (Coleoptera: Buprestidae)[J]. Annals of the Entomological Society of America, 2008, 101(6): 1103-1111.
    [286]刘玉双,石福明.红缘吉丁(鞘翅目:吉丁虫科)触角感器的扫描电镜观察[J].昆虫学报, 2005, 48(3): 469-472.
    [287]李秀敏,任国栋,王新谱.中华豆芫菁的触角感器与类型分布[J].河北大学学报(自然科学版), 2009, 29(4): 421-426.
    [288]杨贵军,张大治,孙晶莹.沟眶象触角感器的扫描电镜观察[J].昆虫知识, 2008, 45 (6): 926-931.
    [289]Dyer L J, Seabrook W D. Sensilla on the antennal flagellum of the Sawyer Beetles Monochamus notatus (Drury) and Monochamus scutellatus (Say) (Coleoptera: Cerambycidae)[J]. J Morphol, 1975, 146: 513-532.
    [290]Dai H, Honda H. Sensilla on the antennal flagellum of the yellow spotted longicorn beetle, Psacothea hilaris (Pascoe) (Coleoptera: Cerambycidae) [J]. Appl Entomol Zool, 1990, 25: 273-295.
    [291]Lopes O, Barata E N, Mustaparta H, et al. Fine structure of antennal sensilla basiconica and their detection of plant volatiles in the eucalyptus woodborer, Phoracantha semipunctata Fabricius (Coleoptera: Cerambycidae) [J]. Arthropod Struct Dev, 2002, 31: 1-13.
    [292]Crook D J, Higgins R A, Ramaswamy S B. Antennal morphology of the soybean Dectes texanus texanus LeConte (Coleoptera: Cerambycidae)[J]. J Kansas EntomolSoc, 2003, 76: 397-405.
    [293]尹新明,蒋书楠.狭胸天牛幼虫触角主感器及下颚须和下唇须感受器扫描电镜观察[J].河南农业大学学报, 1995, 25(4): 374-377.
    [294]胡江,李义龙,刘剑虹,等.麻点豹天牛成虫感器的扫描电镜研究[J].电子显微学报, 2001, 20(4): 499-500.
    [295]宁眺,刘拥军,孙江华.松墨天牛成虫头部感受器超微结构的观察[J].昆虫知识, 2004, 41(6): 566-571.
    [296]韩颖,张青文,路大光.松褐天牛触角感器的扫描电镜观察[J].昆虫知识, 2005, 42(6): 681-685.
    [297]王四宝,周弘春,苗雪霞,等.松褐天牛触角感器电镜扫描和触角电位反应[J].应用生态学报, 2005, 16(2): 317-322.
    [298]孙飞,李祥瑞,刘小侠,等.松褐天牛六种类型的触角感器的超微结构[J].昆虫知识, 2010, 47(2): 347-354.
    [299]程红,严善春,徐波,等.青杨脊虎天牛触角主要感器的超微结构及其分布[J].昆虫知识, 2008, 45(2): 223-232.
    [300]诸葛飘飘,葛红梅,王满囷,等.桑天牛头部附器感器的扫描电镜观察[J].昆虫知识, 2009, 46(2): 238-243.
    [301]阎雄飞,孙月琴,刘永华,等.光肩星天牛触角感受器的环境扫描电镜观察[J].林业科学, 2010, 46(11): 104-113.
    [302]诸葛飘飘,罗森林,王满囷,等.云斑天牛头部附器感器的扫描电镜观察[J].林业科学,2010,116-123.
    [303]Lopes O, Marques P C, Araujo J. The Role of Antennae in Mate Recognition in Phoracantha semipunctata (Coleoptera: Cerambycidae)[J]. J Insect Behav, 2005, 18: 243-257.
    [304]Zacharuk R Y. Ultrastructure and function of insect chemosensilla [J]. Ann Rev Entomol, 1980, 25: 27-47.
    [305]Zacharuk R Y. Antennae and sensilla, In G. A. Kerkut and L. Y. Gilbert [eds.], Comprehensive insect physiology, biochemistry and pharmacology, vol. 6 [M]. Oxford(United Kingdom): Pergamon, 1985. 1-69.
    [306]路常宽,王晓勤.苹毛丽金龟触角嗅感器超微结构[J].昆虫学报, 2009, 52(1): 39-45.
    [307]马瑞燕,杜家纬.昆虫的触角感器[J].昆虫知识, 2000, 37(3): 179-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700