元素替代对Zr基AB_2型贮氢合金相结构与电化学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Zr基AB_2型贮氢合金具有放电容量高、循环寿命长等优点,具有较好的应用前景,作为Ni/MH电池的负极材料一直受到广泛的关注。本文首先对贮氢合金的贮氢原理以及对Zr基AB_2型贮氢合金贮氢性能的影响因素做了较为全面的综述。并在此基础上确定以多元合金化为技术路线,利用XRD、SEM、EDX和电化学测试等手段研究替代元素对合金电化学性能的影响及其作用机理。
     采用元素Ti替代合金ZrCr_(0.4)Mn_(0.4)Ni_(1.2)中的Zr时发现,合金的相结构为C15型Laves相和C14型Laves相以及少量Zr_9Ni_(11)相组成的多相结构。当x=0.1时,合金中C15相的含量达到最大,并随着Ti的掺杂量的增加,C15相逐渐向C14相转变,合金中的非Laves相逐渐减少,并在x=0.4时消失。Ti的掺入有利于C15型Laves相向C14型Laves相转变,并且抑制非Laves相的产生。电化学测试结果表明,加入少量Ti有利于合金活化性能和放电容量的提高,当x=0.1和0.2时,合金电极的活化性能最好,当x=0.1时,合金具有最大放电容量为274mAh/g,并且Ti的掺入有利于合金循环稳定的提高。线性极化、阳极极化、恒电位阶跃和交流阻抗测试表明,随着Ti的掺入量的增加,合金电极的交换电流密度与极限电流密度都是先增加后减小,x=0.1时,合金电极具有最大的交换电流密度和极限电流密度,同时交流阻抗测试也表明,在x=0.1时,合金电极的电化学反应阻抗最小,说明少量Ti的加入有利于合金电极动力性能的提高。
     在上述研究的基础上,选择综合电化学性能最好的Zr_(0.9)Ti_(0.1)Cr_(0.4)Mn_(0.4)Ni_(1.2)为研究对象,采用元素V替代合金中的Cr,系统研究了V的替代对合金Zr_(0.9)Ti_(0.1)V_xCr_(0.4-x)Mn_(0.4)Ni_(1.2)(x=0~0.3)的电化学性能的影响,结果发现随着V的替代量的增加,合金的活化性能逐渐降低,合金的放电容量则逐渐提高,当x=0.3时,合金具有最大放电容量为314.8 mAh/g。V替代Cr提高了合金的循环稳定性,同时降低了合金的高倍率放电性能。通过P-C-T测试可以看出,随着V替代量的增加,合金的放氢平台压呈下降趋势,合金的放氢容量逐渐增大。线性极化和阳极极化测试结果可以看出,随着V替代量的增加,合金的交换电流密度和极限电流密度按V_0>V_(0.2)>V_(0.3)>V_(0.1)的次序递减,恒电位阶跃测定氢在合金中的扩散系数的变化规律与其一致。通过交流阻抗测试可以看出,随着V替代量的增加,合金电极的反应电阻逐渐增大。
Zr-based AB_2 type Laves phase hydrogen storage alloys have been extensively investigated as Ni/MH battery anode material which have good application prospects, because of its much higher discharge capacity and longer life. In this paper, the principle of hydrogen storage alloy and the factors affecting properties of hydrogen storage alloys have been comprehensively reviewed. Based on the review above, multi-component alloying was chosen to research the effect to the properties of hydrogen storage alloys by substituting elements and its mechanism by means of XRD、SEM、EDX and electrochemical methods et al.
     The effects of substituting Ti for Zr on the phase structures and the electrochemical properties of ZrCro.4Mn_(0.4)Ni_(1.2) have been investigated. The phase structures mainly include C15 Laves phase and C14 Laves phase, with a little second phase Zr_9Ni__(11) in it. When x=0.1, the content of C15 Laves phase reaches maximum. With the content of Ti increasing, C15 Laves phase gradually converts to C14 Laves phase, while the second phase gradually decreasing. When x=0.4, the second phase disappears. The addition of Ti is propitious to convert C15 Laves phase into C14 Laves phase, and inhibit the formation of the second phase. The electrochemical test results show that it is conducive to the activating performance and discharge capacity increase by adding a small amount of Ti in the alloy. When x=0.1 or 0.2, the alloy has best activating properties. When x=0.1, the alloy exhibits the maximum discharge capacity 274 mAh/g. The addition of Ti can elevate the discharge cycle stability of the hydrogen storage alloys. The linear polarization, the anode polarization, the constant potential step and the EIS test show that the exchange current density and the limiting current density first increase then decrease with the content of Ti increasing. When x=0.1, the hydrogen storage alloy electrode exhibit the maximum exchange current density and limiting current density. The EIS test show that the reaction impedance is the minimum among the alloys when x=0.1, which notes that the addition of a small amount of Ti in the alloy electrode is conducive to the improvement of dynamic performance.
     Choosing Zr_(0.9)Ti_(0.1)Cr_(0.4)Mn_(0.4)Ni_(1.2) alloy as the research object which possesses the best comprehensive electrochemical properties based on the study above. Cr in the alloy was partly substituted by V, and the effect to the electrochemical properties of Zr_(0.9)Ti_(0.1)V_xCr_(0.4-x)Mn_(0.4)Ni_(1.2)(x=0~0.3)alloys by substitute V for Cr are investigated. It is found that the discharge capacity increases while the activate properties improved with the content of V. When x =0.3, the alloy exhibits the maximum discharge capacity 314.8 mAh/g. It improves the discharge cycle stability by substituting Cr for V, which decreases the high rate discharge ability at the same time. The pressure platform of P-C-T curves decreases during the hydrogen discharge, while the hydrogen discharge capacity increases as the content of V increased. It is found that the exchange current density and the limiting current density descends by V_0> V__(0.2)> V_(0.3)> V_(0.1) as the linear polarization and the anode polarization result indicating. The diffusion coefficient tested by the constant potential step basically follows the trends above. The reaction impedance increases with the content of V increasing in the alloy that can be seen from the EIS test.
引文
[1]尚福亮,杨海涛,韩海涛.金属贮氢材料研究概况[J].稀有金属快报,2006,25(2):11-16
    [2]Luo W,Ronnebro E.Towards a viable Hydrogen Storage System for transportation application[J].Journal of Alloys and Compounds,2005,404-406:392-395
    [3]Thallapally Praveen K,Lloyd Gareth O,Wirsing Trevor B,et al.Organic Crystals absorb Hydrogen Gas Under mild Conditions[J].Chemical Communications,2005,42(5):272-274
    [4]胡子龙.贮氢材料[M].北京:化学工业出版社,2002:11-30
    [5]Johnston Brenda,Mayo Michael C,Khare Anshuman,et al.Hydrogen:the Energy Source for the 21st century[J].Teehnovation,2005,25(6):569-585
    [6]曹大力,杜屏,冷海燕,等.储氢合金的研究与应用[J].特种铸造及有色冶金,2003,6:36-38
    [7]许炜,陶占良,陈军.贮氢研究进展[J].化学进展,2003,18(2):200-210
    [8]董桂霞,朱磊,杜军,等.低温MH/Ni电池负极材料研究方法[J].材料导报,2005,19(10):104-106
    [9]李克杰,李全安,李守英,等.稀土Dy和Sm对贮氢合金微观结构和电化学性能的影响[J].材料热处理学报,2006,27(12):18-20
    [10]余学斌,吴铸,黄太仲,等.贮氢合金的活化及其活化性能改善[J].材料导报,2004,18(5):85-88
    [11]周柳,吕东生,郭先锋,等.稀土系贮氢合金的改性研究进展[J].中国稀土学报,2005,23:82-89
    [12]王国清,张羊换,赵栋梁,等.Fe替代Co对AB_5型贮氢合金电化学性能和相结构的影响[J].金属功能材料,2006,13(2):4-7
    [13]李平,王新林,吴建民,等.AB_2型Laves相贮氢电极材料的研究进展[J].金属功能材料,2000,7(2):7-12
    [14]杨晓光,舒康颖,张孝彬,等.La合金化对AB_2型Zr系贮氢合金电极性能的影响[J].金属功能材料,1998,5(2):74-76
    [15]张羊换,王国清,董小平,等.AB_2型Laves相贮氢合金的研究进展[J].金属功能材料,2005,12(4):25-30
    [16]吴煜明,雷永泉,吴京,等.机械合金化Mg-Ni基非晶态贮氢合金的电化学特性[J].稀有金属材料与工程,1997,26(3):26-29
    [17]严义刚,闫康平,陈云贵.钒基固溶体型贮氢合金的研究进展[J].稀有金属,2004,28(4):738-743
    [18]廖彬,雷永泉,陈幼玲.La-Mg-Ni系多元AB_3型贮氢电极合金研究进展[J].云南大学学报,2005,27(5):613-620
    [19]Kadir K,Kuriyama N,Sakai T,et.al.Structural investigation and hydrogen capacity of CaMg_2Ni_9:a new phase in the AB_2C_9 system isostructural with LaMg_2Ni_9[J].Journal of Alloys and Compounds,1999,284:145-154
    [20]王国清,张羊换,王煜,等.快淬对La_(0.67)Mg_(0.33)(NiCo)_3贮氢合金电化学性能的影响[J].稀土,2006,27(6):24-27
    [21]Zilttel A,Felix M,Chartouni D,et al.Electrochemical and surface properties of low cost,cobalt-free LaNi_5-type hydrogen storage alloys[J].Journal of Alloys and Compounds,1995,23:175-182
    [22]Zuttel A,Felix M,Schlapbach L,et al.AB_2 and AB_5 metal hydride electrodes:a phenomenological model for the cycle life[J],Journal of Alloys and Compounds,1994,20:235-241
    [23]胡秀荣,顾建明,陈林深,等.贮氢合金Zr(Mn_(1-x)Ni_x)_2的相结构[J],材料研究学报,1999,13(2):129-134
    [24]Bououdina M,Soubeyroux J L,Fruchart D,Study of the ZrCr_(0.7)Ni_(1.3)multiphased system under hydrogen pressure by in-situneutron diffraction[J].Journal of Alloys and Compounds,2000,311(2):248-251
    [25]Bououdina M,Soubeyroux J L,Fruchart D.Study of the hydrogenation/dehydrogenation processes of ZrCr_(0.7)Ni_(1.3),a Laves phase-rich multi-component system,by in-situ neutron diffraction under hydrogen gas pressure[J].Journal of Alloys and Compounds,2001,327(1-2):185-194
    [26]杨晓光,雷永泉,于进云,等.AB_2型锆基储氢合金[J].上海有色金属,1994,15(1):8-14
    [27]Sawa H,Wakao S.Electrochemical properties of Zr-V-Ni system hydrogen absorbing alloys of face-centered cubic structure[J].Materials Translations,1990,31(6):487-492
    [28]Sun J C,Li S,Ji S J.The effects of the substitution of Ti and La for Zr in ZrMn_(0.7)V_(0.2)Co_(0.1)Ni_(1.2)hydrogen storage alloys on the phase structure and electrochemical properties[J].Journal of Alloys and Compounds,2007,446-447:630-634
    [29]Shu K Y,Zhang S K,Lei Y Q,et al.Effect of Ti on the structure and electrochemical performance of Zr-based AB_2 alloys for nickel-metal rechargeable batteries[J].Journal of Alloys and Compounds,2003,349(1-2):237-241
    [30]Du Y L,Yang X C,Zhang Q A,et al.Phase structures and electrochemical properties of the Laves phase hydrogen storage alloys Zr_(1-x)Ti_x(Ni_(0.6)Mn_(0.3)V_(0.1)Cr_(0.05))_2[J].International Journal of Hydrogen Energy,2001,26:333-337
    [31]Visintin A,Peretti H A,Tori C A,et al.Hydrogen absorption characteristics and electrochemical properties of Ti substituted Zr-based AB_2 alloys[J].International Journal of Hydrogen Energy,2001,26(7):683-689
    [32]李嵩,季世军,孙俊才.Ti、La对贮氢合金ZrMn_(0.7)V_(0.2)Co_(0.1)Ni_(1.2)相结构和电化学性能的影响[J].功能材料,2004,35(3):308-310
    [33]Jung J H,Lee K Y,Lee J Y.The activation mechanism of Zr-based alloy electrodes[J].Journal of Alloys and Compounds,1995,226:166-169
    [34]Joubert J M,Sun D L,Latroche M,et al.Electrochemical performances of ZrM_2(M=V,Cr,Mn,Ni)Laves phases and the relation to microstructures and thermodynamical properties[J].Journal of Alloys and Compounds,1997,253-254:564-569
    [35]Yang X G,Lei Y Q,Shu K Y,et al.Contribution of rare-earths to activation property of Zr-based hydride electrodes[J].Journal of Alloys and Compounds,1999,293-295:632-636
    [36]Park H Y,Chang I,Chob W I,et al.Electrode characteristics of the Cr and La doped AB2-type hydrogen storage alloys.International J Hydrogen Energy,2001,26(9):949-955
    [37]Cracco D,Percheron A.Morphology and hydrogen absorption properties of an AB_2 type alloy ball milled with Mg_2Ni.Journal of Alloys and Compounds,1998,268(1-2):248-255
    [38]Yang H W,Jenq S N,Wang Y Y,et al.Hydrogen absorption-desorption characteristics of Ti_(0.35)Zr_(0.65)Ni_xV_(2-x-y)Mn_y alloys with C14 Laves phase for nickel/metal hydride batteries.Journal of Alloys and Compounds,1995,227(1):69-75
    [39]Song M Y,Ahn D,Kwon I,et al.Development of AB_2-type Zr-Ti-Mn-V-Ni-Fe hydride electrodes for Ni-MH secondary batteries[J].Journal of Alloys and Compounds,2000,298(1-2):254-260
    [40]Yang X G,Lei Y Q,Zhang W K,et al.Effect of alloying with Ti,V,Mn on the electrochemical properties of Zr-Cr-Ni based Laves phase metal hydride electrodes[J].Journal of Alloys and Compounds,1996,243(1-2):151-155
    [41]Park J G,Jang H Y,Han S C,et al.The thermodynamic properties of Ti-Zr-Cr-Mn Laves phase alloys[J].Journal of Alloys and Compounds,2001,325(1-2):293-298
    [42]Du Y L,Yang X G,Lei Y Q,et al.Hydrogen storage properties of Zr_(0.8)Ti_(0.2)(Ni_(0.6)Mn_(0.3-x)V_(0.1+x)Cr_(0.05)_2(x=0.0,0.05,0.15,0.2)alloys[J].International Journal of Hydrogen Energy,2002,27:695-697
    [43]Zhang H B,Lei Y Q,Li D H.Electrochemical performance of ZrMn_(0.5)V_(0.4)Ni_(1.1)Co_x Laves phase alloy electrode[J].Journal of Power Source,2001,99(1-2):48-53
    [44]Jeong C,Chung W,Iwakura C,et al.Effect of temperature on the discharge capacity of the Laves phase alloy used in nickel/metal-hydride batteries[J].Journal of Power Sources,1999,79(1):19-24
    [45]张羊换,李平,王新林,等.快淬对AB_2型贮氢合金电化学性能与微观结构的影响[J].功能材料,2004,35(3):298-301
    [46]蒋利军,陈异,黄倬,等.热处理对Ti-Mn基Laves相贮氢合金性能的影响[J].稀有金属,2003,27(2):221-224
    [47]陈江平,罗永春,张法亮,等.退火处理对La_(1.5)Mg_(0.5)Ni_(7.0)贮氢合金相结构和电化学性能的影响[J].稀有金属材料与工程,2006,35(10):1572-1576
    [48]梁浩,陈云贵,严义刚,等.高温退火对V_(30)Ti_(33)Cr_(27)Fe_(10)贮氢合金性能与结构的影响[J].功能材料,2005,36(12):1899-1902
    [49]Lee S M,Yu J S,Lee H,et al.The effect of annealing on the discharge characteristics of ZrV_(0.7)Mn_(0.5)Ni_(1.2)alloy[J].Journal of Alloys and Compounds,1999,293-295:601-607
    [50]Zhang W K,Ma C A,Yang X G,et al.Influences of annealing heat treatment on phase structure and electrochemical properties of Zr(MnVNi)_2 hydrogen storage alloys[J].Journal of Alloys and Compounds,1999,293-295:691-697
    [51]Lee S M,Lee H,Yu J S,et al.The activation characteristics of a Zr-based hydrogen storage alloy electrode surface-modified by ball-milling process[J].Journal of Alloys and Compounds,1999,292(1-2):478-482
    [52]胡蓉晖,杨汉西,卢世刚,等.贮氢合金电极的活化方法和作用机理研究[J].电化学,1996,2(2):170-174
    [53]朱春玲,阎汝煦,王大辉,等.表面包覆镍处理La_(0.67)Mg_(0.33)Ni_(2.5)Co_(0.5)贮氢合金电极的电化学性能[J].稀有金属材料与工程,2006,35(4):573-576
    [54]Sun Y M,Gao X P,Araya N,et al.A duplicated fluorination technique for hydrogen storage alloys[J].Journal of Alloys and Compounds,1999,293-295:364-368
    [55]Imoto T,Kato K,Higashiyama N,et al.Poisoning by air of AB_5 type rare-earth nickel hydrogen-absorbing alloys[J].Journal of Alloys and Compounds,1995,223(1):60-64
    [56]潘洪革,陈购,陈长聘,等.用含KBH_4碱液处理改善MINi_(3.7)Co_(0.6)Mn_(0.4)Al_(0.3)贮氢合金电极的动力性能[J].金属学报,1999,35(3):300-305
    [57]孙俊才,雷永泉,吴京,等.微型包覆处理稀土系贮氢合金电极的循环稳定性[J].材料科学与工艺,1995,3(1):49-52
    [58]Sakai T,Yuasa A,Ishikawa H,et al.Nickel-metal hydride battery using microencapsulated alloys[J].Journal of the Less Common Metals,1991,172-174:1194-1204
    [59]Yan D Y,Sandroch G,Suda S.Activation of Zr_(0.5)Ti_(0.5)V_(0.75)Ni_(1.25)alloy electrodes by hot alkaline solutions[J].Journal of Alloys and Compounds,1994,216(2):237-242
    [60]Gao X P,Sun Y M,Higuchi E,et al.Electrochemical properties and characteristics of the fluorinated Zr_(0.9)Ti_(0.1)V_(0.2)Mn_(0.6)Ni_(1.3)La_(0.05)electrode[J].Journal of Alloys and Compounds,1999,293-295:707-711
    [61]Cao J S,Gao X P,Lin D F,et al.Activation behavior of the Zr-based Laves phase alloy electrode.Journal of Power Sources,2001,93(1-2):141-144
    [62]Matsuoka M,Nakayama E,Uematsu F,et al.Actication mechanism of Ti_(0.5)Cr_(0.5)Ni_(1.3)V_(0.7)Mn_(0.1)Cr_(0.1)electrode in nickel-hydride batteries[J].Electrochimica Acta,2001,46(17):2693-2697
    [63]黄胜涛.固体X射线学(一)[M].北京:高等教育出版社,1985:72-105
    [64]张祖训,王尔康.电化学原理和方法1版[M].北京:科学出版社,2000:153-172
    [65]原鲜霞,徐乃欣.稀土系AB5型贮氢合金电极中氢扩散行为的电化学研究.稀有金属材料与工程,2003,32(1):27-31
    [66]廖彬,雷永泉,吕光烈,等.La-Mg-Ni系多元AB_3型贮氢电极合金的相结构与电化学性能[J].金属学报,2005,41(1):41-48
    [67]Wang C S,Wang X H,Lei Y Q,et al.A new method of determining the thermodynamic Parameters of metal hydride electrode materials.International Journal of Hydrogen Energy,1997,22(12):1117-1124
    [68]杨迈之,韦平.锆表面氧化膜的光电化学研究[J].电化学,1995,1(1):30-37
    [69]韩树民,赵敏寿,吴来磊,等.添加元素对AB_2型Laves相合金电化学性能的影响[J].高等学校化学学报,2003,(24)12:2256-2259
    [70]张文魁,马淳安,黄辉,等.合金化对ZrMn_2基Laves相贮氢合金相组成的影响[J].中国有色金属学报,2002,12(5):897-901
    [71]郭靖洪,陈德敏,杨柯,等.贮氢合金高倍率放电性能的研究[J].电源技术,2002,26(7):191-194
    [72]Hong C M,Hao D G,Lin Q Z.Characteristics of hydrogen absorption and reactivation of TiMn_(1.25)Cr_(0.25)alloy[J].Journal of the Less Common Metals,1991,172-174(3):1044-1051
    [73]Iwakura C,Oura T,Inouse H,et al.Effects of substitution with foreign metals on the crystallographic,thermodynamic and electrochemical properties of AB_5-type hydrogen storage alloys[J].Electrochim Acta,1996,41(1):117-121
    [74]冯尚龙,吴铸,余学斌,等.Zr替代Ti对Ti_(19.5)V_(40)Mn_(16.2)Cr_(9.8)Ni_(14.5)合金的影响Ⅱ:电化学性能.稀有金属材料与工程,2007,36(7):1224-1228
    [75]Zheng G,Popov B V,White R E.Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi_(4.25)Al_(0.75)electrode in alkaline aqueous solution[J].Journal of The Electrochem Society,1995,142(8):2695-2698
    [76]Kuriyama N,Sakai T,Miyamura H,et al.Electrochemical impedance and deterioration behavior of metal hydride electrodes[J].Journal of Alloys and Compounds,1993,202(1-2):183-197
    [77]Zhang X B,Sun D Z,Yin W Y,et al.Effect of La/Ce ratio on the structure and electrochemical characteristics of La_(0.7-x)Ce_xMg_(0.3)Ni_(2.8)Co_(0.5)(x=0.1-0.5)hydrogen storage alloys.Electrochimica Acta,2005,50:1957-1964

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700