高倍率贮氢合金电极的制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出采用低温烧结及在贮氢合金电极中添加Co3O4的两种方法来改善AB5型贮氢合金电极的高倍率性能。采用XRD、SEM、EDX、BET和恒电流充放电,循环伏安以及电化学阻抗等电化学测试手段,研究了不同烧结温度(300℃~700℃)以及时间(0.5 h~5 h)处理的贮氢合金电极的电化学性能和不同Co3O4添加量(2 wt.%~8wt.%)的贮氢合金电极的电化学性能,尤其是两者的电化学动力学性能,初步探讨烧结机理以及Co3O4的作用机理,以求探索出能有效提高贮氢合金电极的高倍率性能的处理方法来满足MH/Ni动力电池发展需要。
     本文首先研究了烧结温度(300℃~700℃)对于贮氢合金电极电化学性能的影响,研究表明,随着烧结温度的升高,烧结贮氢合金电极的最大放电容量以及放电平台电压逐渐降低,300℃烧结电极放电容量和中值电位最高;极化电阻Rp、电荷转移电阻Pct逐渐增大,交换电流密度I0逐渐减小,烧结温度为300℃时候,Rp和Rct较未烧结合金电极分别降低34.7%和67.5%,I0提高53.0%;阳极极化和电位阶跃测试结果表明,烧结处理后,合金电极的氢扩散系数D明显增大,但随烧结温度升高呈先增大后减小趋势。合金电极的大倍率放电性能的变化规律跟上述几个动力学参数的变化规律基本一致,300℃烧结电极的大倍率性能最好,以1500 mA·g-1电流密度放电时,其HRD值较未烧结电极提高20.92%。
     研究了300℃不同烧结时间(0.5 h~5 h)对于贮氢合金电极电化学性能的影响。结果表明,烧结电极的活化性能以及放电容量随烧结时间延长逐渐降低,放电平台电压先增大后略有减小,烧结1 h电极放电中值电位最高;Rp和Rct均逐渐增大,I0逐渐减小;阳极极化测试表明,各烧结电极IL均要大于未烧结电极且随烧结时间延长呈先增大后减小的趋势,电极的氢扩散系数也符合这个规律。烧结电极的高倍率放电性能明显优于未烧结合金电极,随烧结时间增加,HRD值呈先增大后减小趋势,烧结1h电极性能最好,以1500mA·g-1电流密度放电时,其HRD值较未烧结电极提高20.92%。
     研究了不同Co3O4添加量的贮氢合金电极的电化学性能并初步探讨其作用机理。结果表明,添加Co3O4的贮氢合金电极具有较好的活化性能和较高的放电容量,Co3O4添加量越高,电极活化性能越好,放电容量越高,循环稳定性越好;添加Co3O4电极在放电末期1.15 V附近出现2次放电平台,随Co3O4添加量增大,2次放电平台愈加明显,平台电压增高;添加Co3O4贮氢合金电极Rp和Rct减小,10增大,电极表面的电催化活性提高,氢扩散速度加快,电极高倍率性能得到改善,Co3O4添加量越多,HRD值越大,以1500 mA·g-1电流密度放电时,添加8wt.%电极HRD比空白电极提高11.1%。添加Co3O4的贮氢合金电极的循环伏安曲线在阳极分支—0.7V附近出现Co→Co(OH)2氧化峰,峰电流随Co3O4添加量增大而增大。SEM和EDX测试表明,添加的Co3O4在电极表面分布较为均匀,通过电极反应在贮氢合金表明形成了含Co层,有利于增加电极放电容量和提高倍率性能。
In this paper, sintered treatment at low temperature and added Co3O4 in hydrogen storage alloy electrode methods were taken to improve the high rate discharge preformance of AB5 type hydrogen storage alloy electrode. electrochemical test methods such as:the galvanostatic charge-discharge, electrochemical impedance spectroscopy (EIS)and Cyclic voltammogram (CV) etc and X-ray diffraction (XRD), Scanning electronic microscopy (SEM), Energy dispersive X-ray Spectroscopy (EDX), BET were carried out to study the perofrmance of hydorgen storage alloy electrode sintered at different temperature (300℃-700℃), sintered for different time (0.5 h-5 h) at 300℃and added with different content of Co3O4(2wt.%-8wt.%), especially the electrochemical dynamic performance. The mechanisms of sintered treatment and Co3O4 additive were also superficially disscussed. We aimed at the target, developing new kind of treat methods to improve the high rate discharge performance of AB5 type hydrogen storage alloy electrode effectively, to meet the developing requirement of MH/Ni battery.
     The effects on electrochemical performances of hydrogen storage alloy electrode sintered at different temperature were studied firstly. The results showed that:with the increasing of sintered temperature, maximum discharge capacity and discharge plat voltage of sintered electrodes decreased gradually, the discharge capacity and mid-voltage of electrode sintered at 300℃was the highest; polarization resistance Rp and charge-transfer resistance Rct increased, exchange current density Io decreased; anodic polarization curves and potential-step tests suggested limmit current density IL and hydrogen diffusion coefficient D firstly increased and then decreased; HRD performance of the electrode sintered at 300°C was the best, which is 20.92% higher comparing to the no-sintered electrode at discharge current denstiy of 1500 mA·g-1.
     The effects on electrochemical performance of hydrogen storage alloy electrode sintered at 300℃for different time were studied. The results suggested that:with the increasing of sintered time, activiate performance and discharge capacity of sintered electrodes decreased, mid-poteneial of sintered electrode for 1 h was highest; Rp, Rct increased and Io gradually decreased, IL and D firstly increased and then decreased. HRD performance of the electrode sintered for 1h was the best, which is 20.92% higher comparing to the no-sintered electrode at discharge current denstiy of 1500 mA·g-1
     Different contents of Co3O4 were added in hydrogen storage alloy electrodes and its electrochemical performance were studied. The results showed that:the activiate performance and discharge capacity of electrodes with Co3O4 additive were better than blank electrode, the higher the content of Co3O4 additive was, the better the activiate performance, discharge capacity and cyclic stability was. There was a second plat appearing in the end of discharge near 1.15 V of the electrodes with Co3O4 additive, plat voltage of which increased with the content of Co3O4 additive increased; HRD performance also increased, which is due to electrocataly activity of electrode surface and hydrogen diffusion rate enhanced and Rp decreased much with the content of Co3O4 additive increasing. The HRD of the electrode with 8 wt.% Co3O4 additive was 11.1% than blank electrode at discharge current density of 1500 mA·g-1. Oxidation peak near -0.7 V in anodic blanch corresponding to Co→Co(OH)2 oxidition reaction were observed in cyclic voltammogram curves of the electrodes with Co3O4 additive, the peak current increasing obviously with the content of Co3O4 additive increased. SEM and EDX tests suggented that Co3O4 distributed uniformitily on the surface of hydrogen storage alloy electrode, which came to the reaction of Co←→Co(OH)2, formed a layer with high content of Co on the surface, which helped to increase discharge capacity and improve high rate discharge ability.
引文
[1]尚福亮,杨海涛,韩海涛.金属贮氢材料研究概况.稀有金属快报[J].2006,25(2):11~13
    [2]Luo W, Ronnebro E. Towards a viable Hydrogen Storage System for transportation application. Journal of Alloys and Compounds[J].2005,404/406: 392~395
    [3]Thallapally P K, Lloyd G O, Wirsing T B, et al. Organic Crystals absorb Hydrogen Gas Under mild Conditions. Chemical Communications[J].2005,42(5): 272~274
    [4]胡子龙著.贮氢材料.北京:化学工业出版社,2002,11~30
    [5]Uehara I, Sakai T, Ishikawa H. The state of research and development for applications of metal hydrides in Japan. Journal of Alloys and Compounds[J].1997, 253-254:635~641
    [6]Wang Q D, Chen C P, Lei Y Q. The recent research, development and industrial applications of metal hydrides in the People's Republic of China. Journal of Alloys and Compounds[J].1997,253-254:629~635
    [7]吴伯荣.电动车用MH/Ni动力电池.电源技术[J].2000,24(1):46~48
    [8]Sutula R A, Heitner K L. The Twelfth International seminar on Primary and secondary Battery Technology and Application, Deerfield Beach, Fla. USA. March 1995.
    [9]杨毅夫.从EVS217看国际电动车及动力电池发展趋势.电池[J].2001,31(4):192~194
    [10]侯明,衣宝廉.燃料电池技术发展现状.电源技术[J].2008,32(10):649~653
    [11]豪彦.21世纪世界汽车工业发展趋势(五)——混合动力汽车(HEV).汽车与配件[J].20018:18~21
    [12]Robert F N. Power requirements for batteries in hybrid electric vehicles. Journal of Power Sources[J].2000,91(1):2-26
    [13]DOE FY 2000 Highlights Report for the Vehicle High-Power Energy Storage Program.
    [14]Corrigan D A, Venkatesans H A. Higher power ovonic nickel 2 metal hydride batteries for electric and hydridvehicles. The 14th International Electric Vehicles Sympo-sium Proceedings [C]. Florida, USA:1997
    [15]Paul G, John A, Dennis C, et al. Development of advanced nickel/metal hydride batteries for electric and hybrid vehicles. Journal of Power Sources[J].1999,80(1-2): 157-163
    [16]Fujioka N, Ikoma M. Ni-MH battery for pure EV. Brussels:EV-15,1998
    [17]Kuler U, Niggenmann E. High performance Ni-MH batteries for EVs and HEVs. Brussels:EV-15,1998
    [18]Lisk J L, Madery C. SAFT Ni-MH battery in production. Brussels:EV-15,1998
    [19]Wiesener K, Ohms D, Benczur-Urmossy G, et al. High power metal hydride bipolar battery. Journal of Power Sources[J].1999,84(2):248~258
    [20]余成洲,赖为华.氢镍电池的现状与发展方向.电池[J].2001,31(2):58~61
    [21]Sakai T, Uehara I, Ishikawa H. R&D on metal hydride materials and Ni-MH batteries in Japan. Journal of Alloys and Compounds[J].1999,293-295:762~769
    [22]Zhang P L, Wang X L, Tu J P, et al. Effect of surface treatment on the structure and high-rate dischargeability properties of AB5-type hydrogen storage alloy. Journal of Alloys and Compounds[J].2009,27(3):510~513
    [23]Wang C S, Wang X H, Lei Y Q, et al. The hydriding kinetics of MlNi5 development of the model. International Journal of Hydrogen Energy[J].1996,21(6): 471~478
    [24]Wang C S, Wang X H, Lei Y Q, et al. A new method of determining the thermodynamic parameters of metal hydride electrode materials. International Journal of Hydrogen Energy[J].1997,22(12):1117~1124
    [25]Tliha M, Mathlouthi H, Lamloumi J, et al. Electrochemical kinetic parameters of a metal hydride battery electrode. International Journal of Hydrogen Energy[J]. 2007,32(5):611~614
    [26]Zhao X Y, Ding Y, Yang M, et al. Effect of surface treatment on electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy. International Journal of Hydrogen Energy[J].2008,33(1):81~86
    [27]Park H Y, Cho W I, Cho B W, et al. Effect of fluorination on the lanthanum-doped AB2-type metal hydride electrodes. Journal of Power Sources[J]. 2001,92(1-2):149~156.
    [28]Xiao L L, Wang Y J, Liu Y, et al. Influence of surface treatments on microstructure and electrochemical properties of La0.7Mg0.3Ni2.4Co0.6 hydrogen-storage alloy. International Journal of Hydrogen Energy[J].2008,33(14): 3925~3929
    [29]Wu M S, Wu H R, Wang Y Y, et al. Surface treatment for hydrogen storage alloy of nickel /metal hydride battery. Journal of Alloys and Compounds[J].2000, 302(1-2):248~257
    [30]Ise T, Murata T, Hirota Y, et al. The surface structure and the electrochemical properties of hydrogen-absorbing alloys treated with an HCl aqueous solution. Journal of Alloys and Compounds[J].2000,307(1-2):324~332.
    [31]Zhao X Y, Ma L Q, Ding Y, et al. Novel surface treatment for hydrogen storage alloy in Ni/MH battery. International Journal of Hydrogen Energy[J].2009,34(8): 3506~3510
    [32]Feng H W, Liu X D, Tian X, et al. Electrochemical properties of the Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3 alloy mixed with Ni powder. International Journal of Hydrogen Energy[J].2009,34(4):1886~1889
    [33]Feng F, Northwood D O. Effect of surface modification on theperformance of negative electrodes in Ni/MH batteries. International Journal of Hydrogen Energy[J]. 2004,29(9):955-960
    [34]Chiaki I, Takafumi O, Hiroshi I, et al. Effect of alloy composition on hydrogen diffusion in the AB5-type hydrogen storage alloys. Journal of Electroanalytical Chemistry[J].1995,398(1-2):37~41
    [35]Suzuki K, Yanagihara N, Kawano H, et al. Effect of rare earth composition on the electrochemical properties of Mm(Ni-Mn-Al-Co)5 alloys. Journal of Alloys and Compounds[J].1993,192(1-2):173~175
    [36]Adzic G D, Johnson J R, Reilly J J, et al. Cerium content and cycle life of multicomponent AB5 hydride electrodes. Journal of The Electrochemical Society[J]. 1995,142(10):3429~3433
    [37]李克杰,李全安,李守英.加镝对低钴贮氢合金电化学性能的影响.电池[J].2006,1(36):48~49
    [38]Wu M S, Wu H R, Wang Y Y, et al. Effects of the stoichiometrict atio of aluminium and manganese on electrochemical properties of hydrogen storage alloys. Journal of Applied Electrochemistry[J].2003,33:619~625
    [39]Notten P H, Hokkeling P. Double-Phase Hydride Forming Compounds:A New Class of Highly Electrocatalytic Materials. Journal of The Electrochemical Society[J].1991,138(7)1877~1885
    [40]Chiaki I, Yukio F, Masao M, et al. Electrochemical characterization of hydrogen storage alloys modified with metal oxides. Journal of Alloys and Compounds[J]. 1993,192 (1-2):152~154
    [41]黄培云主编.粉末冶金原理[M].北京:冶金工业出版社.2006,265~270
    [42]Zhang Z, Han S M, Li Y, et.al. The effects of sintering temperature on the phase structure and electrochemical properties of AB5-5 mass% LaMg3 composite alloy. Journal of Alloys and Compounds[J].2006,421(1-2):289~293
    [43]Huang B, Shi P F, Liang Z C. Effects of sintering on the performance of hydrogen storage alloy electrode for high-power Ni/MH batteries. Journal of Alloys and Compounds[J].2005,394 (1-2):303~307
    [44]江建军.氢化物—空气半燃料电池用贮氢合金电极的烧结制备及其电化学性能.稀有金属材料与工程[J].2003,32(3):201~204
    [45]Begum S N, Muralidharan V S, Bash C A. Electrochemical investigations and characterization of a metal hydride alloy (MmNi3.6Alo.4Coo.7Mno.3) for nickel metal hydride batteries. Journal of Alloys and Compounds[J].2009,467:124~129
    [46]Jaksic M M. Electrocatalysis of hydrogen evolution in the light of the brewer—engel theory for bonding in metals and intermetallic phases. Electrochimica Acta[J].1984,29(11):1539~1550
    [47]Jaksic M M. Towards the reversible electrode for hydrogen evolution in industrially important electrochemical processes. International Journal of Hydrogen Energy[J].1986,11(8)519~532
    [48]Terzieva M, Khrussanova M, Peshev P. Dehydriding kinetics of mechanically alloyed mixtures of magnesium with some 3d transition metal oxides. International Journal of Hydrogen Energy[J].1991,16(4):265~270
    [49]Khrussanova M, Terzieva M, Peshev P, et al. On the hydriding and dehydriding kinetics of magnesium with a titanium dioxide admixture. Materials Research Bulletin[J],1987,22(3):405~412
    [50]Liu J, Wang W H, Ye S H, et al. The chemical preparation of Mo(W)Co(Ni) and their influence on hydrogen storage electrode. Journal of Alloys and Compounds[J]. 1999,285(1-2):263~266
    [51]Yang K, Chen D M, Chen L, et al. Modification of a rapidly solidified hydrogen storage electrode alloy by ball-milling with Co3Mo. Journal of Alloys and Compounds[J].1999,293-295:670~674
    [52]范祥清,闻秀勤.金属氢化物镍电池的研究.电池[J].1994,24(1):5~8
    [53]赵东江,马松艳.掺杂金属氧化物贮氢电极的电化学性能.科学技术与工 程[J].2008,8(12):3301~3304
    [54]Chiaki I, Masao M, Tatsuoki K. Mixing effect of metal oxides on negative electrode reactions in the nickel-hydride battery. Journal of The Electrochemical Society[J].1994,141(9):2306~2308
    [55]查全性.电极过程动力学(第二版).科学出版社,1987.
    [56]庞柳萍,张建海等.MH/Ni电池负极添加剂的选择.电池[J].2000,30(1):34~37
    [57]黄辉,张文魁,甘永平等.CNTs添加对MmMn0.4Co0.7Al0.3Ni3.4贮氢合金负极性能的影响.无机材料学报[J].2005,20(5):1139~1142
    [58]Lei Y Q, Zhang S K, Lu G L, et al. Influence of the material processing on the electrochemical properties of cobalt-free Ml(NiMnA1Fe)5 alloy. Journal of Alloys and Compounds[J].2002,330-332:861~865
    [59]Tliha M, Mathlouthi H, Lamloumi J, et al. AB5-type hydrogen storage alloy used as anodic materials in Ni-MH batteries. Journal of Alloys and Compounds[J]. 2007,436:221~225
    [60]曹楚南,张鉴清著.电化学阻抗谱导论.北京:科学出版社,2002
    [61]Kuriyama N, Sakai T, Miyamura H, et al. Electrochemical impedance and deterioration behavior of metal hydride electrodes. Journal of Alloys and Compounds[J].1993,202:183-197
    [62]Chu H L, Qiu S J, Sun L X, et al. Electrochemical hydrogen storage properties of La0.7Mg0.3Ni3.52-Ti0.17Zr0.08V0.35Cr0.1Ni0.3 composites. International Journal of Hydrogen Energy[J].2008,33:755~761
    [63]Ratnakumar B V, Witham C, Bowman R C, et al. Electrochemical studies on LaNi5-xSnx metal hydride alloys. Journal of The Electrochemical Society[J].1996, 143(8):2578-2584.
    [64]Geng M, Feng F, Sebastian P J, et al. Charge transfer and mass transfer reactions in the metal hydride electrode Int. International Journal of Hydrogen Energy[J].2000,26 (2):165~169
    [65]Nishina T, Ura H, Uchida I. Determination of chemical diffusion coefficients in metal hydride particles with a microelectrode technique. Journal of The Electrochemical Society[J].1997,144(4):1273-1277
    [66]Zhang W C, Han S M, Hao J S, et al. Study on kinetics and electrochemical properties of low-Co AB5-type alloys for high-power Ni/MH battery, Electrochimica Acta[J].2009,54:1383-1387
    [67]Zheng G, Popov B N, White R E. Determination of transport and electrochemical kinetic parameters of bare and coppercoated LaNi4.27Sn0.24 electrodes in alkaline solution. Journal of The Electrochemical Society[J]. 1996,143(3):834-839
    [68]Zheng G, Popov B N, White R E. Application of Porous Electrode Theory on Metal Hydride Electrodes in Alkaline Solution. Journal of The Electrochemical Society[J].1996,143(2):435~441
    [69]Li Z P, Higuchi E, Liu B H, et al. Electrochemical properties and characteristics of a fluorinated AB2-alloy. Journal of Alloys and Compounds[J].1999,293-295: 593-600
    [70]Li H W, Ikeda K, Nakamori Y, et al. Size distribution of precipitated Ni clusters on the surface of an alkaline-treated LaNi5-based alloy. Acta Materialia[J].2007, 55(2):481-485
    [71]Zhang S, Shi P F, Deng C. Characteristics of hydrogen storage alloy electrode with cupric oxide additive. Solid State Ionics[J].2006,177(13-14):1193~1197
    [72]Cheng S A, Lei Y Q, Leng Y J, et al. Electrochemical performance of metal hydride negative electrode modified with bismuth oxide. Journal of Alloys and Compounds[J].1998,264(1-2):104~106
    [73]文德荣.草酸钴和氧化钻.江西冶金[J].1997,Vol.17(5):5456~5460
    [74]陈松.湿法制备单分散Co3O4粉末的形貌和粒度控制研究.[博士学位论文].长沙:中南大学2003.4
    [75]Kang Y M, Song M S, Kim J H, et al, A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery. Electrochimica Acta[J].2005, (50):3667-3673
    [76]Liu Y, Mi C H, Su L H, et al. Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries. Electrochimica Acta[J].2008,53(5): 2507~2513
    [77]Xu R, Wang J W, Li Q Y, et al. Porous cobalt oxide (Co3O4) nanorods:Facile syntheses, optical property and application in lithium-ion batteries. Journal of Solid State Chemistry[J],2009,182(11):3177~3182
    [78]Yan S, Gao L. Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors. Materials Chemistry and Physics[J].2007,103(2-3):206-210
    [79]Chiaki I, Masao M, Tatsuoki K. Mixing effect of metal oxides on negative electrode reactions in the nickel-hydride battery. Journal of The Electrochemical Society[J].1994,141(9):2306~2308
    [80]Sakai T, Miyamura H, Kuriyama N, et al. Investigations on the cycle stability and the structure of the MmNi3.6Co0.75Mn0.55A10.1 hydrogen storage alloy: Ⅱ.Microstructure investigations and discussions. Journal of The Electrochemical Society[J].1990,20(2):15~20
    [81]Oshitani M, Yufu H, Takashima K, et al. Development of a Pasted Nickel Electrode with High Active Material Utilization. Journal of The Electrochemical Society[J].1989,136(6):1590~1593
    [82]夏保佳,尹鸽平,程新群et al.贮氢合金氧化量的检测及其性能衰减研究.电池[J],2000,30(2):198~200
    [83]Yan S, Gao L. Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors. Materials Chemistry and Physics[J].2007,103(2-3):206~210
    [84]苏振华,刘开宇,张思方等.CoO对稀土系贮氢合金电化学性能的影响.稀有金属材料与工程[J].2008,37(6):1004~1007.
    [85]Raju M, Manimaran K, Ananth M V, et al. An EIS study on the capacity fades in MmNi3.6Al0.4Mn0.3Co0.7 metal-hydride electrodes. International Journal of Hydrogen Energy[J].2007, (32):1721-1727
    [86]陈军,陶占良著.镍氢二次电池.北京:化学工业出版社.2005
    [87]Gao X P, Yao S M, Yan T Y, et al. Alkaline rechargeable Ni/Co batteries:Cobalt hydroxides as negative electrode materials. Energy and Environmental science[J]. 2009,2:502~505.
    [88]Yuan A B, Xu N X. A study on the effect of nickel, cobalt or graphite addition on theelectrochemical properties of an AB5 hydrogen storage alloy and the mechanism of the effects. Journal of Alloys and Compounds[J].2001, (322): 269~275.
    [89]唐致远,荣强,耿鸣明等.掺钴系添加剂储氢合金的电化学特性[J],天津大学学报,2004,37(10):868~871.
    [90]Raju M, Ananth M V, Vijayaraghavan L. Electrochemical properties of MmNi3.03Si0.85Co0.60Mn0.31Al0.08 hydrogen storage alloys in alkaline electrolytes—A cyclic voltammetric study at different temperatures. J. Electrochimica Acta.2009, 54(4):1368-1374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700