铁炭陶粒微电解填料的开发与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电解技术具有适用范围广、处理效果好、成本低廉等优点,但也存在填料板结、钝化和不易更换等诸多问题,其中填料板结是制约其应用的主要问题。本研究致力于开发新型铁炭陶粒微电解填料,首先优化了新型陶粒填料的制备过程,在此基础上,对其物理化学性质进行表征,比较了几种微电解填料的处理效果,最后对装填了铁炭陶粒和传统铁屑炭粒散装填料的两种微电解连续流反应器运行效果进行比较。
     试验以废铁屑粉、粉末活性炭及膨润土为基本材料,按不同的成分比例,控制不同的焙烧温度和添加剂,烧制成粒径为3-5mm的铁炭陶粒。以陶粒对废水有机物的去除能力、生物毒性的削减和可生化性的提高程度为优化目标,通过烧杯实验,采用单因素分析法,对铁炭陶粒的制备方法进行了优化。试验结果得出了铁炭陶粒制备的最佳焙烧温度,最适宜的添加剂及铁屑、活性炭粉、膨润土的最佳体积比。
     试验制备的铁炭陶粒填料基本为球形,外表面粗糙多孔,粒径为3-5mm,真密度、表观密度和堆积密度分别为4.41、3.52和1.26(103kg/m~3)。表面主要含有铁、碳、氧和硅四种元素,质量分数分别为56.92%、12.53%、18.67%和7.52%。填料具有足够的强度。BET比表面积为16.45m~2/g,填料以介孔为主。
     将铁炭陶粒填料与两种市售微电解填料和传统铁炭散装填料进行对比,考察对化工废水(苯酚配水、硝基苯配水和化工废水)的处理效果。对这三种废水,铁炭陶粒填料的处理效果都明显优于市售两种填料,且在多次重复使用过程中,铁炭陶粒填料表现出较好的处理性能。
     采用两个连续流反应器,对比传统铁炭散装填料与新制备的铁炭陶粒填料的处理性能及板结情况。试验结果表明,在运行初期,传统填料反应器处理效果较好,可能主要是活性炭吸附的缘故;运行一周后,二者处理效果相当,COD去除率在40%以上,B/C由0.1提高到0.3左右;运行50天后,铁炭陶粒反应器的处理效果明显优于传统填料反应器。试验还发现铁炭陶粒具有较好的抗板结性能,反应器连续运行79天,过滤阻力基本不变,而传统铁炭散装填料反应器持续运行1个月后,过滤阻力明显增长,同时伴随处理效果下降。
Micro-electrolysis technology has the advantages of widely application, good performance and low cost. However, it also has the drawbacks of campaction, passivation and exchanging difficultly. The campaction was the main factor restricting its usage in large scale. The objective of this study was to develop iron-carbon ceramic micro-electrolysis packing. Firstly, the preparation method of the micro-electrolysis packings was optimized. Secondly, the physical and chemical feature was characterized and the treatment effects of several micro-electrolysis packings were compared. Finally, the continuous reactor was operated to investigate the performance of the micro-electrolysis packing.
     In the experiment, as the basic materials, the scrap iron, powder activated carbon and bentonite were roasted to iron-carbon ceramic with a diameter of 3-5mm in different proportions, temperatures and additions. The beaker experiment and single factor analysis method were used to optimize the preparation methods of the ceramic for the purpose of improving the removal of organic matter, decreacing the biotoxicity and increasing the biodegradability of the wastewater. The results showed that the optimum performance was obtained from the iron-carbon ceramic prepared at the roasting temperature, addition, volume ratio of scrap iron, powder activated carbon and bentonite.
     The new packing was round, rough and porous in the surface with the diameter of 3-5mm. True density, apparent density and the bulk density were 4.41, 3.52 and 1.26 (103kg/m~3) . In the surface, the main components were iron, carbon, oxygen and silicon, which had the mass fractrion of 56.92%, 12.53%, 18.67% and 7.52%, respectively. The ceramic had enough strength. The BET specific surface area was 16.45m~2/g. The mesoporous was the main hole.
     To investigate the treatment capability of the iron-carbon ceramic packing to chemical industry wastewater (including two mixing water and one practical wastewater), another two micro-electrolysis packings bought in market and a traditional iron-carbon bulk packing were compared with the ceramic packing. The iron-carbon ceramic packing was much better than the two micro-electrolysis packings bought in market to all the wastewater and mixing water. As the reusage of the different packings, the iron-carbon ceramic packing turned out good treatment performance.
     Two continuous reactors were employed to compare the treatment performance and campaction of the traditional iron-carbon bulk packing and the new iron-carbon ceramic packing. The result showed that in the initial stage of the reator operation, the traditional carbon-iron packing had a better performance than the new packing, which was mainly because of the absorption effect of activated carbon. After a week, the two packing had the equivalent effect, the COD removal rate was above 40% and the B/C was increased to about 0.3. After 50 days’operation, the iron-carbon ceramic packing was better than carbon-iron packing obviously. The optimum operation condition was pH = 3, HRT = 2h. It also turned out that the reactor packed with iron-carbon ceramic had good campaction resistibility. From the beginning to the end of the reactor operation, the filtration resistance was basically stable. However, the flitration resistance of the traditional iron-carbon packing reactor sharply increased during one month continuous operation and meanwhile the performance decreaced gradually.
引文
[1]韩荣新,李彦锋,于凤刚,等.内点解技术对高浓度化工废水的预处理[J].环境工程,2008,26(3):45-47.
    [2]戴鹏.pH值和曝气强度对铁还原预处理硝基苯废水效果的影响[J].环境工程,2008,26(1):18-20.
    [3] Irina K,Peter B,Markus E,et al.Modelling the long-term performance of zero-valent iron using a spatio-temporal approach for iron aging[J].Contaminant Hydrology,2007,90(1-2):58-80.
    [4]吴东雷,郑平.铁碳法处理味精废水试验研究[J].环境科学与技术,2004,27(2):34-35.
    [5]于军,秦霄鹏,高磊,等.内点解技术处理有机废水的应用进展[J].中国给水排水,2009,25(12):12-16.
    [6]武秀文,徐平如,王历申.微电解工艺处理印染废水的研究[J].环境科学与技术,2004,27(2):34-35.
    [7]丁春生,李达钱.化工废水处理技术与发展[J].浙江工业大学学报.2005,33(6):647-651.
    [8]周立峰,费学宁,李婉晴,等.铁碳微电解预处理制药废水的实验研究[J].广东化工,2011,38(217):155-156.
    [9]周培国,傅大放.微电解工艺研究进展[J].环境污染治理技术与设备,2001,2(4):18-24.
    [10]陈郁,全燮.零价铁处理污水的机理及应用[J].环境科学研究,2000,13(5):24-26.
    [11]张思相.铁炭陶粒微电解填料的开发及其在废水处理中的应用[D].吉林:吉林大学,2008.
    [12]张汉铭.内点解工艺在废水处理中的研究进展[J].广东化工,2010,37(9):118-119.
    [13] Janda V,Vasek P,Bizova J,et al.Kinetic models for volatile chlorinated hydrocarbons removal by zero-valent iron[J].Chemosphere,2004,54(7):917-925.
    [14] A.Ghauch,C.Gallet,A.Charef,et al.Reductive degradation of carbaryl in water by Zero-valent iron[J].Chemosphere,2001,42:419-424.
    [15] Feitz A J,Joo S H,Guan J,et al.Oxidative transformation of contaminants usingcolloidal zero-zalent iron [J].Colloids and Surfaces A:Physicochemical Engineering Aspects,2005,265(1):88-94.
    [16]孙亮,王灿,季民.内点解技术处理有毒有害工业废水的应用进展[J].化工环保,2010,30(4):306-310.
    [17]陈水平.铁屑内电解法处理船舶含油废水的研究[J].水处理技术,1999,25(5):303-306.
    [18]王月娟,侯爱东,孙涛.综合电镀废水处理技术及应用[J].污染防治技术,2005,18(5):37-39.
    [19] B.Pendyal,M.M.Johns,W.E.Marshall, et al.Removal of sugar colorants by granular activated carbons made from binders and agricultural by-products[J].Bioresource Technology.1999,69(1):45-51.
    [20]戴鹏.pH值和曝气强度对铁还原预处理硝基苯废水效果的影响[J].环境工程,2008,26(1):18-20.
    [21] Alowitz M J,Scherer M M.Kinetice of nitrate,nitrite,and Cr(VI) reduction by iron metal[J].Environmental Science & Technology,2002,36(3):299-306.
    [22] Buerge I J,Stephan J H.Kinetics and pH dependence of chromium(VI) reduction by iron(II)[J].Environmental Science & Technology,1997,31(5):1426-1432.
    [23] Lee T,Ljm H,Lee Y,et al.Use of waste iron metal for removal of Cr(VI)from water[J].Chemosphere,2003,53(5):479-485.
    [24] Robert M P,Robert W P,Sharonk H,et al.Coupled iron corrosion and chromatereduction:mechanisms for subsurface remediation[J].Environmental Science & Technology,1995,29(8):1913-1922.
    [25]孙必鑫,马鲁铭,吴德礼.曝气对催化铁内电解法处理有机废水的作用[J].工业用水与废水,2007,38(1):32-34.
    [26]樊金红,马鲁铭,高廷耀.溶解氧对催化铁内点解法预处理混合废水的影响[J].水处理技术,2007,33(10):71-74.
    [27]邓小红.铁屑内电解法处理电镀含铬废水的试验研究及应用[J].环境工程学报,2008,2(10):1349-1352.
    [28]蔡固平,葛晚霞,张蕴辉,等.铁炭陶粒内电解铁屑过滤塔在印染废水工业化规模处理中的应用[J].环境工程,2003,21(3):21-22.
    [29]王思建,谢新展,王东.微电解-生物铁技术在染料废水治理中的应用[J].江苏环境科技,2006,19(2):19-20.
    [30]吴绪军.微电解/吹脱/沉淀/AO工艺处理铜酞菁废水[J].中国给水排水,2004,20(10):84-86.
    [31]张亚静,应金英,陈晓锋.铁炭内电解法处理印染废水[J].环境污染与防治,2000,22(5):33-35.
    [32]赵春霞,张春辉,赵旭涛,等.铁炭法处理高浓度难降解表面活性剂废水的研究[J].环境污染治理技术与设备,2006,7(8):60-63.
    [33]谢琴,孙力平,于静洁,等.动态混合曝气-微电解预处理维生素B1生产废水[J].环境工程学报,2008,2(9):1185-1188.
    [34] Elizabeth C,Butler,Kim F H.Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal[J].Environmental Science & Technology,2001,35(19):3884-3891.
    [35] Kohn T,Kane S R,Fairbrother H,et al.Investigation of the inhibitory effect of silica on the degradation of 1 , 1 , 1-trichloroethane by granular iron[J].Environmental Science,2007,19(7):792-799.
    [36] Farrell J,Kason M,Melitas N.Electrochemical and column investigation of iron mediated reductive dechlorination of trichloroethylene and perchloroethylene[J].Environmental Science & Technology,2000,34(12):2549-2556.
    [37] Su C,Pauls R W.Kinetics of tricholroethene reduction by zero valent iron and tin : pretreatment effect , apparent activation energy , and intermediate products[J].Environmental Science and Technology,1999,33(1):163-168.
    [38] Hwa K Y,Lang Q Y,Chien M W.Relative resistance of positional isomers of polychlorinated biphenyls toward reductive dechlorination by zerovalent iron in subcritical water[J].Environmental Science & Technology,2000,34(13):2784-2792.
    [39] Kim Y H,Elizabeth R C.Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons[J].Environmental Science & Technology,2000,34(10):2014-2017.
    [40] Dombek T , Davis D , Stineetal J . Degradation of terbutylazine (2-chloro-4-ethylamino-6-terbutylamino-1,3,5-triazine),deisopropyl atrazine (2-amino-4-chloro-6-ethylamino-1,3,5-triazine),and chlorinated dimethoxy triazine (2-chloro-4,6-dimethoxy-1,3,5-triazine) by zero valent iron and electrochemical reduction[J].Environmental Pullution,2004,129(2):267-275.
    [41] Gregory V L,Kathleen M J.Congener-specific dechlorination of dissolved PCBs by micro scale and nanoscale zero valent iron in awater/metalnol[J].Environmental Science & Technology,2004,38(19):5208-5216.
    [42]郭琇,王宝娥.零价铁在环境污染治理应用中的研究进展[J].仲恺农业工程学院学报,2009,22(4):61-66.
    [43]张建生,张铮,马清润.内点解技术在水处理方面的研究及应用[J].环境科学与技术,2009,32(12D):206-209.
    [44]付丰连.零价铁处理污水的最新研究进展[J].工业水处理,2010,30(6):1-3.
    [45] Xu W Y,Gao T Y.Dechlorination of carbon tetrachloride by the catalyzed Fe-Cu process[J].Environmental Science,2007,19(7):792-799.
    [46] Hung H M,Frank H L,Michael R H.Kinetics and Mechanism of the Enhanced Reductive Degration of Nitrobenzene by Elemental Iron in the presence of Ultrasound[J].Environmental Science & Technology,2000,34(9):1758-1763.
    [47]孟志国,王金生,李艳华,等.内电解-Fenton氧化组合工艺预处理腈纶废水[J].工业水处理,2008,28(8):34-37.
    [48]杨慧,薛建军,王玲,等.超声/微电解协同处理含磷废水[J].水处理技术,2011,37(2):85-89.
    [49]孙杰,赵晖,曾庆福.微波无极紫外光氧化-内电解工艺处理染料废水研究[J].环境工程学报,2007,1(6):12-14.
    [50]王焕龙,戴友芝.微电解厌氧SBR组合工艺处理化学制药废水[J].湖南工程学院学报,2008,18(3):80-83.
    [51]张春永,沈迅伟,徐飞高,等.一种铁炭陶粒微电解材料组合的性能研究[J].水处理技术,2005,31(1):32-34.
    [52]刘永红,邹磊,赵蕾,等.一种铁炭陶粒微电解材料处理实际印染废水的研究[J].工业用水与废水,2011,42(4):60-63.
    [53]陈杭飞,陈寿兵,伍世军,等.含催化剂的微电解填料[P].中国专利,CN101898819.2010.
    [54]喻宇琳,喻小琦.一种微电解环保填料及其生产原料和制备方法[P].中国专利,CN101898818.2010.
    [55]唐思林.微电解生物膜复合填料[P].中国专利,CN201923884.2010.
    [56]王丽莎,魏东斌,胡洪营.发光细菌毒性测试条件的优化与毒性参照物的应用[J].环境科学研究,2004,17(4):61-63.
    [57]王丽莎.氯和二氧化氯消毒对污水生物毒性的影响研究[D].北京:清华大学,2007.
    [58]王晓辉,金静,任洪强,等.水质生物毒性检测方法研究进展[J].河北工业科技,2007,24(1):58-62.
    [59] Ivana T,Milena B,Ivana P,et al.The relationship between whole effluent toxicity(WET) and chemical-based effluent quality assessment in Vojvodina(Serbia)[J].Environmental Monitoring and Assessment,2009,158(1-4):381-392.
    [60] Mika S,Kari P,Pasang D.The acute toxicity of gluconic acid,β-alaninediacetic acid,diethylene triamine pentakis methylene phosphonic acid,and nitrilotriacetic acid determined by daphnia magna,raphidocelis subcapitata,and photobacterium phosphoreum[J].Archives of Environmental Contamination and Toxicology,2003,44(3):332-335.
    [61] Gunther R,Alexandra O R,Ignacio R D,et al.Comparison of bioluminescent dino?agellate(QwikLite)and bacterial(microtox)rapid bioassays for the detection of metal and ammonia toxicity[J] . Archives of Environmental Contamination and Toxicology,2008,54(4):606-611.
    [62] Strom D,Ralph P J,Stauber L.Development of a toxicity identification evaluation protocol using chlorophyll-afluorescence in a marine microalga[J].Archives of Environmental Contamination and Toxicology,2009,56(1):30-38.
    [63]黄满红,李咏梅,顾国维.污水毒性的生物测试方法[J].工业水处理,2003,23(11):14-18.
    [64]陈一申,杨新蓉,朱敏.污染物的微生物毒性检验[J].上海环境科学,1997,16(7):26-29.
    [65]王广鹤,瞿璟琰,卢湘岳,等.水质毒性快速检测技术及其发展趋势[J].环境科技,2008,21(2):27-30.
    [66]陈一申,杨新蓉,朱敏.污染物的微生物毒性检验[J].上海环境科学,1997,16(7):26-29.
    [67]黄满红,李咏梅,顾国维.污水毒性的生物测试方法[J].工业水处理,2003,23(11):14-18.
    [68]朱文杰,郑天凌,李伟民.发光细菌与环境毒性检测[M].北京:中国轻工业出版社,2009.
    [69]于昕,林庚.微电解-UASB组合工艺处理城市垃圾渗滤液[J].工业水处理,2011,31(3):30-32.
    [70]邹东雷,李萌,邹昊辰,等.铁炭陶粒铁炭微电解填料处理含苯污染地下水的实验[J].吉林大学学报,2010,40(6):1441-1445.
    [71]丁春黎,朱永娟,顾薇.对浸渍法制备Pd/C催化剂表面积影响因素的讨论[J].吉林工学院学报,2001,22(1):4-6.
    [72]邹昊辰,张思相,栾占彬,等.废水处理用微电解规整化填料的制备[J].化工环保,2008,28(6):546-548.
    [73]张天胜,厉明蓉.日用化工废水处理技术及工程实例[M].北京:化学工业出版社,2002.
    [74]董玉秀,宋珍鹏,崔素娟,等.对休止角测定方法的讨论[J].中国药科大学学报,2008,39(4):317-320.
    [75]刘建宝,王乃昂,程弘毅,等.沙丘沙休止角影响因素试验研究[J].中国沙漠,2010,30(4):758-762.
    [76]庞维强,樊学忠,胥会祥,等.球形团聚硼颗粒的强度研究[J].含能材料,2009,17(5):510-513.
    [77]陈景华,张长森,邓育新.材料工程测试技术[M].上海:华东理工大学出版社.2006.
    [78]严继民,张启元,高敬琮.吸附与凝聚[M].北京:科学出版社,1986.
    [79]姚骏恩.电子显微镜的现状与展望[J].电子显微学报,1998,24(5):259-264.
    [80]倪建国,吴成强,朱润晔.微电解-电解预处理硝基苯废水的研究[J].浙江工业大学学报,2007,35(6):627-630.
    [81]陈院华,冯俊生.废铁屑-粉煤灰改性集成处理印染废水试验[J].安徽农业科学,2007,35(27):8642-8643.
    [82]刘晓冉,李金花,周保学,等.铁炭微电解处理中活性炭吸附作用及其影响[J].环境科学与技术,2011,34(1):128-200.
    [83]秦红科,赖波,周岳溪,等.铁炭微电解预处理ABS凝聚干燥工段废水[J].环境科学研究,2011,24(3):313-318.
    [84] Maryam E,Mehrab M,Ramdhane D.Optimization of phenol degradation in a combined photochemical-biological wastewater treatment system[J] Chemical Engineering Research and Design,2008,86(11):1243-1252.
    [85] Santos V L,Linardi V R.Biodegradation of phenol by a filamentous fungi isolated from industrial effluents-identification and degradation potential[J].Process Biochemistry,2004,39(8):1001-1006.
    [86] Banat F A,Al-Bashir B,Al-Ashehs S,et al.Adsorption of phenol bentonite[J].Environment Pollution,2000,107(3):391-398.
    [87] Wu C,Lui X,Wei D,et al.Photosonochemical degradation of phenol inwater[J].Water Research,2001,35(16):3927-3933.
    [88] Xu W Y,Gao T Y,Fan J H.Reduction of nitrobenzene by the catalyzed Fe-Cu process[J].Journal of Hazardous Materials,2005,123(1-3):232-241.
    [89]张洪林.难降解有机物的处理技术进展[J].水处理技术,1998,24(5):259-264.
    [90]朱静.染料废水处理中硝基苯去除的探讨[J].污染防治技术,2010,23(4):17-18.
    [91]杨翔宇,唐艳茹,王彬彬,等.Fenton氧化-絮凝处理硝基苯废水的研究[J].长春师范学院学报,2010,29(4):68-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700