中国七个地方绵羊品种微卫星DNA的遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据项目任务要求,本研究利用微卫星标记技术,对我国的7个地方绵羊品种:湖羊、哈萨克羊、巴音布鲁克羊、阿勒泰羊、黑藏羊、白藏羊和晋中羊的遗传多样性进行研究,探讨了它们之间群体内、群体间的遗传变异。研究结果如下:
    1.在28个微卫星位点中,共检测到286个等位基因,平均每个位点为10.6个。其中以AGLA269位点检测到的等位基因数目最多,为18个;其次是BM4311位点,为15个等位基因。等位基因数目最少的位点为BM315、ILSTS021位点,分别检测到4个等位基因。
    2.运用软件对受试羊进行优势等位基因和稀有等位基因分析,结果表明:28个微卫星位点都有优势等位基因存在。有11个位点检测到稀有等位基因。
    3.以等位基因频率为基础,得出位点的平均杂合度在0.0629~0.5903之间,群体平均杂合度在0.3421~0.4215之间,属于中度杂合群体和中度杂合位点。根据统计结果除BM315、ILSTS021的PIC<0.5之外,其余26个位点均为高度多态位点。在26个高度多态位点中,0.60<PIC<0.70 的共有4个位点,占到15.38%,0.70<PIC<0.80的共有13个位点,占到50.00%,0.80<PIC<0.90的共有9个,占到34.62%。在26个高度多态位点中,以AGLA269位点的多态信息含量最高,达到0.8712;ILSTS021位点的多态信息含量最小,为0.3453。在7个品种中,湖羊的多态信息含量最高,为0.7590;哈萨克羊的最低,为0.7317。
    4.对受试羊进行有效等位基因分析表明:在湖羊检测到的有效等位基因数目最多,为5.5309。有19个位点的平均有效等位基因数目都超过4个。
    5.运用软件,进行哈代—温伯格平衡检验,我们得出几乎所有的位点在7个绵羊品种中都处于哈代—温伯格不平衡状态,只有个别位点在个别品种中达到平衡,如BMC1206 在晋中羊品种中,ILSTS021在哈萨克羊品种中基本达到平衡。
    6.中性测试结果表明:共有5个位点(MB009,BM1341,BM3033,BMS6444,BM315)属于中性位点。
    7.对受试羊进行基因流分析,发现巴音布鲁克羊和阿拉泰羊之间有较大的基因流(7.5731),基因流相对最小的是黑藏羊和湖羊之间,其值为3.0964。
    8. F-统计量分析表明:各标记FST的变化范围是从BMS875的0.0293到ILSTS021的0.3969,平均值为0.0747;群体每代迁移数在0.3799 (ILSTS021)和8.2854 (BMS875)
    
    
    之间变动,平均值为3.0964。
    9.运用共祖遗传距离,采用UPGMA法和NJ法对受试羊进行聚类分析可以看到:湖羊与哈萨克羊始终有较近的亲缘关系;巴音布鲁克羊与阿勒泰羊也存在较近的遗传关系。而黑藏羊、白藏羊与晋中羊的聚类情况比较复杂。
The genetic diversity of 7 native sheep breeds in China was analyzed with the microsatellite marker technology based on the requirement of project assignment. The sheep breeds were as followings:Hu sheep、Hasake sheep、Bayinbuluke sheep、Aleitai sheep、 Heizang sheep、Baizang sheep and Jin sheep. The thesis discussed the genetic variation within population and among populations. The results were followed:
    1. The 286 alleles were tested in 28 microsatellite loci, and each locus had 10.6. The most was 18 in AGLA269, the second was 15 in BM4311. The least was 4 in BM315 and ILSTS021.
    2. The results showed that 28 loci had the highly dominant alleles and 11 loci had private alleles.
    3. The mean heterozygosity of different locus varied from 0.0629 to 0.5903, and of different population was from 0.3421 to 0.4215, which belonged to middle heterozygosity locus and population. The PIC value were less than 0.5 in BM315、ILSTS021, the other 26 loci were high diversity. In 26 loci, there were 4 loci which PIC value varied from 0.60 to 0.70, 13 loci which PIC value was from 0.70 to 0.80, and the other 9 loci’s PIC value varied from 0.80 to 0.90. The PIC value in AGLA269 locus was the highest and in ILSTS021 locus was the smallest, which values were 0.8712 and 0.3453 each. The most value was 0.7590 in Hu sheep and the least was 0.7317 in Hasake sheep.
    4. The Hu sheep had the most effective number of allele, which was 5.5309. The average effective number of allele in 19 loci was all more than 4.
    5. Almost all of the loci were not in the HDW equilibrium through the test of HDW with x2 in 7 sheep breeds, except BMC1206 locus in the Jinzhong sheep and ILSTS021 locus in the Hasake sheep.
    6. The Neutrality Test showed that 5 loci (MB009, BM1341, BM3033, BMS6444, BM315) belonged to neutrality locus.
    7. There was the major gene flow between Buyinbuluke sheep and Aleitai sheep (the
    
    
    value was 7.5731), and the relative least was between Heizang sheep and Hu sheep (the value was 3.0964).
    8. The F-statistic analysis indicated that the FST of different locus varied from 0.0293 (in BMS875) to 0.3969 (in ILSTS021), the average was 0.0747. The Nm was from 0.3799 (in ILSTS021) to 8.2854 (in BMS875), and the mean value was 3.0964.
    9. Adopted the method of UPGMA and NJ with the D coa genetic distance in the 7 sheep breeds, the dendrograms were drawed: Hu sheep and Hasake sheep, Bayinbuluke sheep and Aleitai sheep were in the close relationship each other. The cluster of other three breeds was complex.
引文
[1] 马月辉等.中国家养动物种质资源及其保护[J].中国农业科技导报,2002, 4(3):37-42.
    [2] 吕慎金.我国七个绵羊群体微卫星DNA的遗传多样性研究[D].西北农林科技学院硕士学位论文,2003.
    [3] 孙允东.山东地方羊遗传多样性研究[D].山东农业大学硕士学位论文, 2003.
    [4] 陈幼春.中国家畜多样性保护的意义[J].生物多样性,1995,3(3):143-146.
    [5] 杜立新.畜禽遗传资源系统保存的理论及其模式研究[D].北京农业大学博士学位论文,1992.
    [6] 盛志廉.探索畜禽保种的新理论[C].第五界全国畜禽遗传育种学术研讨会论文集,1989.
    [7] 杜立新.关于中国地方畜禽品种的评价与保护的若干思考[J].中国畜牧兽医,2003,30(2):3-5.
    [8] 张云武等.微卫星及其应用[J].动物学研究,2001,22(4):315-320.
    [9] 芒来等.随即保种理论可行性分析[C].第十一次全国动物遗传育种学术会议论文集,2001:510-514.
    [10] 陈瑶生.从达尔文到现代育种[J].东北农业大学学报,1994.25(4):405- 410.
    [11] 李显耀.微卫星标记在蛋鸡品系鉴定中的应用研究[D].中国农业大学硕士学位论文,2003.
    [12] 沈长江,郭爱林等.关于滩羊和蒙古羊的染色体[J].畜牧兽医学报,1980, 2:83-86.
    [13] 晁玉庆等.内蒙古乌珠穆沁羊染色体组型和带型分析[J].内蒙古农牧学院学报,1986,1:13-19.
    [14] 沈元新等.湖羊染色体组型分析[J].遗传,1985,(5):21-25.
    [15] 贾敬肖等.同羊染色体组型研究的初报[J].畜牧兽医杂志,1986(4):4-6.
    [16] 李小勤,吴登俊.国内外绵羊染色体研究进展[J].中国畜牧杂志,2000,1: 43-45.
    [17] 张慧如.宁夏滩羊血清转铁蛋白多态性与双羔性能的研究[J].中国畜牧杂志,2000,36(3):28-29.
    [18] 庞有志.大尾寒羊和小尾寒羊血红蛋白及转铁蛋白的遗传多态性研究[J].中国养羊,1993,3:20-22.
    [19] 李海.南疆三种绵羊品种血清蛋白遗传标记特征聚类分析[J].塔里木农垦大学学报,2001,3(1):15-19.
    [20] 李积友,李并诚.甘肃滩羊血清脂酶和α-淀粉酶多态性分析[J].甘肃农业大学学报,2001,36(4):369-373.
    [21] 兰容等.云南绵羊线粒体DNA遗传多态性研究[J].遗传,1998,20(1):20-23.
    
    [22] 涂正超.藏绵羊线粒体DNA遗传多样性研究[J].畜牧兽医学报,1998,29 (2): 132-135.
    [23] 赵小丽等.用微卫星DNA检测绵羊DNA多态性的初步研究[C].第十次全国动物遗传育种学术讨论会论文集,2000,178-181.
    [24] 李祥龙,田庆义.几个绵羊品种线粒体DNA限制性片段长度多态性比较研究[J].畜牧兽医学报,2001,32(4):295-298.
    [25] 储明星等.微卫星标记OAEBM在五个绵羊品种中的初步研究[J].遗传学报, 2001,28(6):510-517.
    [26] 巩元芳,李祥龙.我国主要地方绵羊品种随机扩增多态DNA研究[J].遗传, 2002,24(4):423-426.
    [27] 柴守诚,员海燕.高等植物DNA重复序列的主要类型和特点[J].西北植物学报,1999,19(3):555-563.
    [28] 周以廷,郑文竹,许莉等.不同物种间共用SSR引物的研究[C].中国遗传学会第六次代表大会暨学术讨论会论文摘要汇编(遗传学专辑),云南大学学报(自然科学版),1999,21(增刊):75-76.
    [29] 徐吉臣,朱立煌.遗传图谱中的分子标记[J].生物工程进展,1992,12(5):1- 3,39.
    [30] 张军丽,王峥峰.植物种群研究中的分子标记及其应用[J].应用生态学报,2000,11(4):631-636.
    [31] 杨澜等.用五个牛微卫星在四个山羊品种中DNA多态性的检测[C].《第六次全国畜禽遗传标记研讨会论文集》,1998:101-103.
    [32] 储明星等.小尾寒羊4个微卫星座位的克隆及序列分析[J].遗传学报,2002, 29(5):402-405.
    [33] 张亚平,王文,宿兵等.大熊猫微卫星DNA的筛选及其应用[J].动物学研究, 1995,16:301-306.
    [34] 熊立仲,王石平.微卫星DNA和AFLP标记在水稻分子标记连锁图上的分布[J].植物学报,1998,40(7):605-614.
    [35] 王崇云,党承林.植物的交配系统及其进化机制与种群适应[J].武汉植物学研究,1999,02:163-172.
    [36] 陈小勇.自然植物种群的亲本分析及其在生态学研究中的应用[J].生态学杂志,1999,18(2):30-35.
    [37] 李义明,李典谟.舟山岛自然栖息地变化及其对禽类物种绝灭的影响[J].应用生态学报,1994,5(3):169-175.
    [38] 张沅.动物育种原理与方法[M].北京:北京农业大学,1995,137-171.
    [39] 胡晓湘.通过基因组扫描定位鸡重要经济性状基因的初步研究[D].中国农业大学博士学位论文,2001.
    
    [40] 肖炜.应用血液蛋白多态性对中国地方猪种遗传多样性的研究[D].中国农业大学硕士学位论文,2002.
    [41] 张继全,陈幼春等.根据个体间蛋白质多位点基因型的比较分析中国黄牛的遗传关系[J].畜牧兽医学报,1996,27(2):119-124.
    [42] 中国农业科学院,南京农学院中国农业遗产研究室.中国农学史(初稿)(上、下册)[M].科学出版社,1984.
    [43] 郑丕留等.中国羊品种志[M].上海科学技术出版社,1988.
    [44] 张继全等.Nei氏标准遗传距离的估测精度[J].畜牧兽医学报,1998,29 (1): 27-32.
    [45] 张继全等.多位点基因型遗传距离的估测精度[J].畜牧兽医学报,1998,29 (2):128-131.
    [46] 吕慎金,马月辉等.运用标记对畜禽遗传距离估测精度的探讨[J].黄牛杂志, 2002,28(5):20-24.
    [47] 孙飞舟.采用微卫星DNA标记评估中国地方猪种遗传多样性[D].中国农业大学博士学位论文,2002.
    [48] 常洪.中国家畜遗传资源研究[M].西安:陕西人民出版社,1998:45-49.
    [49] 陈幼春.关于分子水平下遗传距离检测的模型和适宜样本数的讨论[C]. Animal Biotechnology Bulletin,1996:130-132.
    [50] 王雅春等.不同取样方式及杂交对南阳黄牛三个蛋白多态性位点遗传特性的影响[C].Animal Biotechnology Bulletin,1998:181-184.
    [51] 王吉振.绵羊高繁殖力基因FecB和FecXⅠ的连锁微卫星位点的遗传研究[D].中国农业大学硕士学位论文,2000.
    [52] 孙伟,常洪.中亚以东南绵羊群体亲缘关系血统判别式的研究[J].畜牧兽医学报,2003,34(2):132-138.
    [53] 孙伟,常洪.中亚以东南绵羊亲缘关系研究[J].中国农业科学,2003,36 (1): 94-98.
    [54] 耿荣庆,常洪等.湖羊起源及系统地位的研究[J].西北农林科技大学学报(自然科学版),2002,30(3):21-28.
    [55] 杨晓军,赵有璋.藏系绵羊遗传多样性的研究进展[J].甘肃农业大学学报, 2002,37(4):395-400.
    [56] K Hammond.Conservation ofdomestic animal diversity [J].Global Overview, Proceedings of WCGALP,QuelPH,Canada,1995,Vol21.
    [57] Tsunoda K,Nozwa K,Maeda Y,et al.External morphological characters and blood protein and nonprotein polymorphisms of native sheep in central Mongolia[J].Rep. Soc.REs.Native livestock,1999,17:63-82.
    [58] J Arranz,et al.Genetic relationships among Spanish sheep using
    
    
    microsatellites[J].Animal Genetic,1998,29:435-440.
    [59] Buchanan F Cetal.Genetics[J].1994,4(5):15.22(2):279-403.
    [60] Weber, Maype. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction[J].American Journal of Human Genetics,1989, 44: 388-396.
    [61] Wang Z,Weber J L,Zhong G,et al.Survey of plant short tandem DNA repeats[J]. Nature,1994,359:794-801.
    [62] Morgantem,Olivieriam.PCR-amplified microsatellites as markers in plant genetics[J]. Plant J,1993,3:175-182.
    [63] Huettel B,Winter P,Weising K,et al.Sequence-tagged microsatellite site markers for chickpea ( Cicerarietinum L.)[J].Genome,1999,42:1-8.
    [64] Weber J L.Information of human (dC-dA)n (dG-dT)n polymorphisms[J].Genomics, 1990,7:524-530.
    [65] Maguiret L,Edwardsk J,Saenger P,et al.Characterisation and analysis of microsatellite loci in amang rovespecies.Avicenniamarina(Fork.)Vierh. (Avicenniaceae)[J].Theor. Appl.Genet,2000,101:279 -285.
    [66] Powell W,Machrayg C,Provan J.Polymorphism revealed by simple sequence repeats[J].Trends.Plant Sci,1996,1:215-222.
    [67] Echtc S,May-marqardt P,Hseih M,et al.Characterisation of microsatellite markers in eastern whitepine[J].Genome,1996.39:1102-1108.
    [68] Levinson G,Gutmang A.Slipped-strand mispairing:a major mechanism for DNA sequence evolution[J].Mol.Biol.Evol,1987,4:203-221.
    [69] Zischler H,Kammerbauer C,Studer R,et al.Dissecting (CAC)5/(GTG)5 multilocus finger prints from manintoin dividual locus specifichyper variable components[J]. Genomics,1992,13:983-990.
    [70] Weber J L,Wong C.Mutation of human short tandem repeats[J].Hum.Mol. Genet, 1993, 2:1123-1128.
    [71] Davierwalaa P,Ramakrishna W,Ranjekarp K,et al.Sequence variation sata complex microsatellite locus in rice and its conservation in cereals[J].Theor. Appl. Genet, 2000, 101:1291-1298.
    [72] Choumane W,Winter P,Weigand F,et al.Conservation and variability of sequence-tagged microsatellitesites (STMS) from chickpea (Ciceraerietinum L.) with in the genus Cicer[J].Teor.Appl.Genet,2000,101:269-278.
    [73] Roaa C,Paulc A,Myriamc D,et al.Cross-specie samplication of cassava (Manihotesculenta) (Euphor-biacead) microsatellites:allelic polymorphism and degree
    
    
    of relationship[J].American Journal of Botany,2000,87:1647– 1655.
    [74] Nakamura Y.Variable number of tandem repeat (VNTR) markers for human gene mapping[J].Science,1987,235:1616-1622.
    [75] Rongwen J,Akkayam S,Bhagwata A,et al.The use of microsatellite DNA markers for Soybean genotype identification[J].Theor.Appl.Genet,1995,90:43 -48.
    [76] Struss D,Plieske J.The use of microsatellite markers for detection of genetic diversity in barley populations[J].Theor.Appl.Genet,1998,97:308-315.
    [77] Moores S,Sargentl L,Kingt J,et al.The conservation of dinucleotide microsatellites among mam-malian genomes allows theuse of heterologous PCR primer pairs in closely related species[J].Genomics,1991,10:654-660.
    [78] Pepin L,Amigues Y,Lepingle A,et al.Sequence conservation of microsatellite between Bostaurus (cattle),Caprahircus (goat) and related species.Example for use in parentage testing and phylogeny analysis[J].Heredity,1995,74:53-61.
    [79] Roym S,Geffen E,Smith D,et al.Patterns of differentiation and hybridisation in North American Wolf like Canidso,Revealed by analysis of microsatellite loci[J].Mol. Biol. Evol,1994,11:553-570.
    [80] Schlotterer C,Tautz D.Slippage synthesis of simple sequence DNA[J].Nucleic. Acids.Res,1991,20:211-215.
    [81] Smithd N,Deverym E.Occuren ceandin heritance of microsatellites in Pinusradiata[J]. Genome,1995,37:977-983.
    [82] Echtc S,May-marquard T P.Survey of microsatellite DNA in pine[J].Genome,1997,40: 9-17.
    [83] Diwan N,Bhagwata A,Bauchang B,et al.Simple sequence repeat markers in alfalfa and perennial and annual Medicage species[J].Genome,1997,40:887- 895.
    [84] Love J M,Knighta M,Mcaleerm A,et al.Towards construction of a high resolution map of mouse genome using PCR-analyzed microsatellite[J].Nucleic.Acids.Res,1990,18: 4123-4130.
    [85] Wuk S,Tanksleys D.Abundance polymorphism and genetic mapping of microsatellite in rice[J].Mol.Gen.Genet,1993,241:225-235.
    [86] Russell J R,FullerJ D,Macaulay M,et al.Direct comparision of levels of genetic variation among barley accessions detected by RFLPs, AFLPs,SSRs and RAPDs. Theor[J].Appl.Genet,1997,93:714-722.
    [87] Garza J C,Slatkin M,Freimer N B.Microsatellite allele frequencies in human and chimpanzees with implications for constraints on allele size[J].Mol.Blol.Evol,1995, 12: 594-603.
    
    [88] Wu K S,Tanksley S D.Abundance,polymorphism and genetic mapping of microsatellites in rice[J].Mol.Gen.Genet,1993,241:225-235.
    [89] Levinson G,Gutman G A.Slipped-strand mispairing:a major mechanism for DNA sequence evolution[J].Mol.Biol.Evol,1987,4:203-221.
    [90] Hans Ellegren.Microsatellite evolution:a battle between replication slippage and point mutation[J].Trends in Genetics.2002,18(2):70.
    [91] Garza D R,Suttle C A.Large double-stranded DNA viruses which cause the lysis of a marine heterotrophic nanoflagellate (Bodo sp.) occur in natural marine viral communities[J].Aquatic Microbial Ecology,1995,9(30):203-210.
    [92] A Bowcock,K Orth,J Hung,et al.Genetic instability in Human ovarian cancer cell lines[J].PNAS,1994,91:9495-9499.
    [93] M Wierdl,M Dominska,T D Petes.Microsatellite instability in yeast: Dependence on the length of the microsatellite[J].Genetics,1997,146(3):769- 779.
    [94] P Bennett.Demystified …microsatellites[J].Mol.Pathol,2000,53:177-183.
    [95] Alec J Jeffreys,John Murray,et al.Comparative sequence analysis of human minisatellites showing meiotic repeat instability[J].Genome Research,1999,9(2):130- 136.
    [96] Hamada H,Petrinom G,Kakunaga T.A novel repeated element with Z-DNA-forming potentialis widely found in evolutionarily diverse eukaryotic genomes[J].Proc.Natl. Acad.Sci.USA,1982,79:6465-6469.
    [97] Semyon Kruglyak,Richard Durrett,et al.Distribution and abundance of microsatellites in the yeast genome can be explained by a balance between slippage events and point mutations[J].Molecular Biology and Evolution,2000,17(8):1210-1219.
    [98] J S Beckmann.Rat gene mapping using PCR-Analyzed microsatellites[J].Genetics, 1992,131:701-721.
    [99] Winter A K,Fredholm M,Thomsen P D.Variable (dG-dT)n?(dA-dC)n sequences in the porcine genome[J].Genomics,1992,12:281-288.
    [100] Chakraborty R,Jin L.A unified approach to study hypervariable polymorphisms: statistical considerations of determining relatedness and population distances[J].In "DNA fingerprinting:State of the science”.Pena, S D J,Chakraborty R,Epplen J T,Jeffreys A J eds.Birkhauser Verlag Basel/ Switzerland.
    [101] Weber J L.Informativeness of human (dG-dT)n?(dA-dC)n polymorphisms[J]. Genome, 1990,7:524-530.
    [102] Buchanan F C et al.Mamm Genome[J].1993,4(5):258-294.
    [103] Bostein D,et al.Construction of a genetic linkage maps in man using restriction
    
    
    fragment length polymorphism[J].Amer.J.Hum.Genet,1980,32:314 -331.
    [104] Moore S S,Sargeant L L,King T J,et al.The conservation of dinucleiotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species[J].Genomics,1991,10:654-670.
    [105] Dietz A B,Womack J E,Swarbrick P A,et al.Assignment of five polymorphic ovine microsatellites to bovine syntenic groups[J].Animal Genetics,1993,24: 433-436.
    [106] M J de Gortari,et al.Extensive genomic conservation of cattle microsatellite heterozygosity in sheep[J].Animal Genetics,1997,28:274-290.
    [107] Ruyter-Spira C P,Koning de D J,Groenen M A M,et al.Developing microsatellites markers from Cdna:a tool for adding expressed sequence tags to the genetic linkage map of the chicken[J].Animal Genemal,1998,29:85-90.
    [108] Goldsteina R,Linaresl L,Cavalli-sforz A,et al.An evaluation of genetic distances for use with microsatellite loci[J].Genetics,1995,139:463-471.
    [109] Goldsteina R,Linaresl L,Cavalli-sforz A,et al.Genetic absolute dating based on microsatellites and the origin of modern humans[J].Proc.Natl.Acad.Sci. USA, 1995, 92:6723-6727.
    [110] Takezaki N,Nei M.Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA[J].Genetics,1996,144:389-399.
    [111] Goldsteina R,Pollockd D.Lauching microsatellites:are view of mutation processes and methods of phylogenetic inference[J].Journal of Heredity,1997, 88:335-342.
    [112] Nei M,Liw H.Mathematical model for studying genetic variation in terms of restriction end on ucleases[J].Proc.Natl.Acad.Sci.USA,1979,76:5269-5273.
    [113] Podani J.SYN-TAZ-pc-suppliment 3:Macintoshversion[J].Abstr.Bot,1990,14: 23-29.
    [114] Smithjs C,Chinec L,Shu H,et al.An evaluation of the utility of SSR loci as molecular markers in maize (Zea MaysL.):comparisons with data from RFLPs and pedigree[J]. Theor.Appl.Genet,1997,95:163-173.
    [115] Andersoni A,Churchillg A,Autrique J E,et al.Optimizing parental selection for genetic linkage maps[J].Genome,1993,36:181-186.
    [116] Paetkau D,Calvert W,Stirling I,et al.Microsatellite analysis of population structure in Canadian polar bears[J].Mol.Ecol,1995, 4:347-354.
    [117] A Estoup,F Rousset,et al.Comparative analysis of microsatellite and allozyme markers:a cause study investigating microgeographic differentiation in brown trout (Salmo trutta)[J].Molecular Ecology,1998,7(3):339-354.
    [118] B Dow,M Ashley.High levels of gene flow in bur oak revealed by paternity analysis using microsatellites[J].Journal of Heredity,1998,89(1):62-70.
    
    [119] R J Streiff,Y Ma,et al.Cloning and characterization of human oncostation M promoter[J].Nucleic Acids Research,1999,27(23):4649-4657.
    [120] Roym S,Geffen E,Smith D,et al.Patterns of differentiation and hybridization in North American Wolf like Canidso,revealed by analysis of microsatellite loci[J].Mol.Biol. Evol,1994,11:553-570.
    [121] S T Taylor,X Xu.The magnitude of implied volatility smiles:theory and empirical evidence for exchange rates[J].Review of Futures Markets,1994,13: 355-380.
    [122] Nina Wilson,Toby J,et al.The effect of single, double and triple matings on the lifetime Fecundity of Callosobruehus analis and Callosobruchus Maculatus (Coleoptera; Bruchiclue)[J].Journal of Insect Behavior,1999,12(3):295-306.
    [123] S W Kamau,M Hurtaclo.Flow cytometric assessment of allopuvinol susceptibility in leishmania infantum promastigote[J].Cytometry,2000,40(4):353-360.
    [124] P E Jorde,N Ryman.Temporal allele frequency change and estimation size in population with overlapping generations[J].Genetics,1995,139(2):1077 – 1090.
    [125] L M Miller,A R Kapuscinski.Historical analysis of genetic variation reveals low effective population size in a northern Pike (Esox lucius) population[J].Genetics,1997, 147(3):1249-1258.
    [126] Williams J G.,Kubelik A R, Livak J L, et al.DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J].Nuci.Acid.Re,1990,18: 6531 -6535.
    [127] Bruno Colas,Renaual Vitalis,Miquel Riba,et al.Multilocus genetic structure at
    contrasted spatial scales of the endangered water fern marsilea strigosa willd (Marsileaceae pteridophyta)[J].American Journal of Botany,2002,89(7):1142- 1155.
    [128] Dow B D,M V Ashley.Microsatellite analysis of seed dispersal and parentage of saplings in bur oak,Quercus macrocarpa[J].Molecular Ecology,1996,5:615- 627.
    [129] A M Crawford,et al.An Autosomal Genetic Linkage Map of the Sheep Genome[J]. Genetics,1995,1:112-116.
    [130] Crow L F,Kimura M.An introduction to population genetics theory[M].New York: Harper & Row,1970.
    [131] Nei M.F-statistic and analysis of gene diversity in subdivided population[J].Ann. Human Genet,1977,41:225-233.
    [132] Wright S.Evolution and the genetics of populations.Vol3.Experimental results and evolutionary deductions[M].University of Chicago Press,Chicago.
    [133] Nei M.Estimation of average heterozygosity and genetic distance from a small number of individuals[J].Genetics,1978,89:583-590.
    [134] Nei M.Genetic distance between populations[J].Amer.Naruralist,1972,106: 283-293.
    [135] Nei M,et al.Accuracy of estimated phylogenetic trees from molecular data[J].Journal
    
    
    of Molecular Evolution,1983,19:153-170.
    [136] Nei M,et al.Molecular evolutionary genetics[M].New York:Columbia University Press,1987.
    [137] Nei M,et al.Reconstruction of phylogenetic trees from microsatellite (STR) loci[J]. Animal Genetics,1996,27(supplement 2):1-3.
    [138] Meglecz E,Pecsenye K,Varge Z,et al.Comparison of differentiation pattern at allozyme and microsatellite loci in Parnassius mnemosyne (lepidsptera) populations[J]. Hereditas,1998,128(2):95-103.
    [139] Kotze A F,Muller D G..Intranasal toxicity of selected absorption enhancers[J]. Pharmazie,2001,56(1):882-888.
    [140] Yoshitaka Shimizu,Kazuo Yamakami.Protection against leishamania major infection by oligomannose-coated liposomes[J].Bioorganic & Medicinal Chemistry, 2003,11(7): 1191-1195.
    [141] Pepin L,Amigues Y,Lepingle A,et al.Sequence conservation of microsatellite between Bostaurus(cattle),Caprahircus (goat) and related species,Example for use in parentage testing and phylogeny analysis[J].Heredity,1995,74:53-61.
    [142] N Saitbekova,et al.Genetic diversity in Swiss goat breeds based on microsatellite analysis[J].Animal Genetics,1999,(23):488-491.
    [143] Vincent Murray,Chutima Monchawin,Phillip R,England.The determianation of the sequences present in the shadow bands of a dinucleotide repeat PCR[J].Nucleic Acids Research,1993,Vol.21,No10:2395-2398.
    [144] Schlotterer C.Microsatellite analysis indicates genetic differentiation of the neo-sex chnemosomes in Drosophila Americana[J].Heredity,2000,85(6):610–616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700