湖南假俭草遗传多样性、生理学特性及护坡性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从形态和ISSR分子标记两方面分别对湖南省的12个地区30份野生假俭草种质资源进行了研究,分析探讨它们之间的遗传多样性,结果表明:(1)30份假俭草种质资源在被测的12个形态学指标上出现较大的变异,其中根系深度、叶面积、叶毛、茎色和叶色这5个形态学指标的变异都达到20%以上;(2)对所测得的形态学指标进行相关分析表明,叶层高度与叶长、匍匐茎节直径、叶面积、叶毛、直立茎节间长、匍匐茎节间长、叶色这7个被测指标呈极显著正相关或负相关,r值范围在-0.791-0.803之间;叶色与叶长、直立茎节间长、匍匐茎节间长、匍匐茎节直径、叶面积、呈极显著正相关或负相关,r值范围在-0.889-0.793之间;(3)对形态指标结果聚类分析结果表明,在欧氏距离8.445处,30份种质资源可以分为三大形态类型,即普通型、高大型和矮生型;(4)综合考虑叶片形态和绿期,采集自岳阳市临湘县围城村的野生假俭草种质资源很适合在长沙地区作为坪用草坪草;(5)通过ISSR分子标记扩增反应体系的试验摸索,确立了适合于湖南地区野生假俭草的ISSR分子标记扩增反应体系;(6)从70个ISSR引物中选出了7个ISSR多态性引物用于30份野生假俭草种源遗传多样性分析,结果表明,湖南野生假俭草具有丰富的遗传变异。7个ISSR多态性引物共检测到126个条带,其中多态条带123个,总的多态位点百分率为97.62%;在单份材料水平上,I=0.1922,H=0.3155;群体水平上, I=0.0878,H=0.1302;(7)Nei's遗传多样性分析表明,12群体间产生了一定程度的遗传分化(GST=0.5434)。最低遗传多样性水平出现在衡阳假俭草群体、娄底假俭草群体、邵阳假俭草群体,而最高遗传多样性水平出现在永州假俭草群体;(8)湖南野生假俭草群体间的Nei's遗传距离(D)的变化范围为0.0274~0.1942,根据Nei's遗传距离(D),利用UPGMA法构建的12个群体的遗传关系聚类图得出,在欧氏距离0.12处可将12个群体分为6个大类,划分类群与地理分布有较明显的关系,其中怀化假俭草群体和吉首假俭草群体的亲缘关系最近;邵阳假俭草群体和衡阳假俭草群体遗传距离最大;(9)利用ISSR标记获得的数据,使用NTSYS-pc2.10软件对30份湖南野生假俭草种质材料进行聚类分析结果表明,在相似系数0.780为阈值时,可以将材料分为八大类,根据ISSR遗传相似系数划分的类群与种质资源地理分布存在一定关系,这与主成分分析结果较一致;(10)形态和ISSR分子标记从不同层次上揭示了湖南省野生假俭草的遗传多样性。不能以一方法代替另一种方法,只有相互结合,综合分析,才能够较全面地揭示湖南省野生假俭草的遗传本质。
     生理学特性是植物在各种环境条件下的生命活动规律和机理的综合性表现,本研究以岳阳市临湘县E22假俭草(Eremochloa ophiuroides)为研究对象,选择长沙本地狗牙根(Cynodon dactylon)、山东青岛中华结缕草(Zoysia sinica)、美国百喜草(Paspalum notatum)三种暖季型草坪草作为对照,在各种环境条件下,研究草种的外部形态、生理活性以及光合特性,并对其抗旱性、抗盐性、抗寒性作出评价。结果表明:(1)在干旱胁迫下,假俭草叶片中具有较低的质膜透性,脯氨酸积累时间较长且积累量大,叶绿素含量降低较为缓慢且下降幅度小,水分饱和亏和丙二醛含量增加缓慢,且增加量较低。利用模糊隶属函数分析法,对生理指标进行综合分析,假俭草的抗旱性要比狗牙根、结缕草及百喜草弱;(2)随着盐分胁迫的加大,假俭草根、茎、叶干重出现下降趋势,随着处理时间的延长和盐浓度的增高,植株正常生长过程减短,萎蔫程度和死亡数量逐渐增加,同时叶色由绿到黄,甚至褐色,叶质由软到硬。五项生理指标中叶片的丙二醛含量和相对电导率逐渐上升,叶绿素总含量逐渐下降,脯氨酸含量和过氧化氢酶活性则是先上升后下降。耐盐指标与盐浓度之间的统计分析表明,耐盐指标与盐浓度之间均呈线形回归关系,在盐胁迫下其叶片内发生的一系列生理反应中,脯氨酸、相对电导率、丙二醛含量和过氧化氢酶活性四项指标是指示草坪草耐盐性的最佳生理指标;(3)在自然降温的过程中,假俭草的枯黄期为73d,细胞膜电解质渗透率为97%,超氧化物歧化酶活性的增加幅度要小于其它三种暖季型草坪草,可溶性糖含量为28.79%,脯氨酸含量在低温胁迫12h出现极端峰值,达到4.48mg/g。综合大田绿期观测、各个生理指标的分析,假俭草的抗寒性要比其它三种暖季型草坪草弱;(4)假俭草的光合速率(Pn)日变化类型属于典型的“双峰型”,上午和下午各有一次高峰,中午有“午休”现象,光合速率季节变化呈“单峰型”变化趋势,假俭草光合作用的光饱和点和光补偿点分别为1375和46.25μmol·m-2·s-1,CO2补偿点和饱和点分别为21.91 u 1·L-1和1810μ1·L-1,遮荫条件下,假俭草净光合速率日变化规律呈明显的“单峰型”,且在各种遮荫程度下,全年的平均光合速率均低于对照水平,但是全年的峰值与对照均出现在9月,说明遮荫会降低草坪草的生长速率,但不会改变其生长节律,chla/chlb值反映出假俭草具有较好的适应遮荫的能力。
     坡度对最大截留量有极为显著性的影响。在不同坡度下对四种暖季型草坪草进行综合评价分析,其茎叶截留效应为百喜草>狗牙根>假俭草>结缕草。
     假俭草根系最大抗拉力与根径均成线性正相关,抗拉强度与根径均成指数负相关。根系平均最大抗拉力分别为百喜草11.06 N>假俭草9.05 N>结缕草5.92 N>狗牙根5.06 N;平均抗拉强度为百喜草34.64 mPa>假俭草27.58 mPa>狗牙根26.31 mPa>结缕草22.82 mPa。
     假俭草土体抗剪强度要高于对照的结缕草和狗牙根,但低于百喜草。草种根系明显增加了土体最大剪切力,运用加权平均法进行综合评价分析,在自然状态下(垂直压力10kPa)土体抗剪强度依次为百喜草>假俭草>狗牙根>结缕草。
This paper studied genetic diversity among 30 wild Eremochloa ophiuroides germplasm resources collected from 12 places in Hunan province by using Inter-Simple Sequence Repeat (ISSR) markers and analyzing morphological characteristics. The results got as follows:(1) Big variation of 30 Eremochloa ophiuroides took place on 12 morphological indexes, among which the variations of root depth, leaf area, length of leaves-hair, stem color and leaf color achieved above 20 percent. (2) The correlation analysis on morphological indexes results got indicated that the height of leaf layer has highly significant positive correlation or negative correlation with seven morphological indexes such as leaf length, prostrate stem diameter, leaf area, lamellar seta, stipites length of erect stem, stipites length of creeping stem and leaf color. The r value range was from -0.791 to 0.803. Leaf color has highly significant positive correlation or negative correlation with leaf length, stipites length of erect stem, stipites length of creeping stem, the diameter of creeping stem and leaf area. R value was between -0.889 and 0.793. (3)The cluster analysis on morphology indexes of 30 materials tested indicated that in the Euclidean distance of 8.445,30 germplasm resources tested were possible to be divided into three shape types, namely normal, tall and big, and dwarf form. (4) Considering both leaf form and green period, wild Eremochloa ophiuroides germplasm resources picked from Weicheng, a village in Linxiang county of Yueyang city, were quite suited to Changsha as lawn grass. (5)Basing on the previous studies, a set of simple, rapid and accurate techniques have been explored for Hunan wild Eremochloa ophiuroides DNA extraction and purification, and an ISSR-PCR Reaction System suit for Eremochloa ophiuroides has been established. (6)The study took a genetic diversity test on 30 Hunan wild Eremochloa ophiuroides germplasm resources by using seven polymorphic ISSR primers picked from 70 ISSR primers. The test showed that Hunan wild Eremochloa ophiuroides germplasm resources have a rich hereditary change. 126 bands may be analyzed were found, among which, polymorphic bands were 123. General polymorphic sites accounted for 97.62%. In single share material level, 1=0.0878, H=0.1302. In community level I=0.0878, H=0.1302. (7)Nei heredity multiplicity analysis indicated that a certain degree heredity differentiation (GST =0.5434) existed among 12 communities. The lowest heredity diversity levels appeared in Hengyang, Loudi, Shaoyang Eremochloa ophiuroides community. While the highest heredity diversity levels appeared in Yongzhou Eremochloa ophiuroides community. (8) The variation range of Nei's heredity distance (D) among 30 Hunan wild Eremochloa ophiuroides communities was from 0.0274 to 0.1942. According to Nei's heredity distance got, this study constructed heredity relations cluster charts of 12 communities by using UPGMA. At 0.12 of Euclidean distance,12 communities could be divided into 6 kinds. The division group has obvious relations with geographic distribution. Since Huaihua Eremochloa ophiuroides community was closely related to Jishou Eremochloa ophiuroides community, they were gathered together in the same place firstly. Shaoyang Eremochloa ophiuroides community and Hengyang Eremochloa ophiuroides community's heredity was far away from each other. (9)The study took cluster analysis by NTSYS-pc2.10 software to 30 Hunan wild Eremochloa ophiuroides germplasm resources using data got from ISSR markers. The analysis results indicated the materials would be divided into 8 big types when similarity factor 0.780 was threshold value. Communities divided according to ISSR heredity similarity coefficient have certain relations with geographic distribution. This was consistent with the principal components analysis result. (10) Inter-Simple Sequence Repeat (ISSR) markers and morphological characteristics told us genetic diversity of Hunan wild Eremochloa ophiuroides from different levels. The two methods could not be substituted for another. Only the integration analysis of the two ways, could we comprehensively revealed the genetic nature of Hunan wild Eremochloa ophiuroides.
     Physiological characteristics refer to a comprehensive performance of plants' life activity law and mechanism in a variety of environmental conditions. In this study, Linxiang E22 Eremochloa ophiuroides in Yueyang city was taken as research object. Three kinds of warm-season turfgrasses, local Changsha Cynodon dactylon, Qingdao Zoysia sinica in Shandong province and American Paspalum notatum were selected as contrast. External form, physical activity, photosynthetic characteristics, drought resistance, salt resistance and cold hardiness of turfgrasses were evaluated. The results indicated:(1) Under drought stress, the leaves of Eremochloa ophiuroides has a lower membrane permeability, proline accumulated long and accumulation was large, chlorophyll content decreased slowly and decline range was small, water deficit MDA increased slowly and small. A comprehensive analysis of physiological indicators of four warm-season turfgrasses was made by fuzzy subordination method. Centipedegrass drought resistance was weaker than bermudagrass, zoysiagrass, and Bahiagrass. (2) As salt stress to Eremochloa increased, the dry weights of roots, stem, and leaf were trending downward. With the extension of processing time and increasingly higher salt concentration, plants'normal growth was shortened, wilting degree and number of deaths gradually increased. While leaf color turned from green to yellow or brown and leaf quality from soft to hard. Among five physiological parameters, leaf MDA content and relative electrical conductivity gradually increased, total content of chlorophyll decreased, proline content and catalase activity was first increased and then decreased. Statistical analysis between salt tolerance index and salt concentration showed that linear regression relationship existed between salt tolerance index and salt concentration. A series of physiological reactions occurred in the leaves under salt stress showed that proline, relative conductivity and MDA content and catalase activity were four best physiological parameters to indicate salt tolerance. (3) In natural cooling process, the period of Eremochloa ophiuroides turning withered was 73 days. The membrane electrolyte leakage was 97%. Superoxide dismutase activity in the rate of increase was less than the other three warm-season turf grasses. Soluble sugar content was 28.79%. Proline content reached extreme peak 4.48 mg/g in 12-hour under cold stress. Basing on field green stage observation and various physiological analysis, Eremochloa ophiuroides's cold hardiness was weak compare to the other three warm-season turf grasses. (4) Eremochloa ophiuroides'Diurnal variation of photosynthetic rate was typical "bimodal", that is to say it has a morning and afternoon peaks, and noon "nap" phenomenon. Seasonal change of photosynthetic rate was "single-peak-type" trend. Eremochloa ophiuroides'photosynthetic light saturation point (LSP) and light compensation point (LCP) were 1375 and 46.25μmol·m-2·s-1 respectively. CO2 compensation point was 21.91μl·L-1 and CO2 saturation point was 1810μl·L-1. Diurnal variation trend of net photosynthetic rate was obviously a "single peak" and in a variety of shading, the annual average photosynthetic rate was lower than the control level. However, the peak of Pn in one year appeared in September, which was the same with control. It indicated that the shade would reduce turfgrass growth rate, but it would not change its growth rhythm. Chla/chlb value reflected the Eremochloa ophiuroides has good ability to adapt to shade.
     The slope has a significant effect on lawn grass maximum interception amount, and through the synthetic analysis on the four warm-season lawn grass under the conditions of different slopes, the stems and leaves interception effect of the four lawn grass kind arranged in order as follows:Paspalum notatum> Cynodon dactylon> Eremochloa ophiuroides> Zoysia sinica.
     The maximum compressive stress of Eremochloa ophiuroides'root system was in direct linear proportional to the root diameter while the tensile strength was inversely proportional to the root diameter. The average maximum compressive stress of the four warm-season lawn grass's root system lists in order as follows:Paspalum notatum 11.06 N> Eremochloa ophiuroides 9.05 N> Zoysia sinica 5.92 N> Cynodon dactylon 5.06 N, and the average tensile strength lists in order as follows:Paspalum notatum 34.64 mPa> Eremochloa ophiuroides 27.58 mPa> Cynodon dactylon 26.31 mPa> Zoysia sinica 22.82 mPa.
     Eremochloa ophiuroides'soil shear strength was higher than the control of Zoysia sinica and Cynodon dactylon, but less than Paspalum notatum. Turfgrass roots significantly increased the maximum shear strength of soil. The weighted average method to conduct a comprehensive evaluation and analysis was used. Results showed that in a natural state (vertical pressure 10kPa) shear strength of soil arranged in order as follows:Paspalum notatum> Eremochloa ophiuroides>Cynodon dactylon> Zoysia sinica.
引文
[1]Hanna W W. Centipedegrass diversity and vulnerabablity[J]. Crop Sci,1995(35):320-334.
    [2]徐柱.中国禾草属志[M].呼和浩特:内蒙古出版社,1997.207.
    [3]白史且.中国假俭草遗传多样性研究[D].四川:四川大学.2002.
    [4]孙吉雄.草坪学[M].北京:中国农业出版社,2003.67-68.
    [5]耿以礼.中国主要植物图说[M].北京:科学出版社,1959.809.
    [6]胡中华,刘师汉.草坪与地被植物[M].北京:中国林业出版社,1995,105-106.
    [7]陈志一.草坪栽培管理[M].北京:农业出版社,1993.62-64.
    [8]樊丛梅,孙洪海.优良草坪品种-假俭草[J].江苏林业科技,1990,17(4):49-50.
    [9]罗军,朱开明,李轩等.高速公路坡面防护草种选择和应用技术研究[J].湖南林业科技,2001,6(2):12-15.
    [10]谭继清,谭志坚.重庆足球场暖季型草坪早春使用的维护技术[J].四川草原,1995(2):25-25.
    [11]张巨明,张小虎,刘照辉.暖季型草坪草的引种与评价[J].草业科学,1996,12:35-38.
    [12]白史且,肖飘,韩烈保,等.几种暖季型草坪草在成都的引种适应性研究[J].草业科学,16:22-25,30.
    [13]李西,毛凯.假俭草研究概况[J].草业科学,2000,17(5):13-17.
    [14]Zabeau M, Vos P. Selective restriction fragment amplification:a general method for DNA fingerprinting[J]. Eu-ropean Patent ApplicationNo.,1993.145-149.
    [15]胡守荣,夏铭,郭长英,等.林木遗传多样性研究方法概况[J].东北林业大学学报,2001,29(3):72-75.
    [16]王中仁.植物等位酶分析[M].北京:科学出版社,1996,10-11.
    [17]冯夏莲,何承忠,张志毅,等.植物遗传多样性研究方法概述[J].西南林学院学报,2006,26(1):69-74.
    [18]张传军,刘亦肖,肖娅萍.遗传多样性与植物的遗传标记[J].陕西师范大学学报,2006,S1期:275-278.
    [19]Shoemaker R C, Specht J E. Integration of the soybean molecular and classical genetic linkage groups[J]. Crop Science.,1995,35:436-446.
    [20]Williams J G K, Kubelik A R, Livak J, et al. DNA polymorphisms amplified by arbitary primers are useful as genetic markers[J]. Nucleic Acid Research.,1990,18:6531-6535.
    [21]Welsh J, MmClelland M. Fingerprinting genomes using PCR with arbitary primers[J]. Nucleic Acids Research.,1990,18:7213-7218.
    [22]Paran I, Michelmore R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce[J]. Theor. Appl. Genet.,1993,85:985-993.
    [23]ZIETKIEWICZ E, Rafalskea, Labuda D. Genome fingerprinting by smi ple sequence repeat (SSR) anchored polymerase chain reaction amplication[J]. Genome.,1994,20:178-183.
    [24]Bccker J, Vos P, Kuiper M, et al. Combined mapping of AFLP and RFLP markers in barley[J]. Mol. Gen. Genet.,1995,249:65-73.
    [25]Levitt J. Responses of plant to environmental stress [M]. 2nd. ed. VoL2. New York:Academic press,1980.203-205
    [26]Carrow R N. Drought resistance aspects of turfgrass in the southeast:cvaportaspiration and corp coefficients[J]. Crop Science.,1995,35:1685-1690.
    [27]李吉跃.植物耐旱性及其机理[J].北京林业大学学报,1991,(3):22-26.
    [28]武维华.植物生理学[M].北京:科学出版社,2003.98-105
    [29]Sheffer K M, Dunn J H, Minner D D. Summer drought response and rooting depth of three cool-season turfgrass[J]. Hort Science.,1987,22:296-297.
    [30]Salaiz T A, R C Shearman, E J Kin bacher. Creeping Bentgrass cultivar water use and rooting response[J]. Crop Science.,1991,31:1331-1334.
    [31]康绍忠,刘晓明.玉米生育期土壤—植物—大气连续体系水流阻力与水势的分布[J].应用生态学报,1993,4(3):260-266.
    [32]徐祝龄,王汉,衣纯真.作物水分胁迫监测的国内外研究进展[J].中国农业气象,1995,16(4):41-47.
    [33]马智宏,李征,王北洪,等.冷季型草坪草耐旱及耐寒性比较[J].草地学报,2002,10(4):318-321.
    [34]汤章城.植物抗逆性生理生化研究的某些进展[J1.植物通讯,1991,(2):146-148.
    [35]倪郁,李唯.作物抗旱机制及其指标的研究进展与现状[J].甘肃农业大学学报,2001,36(1):14-22.
    [36]张慧如,王丽娟,郑蕊,等.宁夏五种抗旱性牧草与脯氨酸含量的相关性研究[J].宁夏农学院学报,2001,22(4):12-14.
    [37]王宪泽.作物抗旱育种生理生化指标的研究[J].中国农学通讯,1994,10(5):5-8.
    [38]喻方圆,徐锡增.植物逆境生理研究进展[J].世界林业研究,2003,16(5):6-11.
    [39]孙昌祖.渗透胁迫对青杨叶片氧自由基伤害及膜脂过氧化的影响[J1.林业科学,1993,29(2):104-]09.
    [40]高宁.水分胁迫下两种草坪草的渗透调节与抗旱性的关系[J].中国草地,1995,(4):44-48.
    [41]韩建民.抗旱性不同的水稻品种对渗透胁迫的反应及其与渗透调节的关系[J].河北农业大学学报,1990,13(1):17-21.
    [42]Huang B R, Duncan R R, Carrow R N. Drought resistance mechanisms of seven warm season turgrass under the surface soil drying:I shoot rersponse[J]. Crop Science.,1997,38:1858-1863.
    [43]Jones M M, Osmond C B, Tunrer N C. Accumulation of sohutes in leaves of sorghum and sunflower in response to water deficits[J]. Aust J. Plant physiol.,1980,7:193-205.
    [44]Ludlow M M, Muchow R C. A critical evaluation of traits for improving crop yields in water-limited environments[J]. Adv Agron.,1990,43:107-153.
    [45]于同泉,刘总萍,路萍,等.水分胁迫小麦SOD、MDA动态变化与抗旱性关系[J].北京农学院学报,1995,10(1):22-25.
    [46]Zhao Yuguang, George CJ, Fernandez, et al. Selection Criteria for drought-resistance breeding in turfgrass[J]. J. Amer. Soc. Hort. Sci.,1994,119(6):1317-1324.
    [47]Bingru Huang, Hongwen Gao. Physiological characteristics associated with drought resistance in tall fescue cultivars[J]. Crop Science.,2000,40(1):196-203.
    [48]倪郁,郭彦军,吕俊,等.水分胁迫下豆科牧草的生理生化变化[J].土壤通报,2004,5(3):275-278.
    [49]马伟,王彩云.几种引进冷季型草坪草的生长及抗旱生理指标[J].草业科学,2001,18(2):57-62.
    [50]何亚丽,王惠林,沈剑,等.冷地型草坪草耐热机理的研究——5种冷地型草坪草离体叶片在骤然高温、干旱下细胞膜透性的变化及其抗性鉴定[J].上海农学院学报,1997,15(3):209-214.
    [51]董晓霞,赵树慧,孔令安.等.苇状羊茅盐胁迫下生理效应的研究[J].草业科学,1998,15(5):10-13.
    [52]王赞,吴彦奇,毛凯.狗牙根研究进展[J].草业科学,2001,18(5):37-41.
    [53]Mc Carty L. B, Dudeck A. E. Salinity effects on bentgrass germination[J]. Hort Science. 1993,28(1):15-17.
    [54]翁森红.牧草耐盐性鉴定的方法[J].中国草地,1995,(2):37-41.
    [55]牛菊兰.北方冷季型草坪耐盐能力的测定[J].草地学报,1997,5(3):190-194.
    [56]牛菊兰.早熟禾品种特性与耐盐性关系的研究[J].草业科学,1998,15(1):38-41.
    [57]张德罡.盐胁迫对五个早熟禾草坪草品种苗期细胞膜伤害性的研究[J].甘肃农业大学学报,1998,33(1):38-41.
    [58]Marcum K B. Salinity tolerance merchanisms of six C4 turfgrass[J]. Amer Soc Hort sci.,1994, .119(4):779-784.
    [59]Dudeck A E, Peacock C H. Effects of salinity on seashore Paspalm turfgrass[J]. Agron J.,1985, 77:47-50.
    [60]潘金山.草坪草耐盐性研究:l不同草种和品种在盐胁迫下的抗逆性[J].草业科学,1999,50-53.
    [61]王爱国.丙二醛作为膜质过氧化指标的探讨[J].植物生理学通讯,1986,(2):55-57.
    [62]Lessani H, Maarschner H. Reaction between salt tolerance and long-distance transport of sodium and chloride in various crop species[J]. Aust. J. Plant Physiol.,1978,5,27-37.
    [63]Blumwald E, Aharon CS, Apse MP. Sodium transport in plant cells[J]. Biochim biophys Acta., 2000,1465:140-151.
    [64]梁慧敏,夏阳,杜峰,等.盐胁迫对两种草坪草抗性生理生化指标影响的研究[J].中国草地,2001,23(5):27-30.
    [65]马凤鸣,高继国.硝酸还原酶活力作为甜菜碱N素营养诊断及预测产糖量指标的研究[J].中国农业科学,1996,29(5):16-22.
    [66]籍越,滕开琼,杨芳绒,等.Na2C03胁迫对不同草坪品种O2+产生及SOD活性的影响[J].河南农业大学学报,2000,34(2):177-179.
    [67]魏臻武,王槐三.两种草坪草抗寒特性及其超氧化物歧化酶的作用[J].草业科学,1998,15(2):62-66.
    [68]刘祖祺. 张石诚.植物抗性生理学[M].北京:中国农业出版社,2001.178-190
    [69]刘华,舒孝喜,赵银,等. 盐胁迫对碱茅生长及碳水化合物含量的影响[J]. 草业科学,1997,14(1):18-20.
    [70]赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993.60-92
    [71]魏臻武,范占炼,王槐三.不同类型草坪草的抗寒锻炼[J].草业科学,1997,(3):60-65.
    [72]Browse J, and Somerville C. Glycerolipid Synthesis:Biochemistry and Regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1991,42:467-506.
    [73]Uemura M, Joseph R. A, and Steponkus P. L. Cold Acclimation of Arabidopsis Thaliana[J]. Plant Physiol.,1995,109:15-30.
    [74]何若韫.植物低温逆境生理[M].北京:中国农业出版社,1995.5
    [75]Suresh Samala, Jiyu Yan, Wm Vance Baird. Changes in Polar Acid Composition During Cold Acclimation in 'Midiron' and'U3'Bermudagrass. Crop Sci.,1998,38:188-195.
    [76]刘玲珑,吴彦奇.狗牙根种质资源及抗寒性进展[J].中国草地,2000,(6):45-50.
    [77]张石诚.植物的抗寒生理[M].北京:农业出版社,1990.49-67
    [78]Fry J. D, Lang N. S. Clifton R. G. P, and Maier F. P. Freezing Tolrrance and Carbohydrate Content of Low Temperature Acclimated and Nonacclimated Centipedegrass[J]. Crop Sci., 1993,33:1051-1055.
    [79]徐清,刘茂春,徐吕杰.草坪草生理生化研究进展[J].中国草地,1998,(4):56-60.
    [80]Trenholm L. E, Dudeck A. E, Cisar J. L. Bermudagrass Grouth, Total Nonstructural Carbohyhrate Concentration, and Quality as Influenced by N and K[J]. Crop Sci.,1998,38:168-174.
    [81]Dunn J. H Nelson C. T Chemical Changes Occurring in Three Bermudagrass Turf Cultivars in Relation Cool Hardiness[J]. Crop Sci.,1974,66:28-31.
    [82]王榕楷,丁小球,胡玉佳.三种草坪草的耐寒性及其与超氧化物歧化酶作用关系初步研究[J].中国草地,2001,23(1):46-50.
    [83]李科云,孙祥贵.岸杂一号狗牙根在湖南低山丘陵地区的适应性研究[J].草业科学.1993,(6):2329.
    [84]王承斌,赵来喜,海淑珍,等.草过氧化物酶与抗寒性的初步研究[J].中国草地,1989,(5):7274.
    [85]Gatscher M. J, Taliaferro C. M, Porter D. R, Anderson M. P, Anderson J. A, and Jackson K. W. A. Cold regulated Protein form Bermudagrass Crowns is A Chitinase[J]. Crop Sci., 1996,36:712-718.
    [86]Davis D. L, Gilbert W. Winter Hardiness and Changes in Soluble Protein Fraction of Bermudagrass[J]. Crop Sci.,1970,10:7-9.
    [87]邹崎.作物光合作用“午休”现象研究进展[J].作物高产高效生理学,1994,7:46-54.
    [88]韩凤山,赵明,等.小麦午睡原因的研究Ⅱ生理因子与午睡的关系[J],作物学报,1987, 10(2):137-143.
    [89]贺东祥,沈允钢.几种常绿植物光合特性的季节变化[J].植物生理学报,1995.1.32-35.
    [90]丁小球,胡玉佳,王榕楷.三种草坪草净光合速率和蒸腾速率的日变化特点研究[J].草业科学,2001:18(2):62-66.
    [91]王忠,王三根,李合生,等.植物生理学[M].北京:中国农业出版社,2000.170.
    [92]Jeremy R, et al. Turfgrass Manual[M]. British Seed Houses.,1991.340-380
    [93]Eliot C. R. Proceedings of the Second International Turfgrass Research Confer-ence[J]. Publicated by American Society of Agronomy and the Crop Science., 1974.112-116.
    [94]王文彰.草坪的光合作用与抗盐生理[J].草业科学,1991,(4):30-33.
    [95]Herbert F. B. Redesigning the American Lawn[M]. Yale University Press.,1993.56-78
    [96]Rorison I. A. Amenity Grassland[M]. Printed and bound in Great Britatin.,1980.139-189
    [97]肖文一,孙忠晏,赵云成.中国草坪植物栽培[M].哈尔滨:黑龙江教育出版社,1990.243-289
    [98]金岭梅,王钦.不同温度或照度下的测试间隔时间与剪股颖叶绿素含量变化[J].草业科学,1993,(5):48-50.
    [99]罗伯特·爱蒙斯.草坪科学与管理[M].北京:中国林业出版社,1998.223-288
    [100]许大全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯,1992,28(4):237-243.
    [101]He J, Chee C W, GoHCJ. Photoinhibition of the Heliconia under natural tropical conditions: the importance of leaf orientation for light interception and leaf temperature[J]. Plant, Cell and Environment.,1996,19:1238-1243.
    [102]江海东,孙小芳,吴春,等.光照和播种量对高羊茅生长及草坪质量的影响[J].草业学报,2000,9(4):63-67.
    [103]Turgeon A J. Turfgrass management Fourth edition[M]. New Jersey:Prentice Hall, 1996.123-245
    [104]Yiwei Jiang, Ronny R Duncan, Robert N Carrow. Assessment of low light tolerance of seashore Pas-palum and Bermuda grass[J]. Crop Sci.,2004,44(2):587-594.
    [105]Hashemi-Dexfouli A, Herbert S J. Intensifying plantdensity response of corn with artificial shade [J]. Agron. J.,1992,84:547-551.
    [106]杨渺,毛凯.遮荫对草坪草的影响[J].草业科学,2002,19(1):60-63.
    [107]王钦.草坪植物的逆境效应及质量评定标准研究报告[J].草业科学,1993,10(4):48
    [108]胡林,边秀举,阳新玲.草坪科学与管理[M].北京:中国农业大学出版社,2001.96-
    [109]White R H, Schmidt R E. Bermudagrass response to chillin temperature as in- fluence ironand benzy gladenine[J]. Crop Science.,1989,129:768-773.
    [110]Kamok K J, Beard J B. Effects of gibberellic acid on the CO2 exchange rates of bermuda and St. Augustinegrass when exposed to chilling temperatures [J]. Crop Science.,1999, 514-517.
    [111]Szarek S R, Holthe P A and Ting I P. Minor physiological response to elevated CO2 b) CAM plant Agave vilmoriniana[J]. Plant Physiol.,1987,83:938-940.
    [112]Cui M and Nobel P S. Gas exchange and growth responses to elevated CO2 and light leve the CAM speciesOpuntiaficus-indica[J]. Plant Cell Environ.,1994,17(8):935-944.
    [113]Nobel P S and Israel A A. Cladode development, environmental responses of CO2 uptake, productivity for Opuntiaficus-indicaunder elevated CO2[J]. J. Exp. Bot.,1994,45:295-3
    [114]Wang N and Nobel P S. Doubling the CO2 concentration enhanced the activity carbohydrate-metabolism enzymes, source carbohydrate production, photo- assimilate transp and sink strength for Opuntia ficus-indica [J]. Plant Physiol.,1996,110:893-902.
    [115]Yelle S, Beeson Jr. R C, Trudel M J, et al. Acclimation of two tomato species to 1 atmospheric CO2[J]. Plant Physiol.,1989,90:1465-1472.
    [116]Webber A N, Nie G and Long S P. Acclimation of photosynthetic proteins to rising atmosph CO2[J]. Photosynthesis Res.,1994,39:413-425.
    [117]Hendrey G R, Kimball B A. The FACE program. Agric. For. Meteorol.1994,69:1-
    [118]Mauney J R, Kimball B A, Pinter Jr. P Jet al. Growth and yield of cotton in response free-air carbon dioxide enrichment[J]. Agric. For. Meteorol.,1994,70:49-67.
    [119]Delucia E, Sasek T W and Strain B R. Photosynthetic inhibition after long-term exposur elevated levels of atmospheric carbon dioxide [J]. Photosynthesis Res.,1985,7:175-184
    [120]杜占池,杨宗贵.冰草叶片光合速率与生态因子的关系[J].草地学报,2000,8(3):155-10
    [121]杜占池,杨宗贵.羊草和大针茅光合生态特性的比较研究.草原生态系统研究(第集)[C].北京:科学出版社,1988:52-66.
    [122]林世埕,周文培,邱亦维,等.林下微生境对草坪草叶绿素含量的影响[J].浙江林业科:2004,24(1):12-15.
    [123]Burton G W. The influence of light reduction uponthe production persistence and chemical composition of Coastal Bermudagrass (Cynodon Dactylon)[J], Agron. J.,1994,51(5):534-542.
    [124]陈佐忠.草坪植物与光照[M].中国农业大学出版社,1999.262-264.
    [125]宫坂昭.光合成。日变化作物の光合と物质生产[M],养贤堂,东京,1972.145.
    [126]Walter Larcher.植物生态生理学[M].北京:中国农业大学出版社,1997.
    [127]Idso K E and Idso S B. Plant response to atmospheric CO2 enrichment in the face of environmental constrains:A review of the past 10 years research. Agric. For. Meterorol.,1994, 69:513.
    [128]刘金祥,麦嘉玲,刘家琼.C02浓度增强对沿阶草光合生理特性的影响[J].中国草地,2004,26(3):13-17,23.
    [129]郭延平,张良诚,洪双松,等.温州蜜柑叶片光合作用的光抑制[J].园艺学报,1999,26(5):281-286.
    [130]李新国,许大全,孟庆伟.银杏叶片光合作用对强光的响应[J].植物生理学报,1998,24(4):354-360.
    [131]高民欢,李辉,张新宇,等.高等级公路边坡冲刷理论与植物防护技术[M].北京:人民交通出版社,2005.150-169
    [132]舒翔,杜鹃,曹映泓,等.生态工程在高速公路岩石边坡防护工程中的运用研究[J].公路,2001,(7):86-89.
    [133]王代军,胡桂馨,高洁.公路边坡侵蚀及坡面生态工程的应用现状[J].草原与草坪,2000,(3):22-24.
    [134]LI XP, ZHANGLQ, ZHANGZ. Soil bioengineering and the ecological restoration of riverbanks at the Airport Town, Shanghai, China [J]. Article Ecological Engineering.,2006,26(3): 304-314.
    [135]Morgan R P C, McIntyre K. A rainfall simulation study of soil erosion on rangeland in Swaziland[J]. Soil Technology.,1997,11:291-299.
    [136]程洪,张新全.草本植物根系网固土原理的力学试验探究[J].水土保持通报,2002,22(5):20-23.
    [137]蒋德松,陈昌富,赵明华.岩质边坡植被抗冲刷现场试验研究[J].中南公路工程,2004,29(1):55-58.
    [138]刘昌明.土壤-植物-大气系统水分运行的界面过程研究[J].地理学报,1997,52(4):366-373.
    [139]赵鸿燕,吴钦孝,刘国彬.黄土高原森林植被水土保持机理研究[J].林业科学,2001,37(5):140-144.
    [140]刘国彬.黄土高原地土壤抗冲性及其机理研究[J].水土保持学报,1998,35(1):93-96.
    [141]Nilaweera, N. S. Influence of Hardwood Roots on Soil Shear Strength and Slope Stability in Southern Thailand[D]. Ph. D Dissertation, Asian Institute of Technology, Bangkok.1994
    [142]Tien H Wu, Alex Watson, Mohamed A, El-khouly. Soil-root interaction and slope stability[C]. Proceedings of the First Asia Pacific Conference on Ground and Water, Bioengineering Erosion Control and Slope Stabilization.,1999.514-521.
    [143]Waldrom L J. The shear resistance of root permeated Homogeneous and stratified [J]. Soil Science Society of American Proceedings,1991,68,843-849.
    [144]Hathaway, R. L. and D. Penny. Root Strength in Some Populus and Scdix Clones[J]. New Zealand Journal of Botany.,1975,13:333-344.
    [145]H. M. Schiechtl and R. Stern. Ground Bioengineering Techniques for Slope Protection and Erosion Control [J], John wiley & Sons, Inc.
    [146]杨亚川,莫永京.土壤—草本植物根系复合体抗水蚀强度与抗剪强度试验研究[J].中国农业大学学报,1996,1(2):31-38.
    [147]李铁军,李晓华.植被固坡机制的研究[J].水土保持科技情报,2004,(2):1-3.
    [148]封金财,王建华.植物根的存在对边坡稳定性的作用[J].华东交通大学学报,2003,20(5):42-45.
    [149]Wu, T. H, W. P. Mckinell, and D. N. Swanston. Strength of Tree Roots and Landslides on Prince of Walse Island. Alaska[J]. Canadian Geotechnical Journal.,1979,16(1):19-33.
    [150]Waldron, L. J. The ShearResistance of Root-permeated Homogeneous and Stratified Soil[J]. Soil Science Society of American Proceedings.,1977,41:843-849.
    [151]Shields, F. D. and D. H. Gray. Effects of Woody Vegetation on the structural Integrity of Sandy Levees[J]. Water Resources Bulletin.,1993,28(5):917-931.
    [152]Turmanina, V. I. On the Strength of Tree Roots[J]. Bulletin Moscow Society Naturalists. 1965,70(5):36-45.
    [153]代全厚,张力.嫩江大堤植物根系固土护坡功能研究[J].水土保持通报,1998,18(6):8-11.
    [154]刘国彬,蒋定生,朱显漠.黄土区草地根系生物力学特性研究[J].土壤侵蚀与水士保持学 报,1996,2(3):21-28.
    [155]王钦,谢源芳.草坪质量评定方法[J].草业科学,1993,(4):69-73.
    [156]刘建秀.草坪坪用价值综合评价体系的探讨[J].中国草地,1998,(1):44-47.
    [157]刘学诗,刘建秀.中国东部假俭草种质资源多样性初步研究Ⅱ.外部性状变异及其形态类型[J].安徽农业大学学报,2004,31(1):15-21.
    [158]白史且,沈翼,高荣.假俭草遗传多样性的AFLP指纹分析[J].高技术通讯,2002,(10):45-49.
    [159]李进波,牟同敏,方宣钧.12个水稻光敏核不育系的ISSR标记鉴定及遗传分析[J].中国农学通报,2002,18(1):6-9321.
    [160]胡国富.用微卫星及ISSR法对羊草(Aneurolepidium Chinese (Trin) Kitag)遗传多样性的研究[D].哈尔滨:东北农业大学,2002年.
    [161]宣继萍,高鹤,刘建秀.中国假俭草居群遗传多样性研究IIIRAPD分析[J].草业学报,2005,14(4):47-52.
    [162]Nybom H, Bartish IV.Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plant[J]. Perspect Plant Ecol Syst.,2000,3:93-114.
    [163]夏铭,周晓峰,赵士洞.天然红松群体遗传多样性的RAPD分析[J].生态学报,2001,21(5):730-737.
    [164]Bussell JD. The distribution of random amplified polymorphic DNA (RAPD) diversity among populations of Isotoma petraea (Lobeiaceae) [J]. Molecular Ecology,1999,8:775-789.
    [165]Woodruff D S. Genetics and demography in the conservation of biodiversity[J]. Journal of Scientific Society of Thailand,1990,16:117-132.
    [166]张宪政.作物生理研究法[M].北京:农业出版社,1992:321-357
    [167]Henry T Nguyen. Breeding for drought resistance in rice:physiology and molecular genetics considerations[J]. Crop Sci.,1997,37:1426-1434.
    [168]汤章城.逆境条件下植物脯氨酸的累积极其可能的意义[J].植物生理学通讯,1984,1:15-21。
    [169]李合生.现代植物生理学[M].北京:高等教育出版社,2002:44-145.
    [170]孙启忠.四种冰草幼苗抗旱性的研究[J].中国草地学报,1991,(3):32-35.
    [171]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994:11-114.
    [172]现代植物生理学实验指南[M].科学出版社.1999:4-79
    [173]张殿中,汪沛洪,赵会贤.测定小麦叶片游离脯氨酸含量的方法[J]. 植物生理学通讯,1990,(4):2-65.
    [174]Chance B, A C Machly. Assay of catalase and peroxidase. In Methodes of enzymology, VolⅡ Bycolowick SP and Kapalam NO(eds), New York:Academic Press,1955,764.
    [175]汪安琳,高强,陈裕菊.油菜素内脂对湿地松苗的生理作用[J].南京林业大学学报,1995(4): 1-6.
    [176]谭常.电解质外渗百分率的测定.植物生理学实验手册,上海植物生理协会主编,1985:176-178.
    [177]刁丰秋. 盐胁迫对大麦叶片类囊体膜组成和功能的影响[J].植物生理学报,1997,23(2):105-110.
    [178]陈沁,刘友良,陈亚华. 盐胁迫对大麦叶片的活性氧伤害与液泡膜H十-ATPase活性的关系[J].南京农业大学学报,1998,21(3): 21-25.
    [179]赵可夫.植物抗盐生理[M]. 北京:中国科学技术出版社,1993:190-120.
    [180]Alberte RS, Thornber JP, Fiscus E L. Water stress on the content and organization of Chlorophyll in mesophyll and bundle sheath Chloroplasts of maize[J]. plant physiol.,1997, 59:51-353.
    [181]许兴,李树华,惠红霞,等.NaCl胁迫对小麦幼苗生长、叶绿素含量及Na+, K+吸收的影响[J]. 西北植物学报,2002,22(2): 278-284.
    [182]翁森红,徐柱,师文贵,等.牧草叶片的叶绿素含量与耐盐性的关系[J].四川草原,1999,(1):11-17.
    [183]Buhl MB, Stewart CR. Effect of NaCl on proline synthesis and utilization in excised barley leaves[J]. plant physiol,1983,72:664-667.
    [184]吕芝香,乙引.NaCl胁迫对小麦苗叶片脯氨酸氧化酶活性和游离脯氨酸累积的影响[J].植物生理学报,1991,18(4): 376-382.
    [185]Qian Y L, Wilhelm S J, Marcum K B. Comparative responses of two Kentucky bluegrass cultivars to salinity stress[J]. Crop Sci,2001,41:1895-1900.
    [186]Levitt. Responses of plant to environmental stress[J]. New York:Academic press,1980, 4,35-53.
    [187]Smirnoff N. The role of avtive oxygen in the response of plants to water deficit and desiccation[J]. New Phytologist.,1993,125:27-28.
    [188]Inze D, Van Motagu M. Oxidative stress in plants[J]. Curr. Biotechnol.,1995,6: 153-158.
    [189]Hcque E, Dathe W, Tesche M, et al. Abscisic acid and its beta-D-lucopyranosyl easter in saplings of Scots Pine in relation to water stress[J]. Biochemieund- Physiologic-cler-Pflanzen., 1983,178(4):287-295.
    [190]杜中军,瞿衡,李健.盐胁迫对苹果砧木的膜伤害[J].山东农业大学学报,2001.32(4):523-532.
    [191]张恩平,张淑红,司龙亭,等.NaCl胁迫对黄瓜幼苗子叶膜脂过氧化的影响[J].沈阳农业大学学报,2001,32(6):446-448.
    [192]孙国荣,关炀,阎秀峰.盐胁迫对星星草幼苗保护酶系统的影响[J].草地学报,2001,9(1):34-38.
    [193]Asada, K. Ascorbate peroxidasea hydrogen peroxide scavenging enzyme in plants[J]. Physiol Plant.,1992,85:235-241.
    [194]Rajagopal Subramaniam, et al. Structure, inheritance, and expression of hybrid poplar (Populus trichocarpa XPopulus deltoides) pheny lalanine ammonia-lyase genes [J]. Plant physiology.,1993, (102):71-83.
    [195]Quartacci MF and Navari Izzo F. Water stress and free radical mediated changes in sunflower seedling[J]. Plant Physiol.,1991,139(5):621-625.
    [196]王洪春.植物抗性生理[J].植物生理学通讯,1981,(6):72-73.
    [197]刘春华,苏加楷,黄文惠.禾本科牧草5个耐盐生理指标的研究[J].草业学报,1993,2(1):45-54.
    [198]Stewart, R. R. C. and J. D. Bcwiey, Lipid peroxidation associated with accelerated aging of soybean axes[J]. plantphysiol.,1980,65:245-248.
    [199]王英宇,杨建,韩烈保.不同灌溉量对草坪草光合作用的影响[J].北京林业大学学报,2006,28(1):26-31.
    [200]张宪政.作物生理研究法[M].北京:农业出版社,1992.
    [201]杨模华,李志辉等.银杏光合作用的特性[J].经济林研究,2004,22(4):15-18.
    [202]Boardman.N.K.1977. coparative photosynthesis of sun andshade plants[J]. Ann.Rev Plant Physiol.28:355-377.
    [203]韩烈保,胡九林等.白三叶草坪蒸散和光合蒸腾速率日变化研究[J].北京林业大学学报, 2006,28(1):22-25.
    [204]刘文革,阎志红,王鸣.不同染色体倍性西瓜光合速率日变化的研究[J].中国西瓜甜瓜,2003,(2):4-6.
    [205]许大全.植物光胁迫研究中的几个问题[J].植物生理学通讯,2003,39(5):493-495
    [206]户冢绩,木村允..1973.植物の生产过程[M].东京:立出版株式会社,1-16.
    [207]周治国,孟亚利.施培.苗期遮荫对棉苗茎叶结构及功能叶光合性能的影响[J].中国农业科学,2001,34(5):19-525.
    [208]Foyer CH,Noctor G. Leaves in the dark see the light[J]. Science.,2000a,284:414-5416.
    [209]胡建忠,李文忠,郑佳丽,等.祁连山南麓退耕地主要植物群落植冠层的截留性能[J].山地学报,2004,22(4):492-501.
    [210]卓慕宁,李定强.论高速公路建设中的水土保持生态恢复[J].水土保持研究,2003,10(4):209-211.
    [211]刘向东,吴钦孝,施立明,等.对六盘山森林截留降水作用的研究[J].林业科技通讯,1982,(3):18-21.
    [212]范世香,裴铁番,蒋德明,等.两种不同林分截留能力的比较研究明[J].应用生态学报,2000,11(5):67]-674.
    [213]Gray D H. Influence of vegetation on the stability of slopes (J). In:Barker D H.Vegetation and Slopes Stabilization,Protection and Ecology. London:Thomas Telford.,1995:2-25.
    [214]袁聚云,徐超,赵春风,等.土工试验与原位测试[M].上海:大学出版社,2004:4-87.
    [215]范兴科,蒋定生,赵合理.黄上高原浅层原状土抗剪强度浅析[J].土壤侵蚀与水土保持学报,1997,3(4):69-75.
    [216]封金财,王建华.乔木根系固坡作用机理的研究进展[J].铁道建筑,2004,(3):29-31.
    [217]张祖荣.植物根系提高土壤抗侵蚀能力的初步研究团[J].渝西学院学报(自然科学版),2002,15(1):31-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700