合成气一步法直接合成二甲醚分离工艺和分离设备的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源、环境问题是困扰人类的热点问题之一。富煤、贫油、少气的能源结构特点决定了我国的能源消费以煤为主,尽管煤炭在能源消费结构中的比例将有所下降,但以煤为主的格局在相当长时期内难以改变。应大力发展煤基车用燃料技术,用我国相对丰富的煤炭资源弥补石油资源的不足,以解决我国中长期的能源安全问题。各种污染指标大大低于现有燃料的二甲醚,原料来源丰富,成本低廉,被誉为“21世纪的清洁燃料”。
     相对于二步法合成二甲醚工艺,合成气一步法CO的单程转化率高,工艺流程短、设备投资相对较小,产品成本较低,是目前国内外开发的热点。目前有关一步法二甲醚合成工艺的研究主要集中在双功能复合催化剂和合成反应器两方面。由于目前合成气一步法合成二甲醚尚无工业化运行装置,与之配套的一步法二甲醚分离工艺研究较少。现有的分离流程大多是初步提出的实验室流程或计算机模拟结果,没有经过实践检验,存在着不尽合理的地方,将会成为制约一步法二甲醚技术工业化的瓶颈。
     本文针对大型一步法合成二甲醚的吸收分离过程的提高回收率和节能降耗问题,从工艺和设备两方面入手,通过梯形垂直长条帽罩与规整填料有机复合,开发了一种超大处理能力、高效率的新型立体吸收塔板-NS倾斜长条立体复合塔板,进行了详尽的流体力学和传质性能研究,满足了大型一步法合成二甲醚的高压吸收分离工艺的需要,解决了塔器大型化塔内件结构和安装难题。
     通过双层复合穿流筛板与规整填料的复合,实现了板式塔和填料塔优势互补,充分利用塔内空间,开发出系列适合于塔器大型化的“全混级”、高点效率、低压降、大通量的新型精馏塔板-NS高效率穿流式复合塔板,进行了详尽的流体力学和传质性能研究,为大型工业化蒸馏生产过程提供节能减排的技术支撑。在NS高效率穿流式复合塔板的基础上,提出了基于点效率的非平衡级模型,构建并求解了MEPSH数学模型。
     在吸收和分离设备研究的基础上,提出了一步法合成二甲醚的以过程中间产物为吸收剂的变压吸收分离工艺,对甲醇、水和甲醇水溶液三种不同吸收剂通过利用工艺流程模拟进行了工艺优化和能耗比较,得到低能耗、高效率的二甲醚分离工艺,为一步法合成二甲醚工艺的工业化提供技术支撑和保障。
     另外,作者还对开发的吸收塔板选择相近的工业分离过程进行了热模验证。通过上述工作得到以下主要结论:
     一、一步法合成二甲醚分离过程中吸收设备的研究
     (1)NS倾斜长条立体复合塔板的塔板压降低,干板压降和湿板压降均较F1浮阀塔板降低100%和30%以上。文丘里式喷孔结构优于平板孔结构,增加规整填料对压降影响较小。
     (2)NS倾斜长条立体复合塔板的操作下限为漏液控制,上限为雾沫夹带控制,操作弹性区间F为7~30,远大于F1适宜的4~13。增加规整填料有效地提高了复合塔板的操作上限。
     (3)NS倾斜长条立体复合塔板处理能力大。由于增大了塔板开孔率和塔板的喷射操作工况,塔板的气相通量可达F1浮阀塔的2~3倍以上,另外气体由板孔直接进入帽罩而不通过板上的液层,塔板上流动的液体为很少含有气体的清液,因而同样截面积的降液管,液体的通过能力也可提高80%~100%。
     (4)开孔为文丘里式的NS-3塔板的泄漏和气液相分布均匀性优于开孔为平孔结构的NS-4塔板和F1浮阀塔板,NS-3塔板板面基本无液面落差。
     (5)NS-5型塔板高效区的传质效率比F1浮阀高10%~30%,高气速时已经超出F1浮阀的操作上限,而NS-5型仍处于正常操作状态;NS-3型塔板,罩外有高效规整填料的强化传质和除沫作用,塔板效率再增加10%~20%,操作上限也进一步增加。
     二、一步法合成二甲醚分离过程中高效精馏设备的研究
     (1)综合考虑系列NS穿流式复合塔板结构对干湿板压降、雾沫夹带、泡沫层高度和清液层高度的流体力学性能和传质性能的影响,选择大开孔率和孔径的双层板按孔径与板间距3/1复合并在板下加规整填料的NS-8结构作为NS高效率穿流式复合塔板的标准结构,能够满足高效率、大通量、低压降、大操作范围和操作稳定性高的新型塔板的要求,“全混级”的结构又为在蒸馏过程模拟计算简化模拟模型、提高模拟精度提供了可能。
     (2)大开孔率和孔径的双层板按孔径与板间距3/1复合的NS-6结构对于易结焦和堵塞体系最为适宜。
     (3)研究了NS高效率穿流式复合塔板的流体力学性能。结果表明:NS高效率穿流式复合塔板具有较低的塔板压降和雾沫夹带量,具有较高的泡沫层,正常操作的空塔动能因子可高达2.41(m.s-1)(kg.m-3)1/2。
     (4)NS高效率穿流式复合塔板可以细化气泡,在板面上形成良好的泡沫层,使气液接触和界面更新几率加大,强化传质和传热,提高塔板效率。经对比,复合塔板的传质效率比普通大孔径筛板高出20%左右,且在整个操作范围内效率都在80%以上,较高气速下接近100%。
     三、基于点效率的非平衡级模型的构建
     (1)基于点效率的非平衡级模型是建立在“全混级”的系列高效率穿流式复合塔板基础上,通过点效率(P)方程式和相平衡(E)方程式相结合,采用MEPSH方程组就可以求出精馏塔内各层实际塔板上的气、液两相的温度、组成和流量的数学模型。
     (2)与平衡级精馏计算模型、基于Murphree气相塔板效率EMV和传质速率的非平衡级精馏计算模型和三维非平衡混合池模型相比,基于点效率的非平衡级模型的“全混级”是真实、符合实际情况的,根据MEPSH方程组进行模拟计算的结果不仅能在实际的工业精馏塔中验证,也可以直接应用于指导实际的精馏操作。
     四、大型一步法合成二甲醚的分离工艺研究
     (1)系统考虑了一步法二甲醚合成反应器的操作压力和吸收分离操作压力的匹配与优化以及大规模工业化生产的高效、节能和投资,开发了合成气一步法直接合成二甲醚变压吸收分离工艺,通过高压分段吸收、中压解吸脱CO2、低压精馏分离二甲醚和甲醇,部分甲醇循环做一级吸收剂,水循环做二级吸收剂,二甲醚产品回收率>99%、二甲醚纯度>99.5%,甲醇纯度>99.7%,达到设计要求。
     (2)通过分别采用工艺过程的产物或中间产物--甲醇、水和甲醇水溶液为吸收剂进行模拟计算,从能耗对比和操作的方便性考虑,选择甲醇为吸收塔的吸收剂,采用水作为再吸收塔的吸收剂。
     (3)进行了年产50万吨二甲醚的合成气一步法直接合成二甲醚变压吸收分离工艺流程模拟计算和系统优化,确定了各个塔的最佳操作条件和理论板数、塔径、再沸器和冷凝器负荷、冷却器总负荷和分离过程总能耗。
     (4)从压力和流动参数方面综合考虑,合成气一步法直接合成二甲醚分离工艺中吸收塔和再吸收塔采用NS倾斜长条立体复合塔板为塔内件,二甲醚精馏塔和甲醇精馏塔采用NS高效率穿流式复合塔板为塔内件,塔径和塔高降低40%以上;若保持塔体不变,仅将F1浮阀更换为NS倾斜长条立体复合塔板和NS高效率穿流式复合塔板,吸收剂用量和回流比可进一步降低,分离过程节能15.5%。
     五、吸收设备的工业应用验证
     (1)利用与一步法合成二甲醚产品气性质和组成较为相近的的乙烯氧化生产环氧乙烷产品气的吸收分离作为验证和评价NS倾斜长条立体复合塔板性能的模拟物系,进行了新开发的二甲醚吸收塔设备性能的验证和评价,工业应用结果表明NS倾斜长条立体复合塔板是一种具有超大处理能力的高效率塔板,在工业扩能改造中,仅更换塔板就可以使处理能力提高4倍,效率同时提高25%以上,能够很好的满足合成气一步法直接合成二甲醚分离工艺吸收塔的大气量小液量操作状况。
     (2)NS倾斜长条立体复合塔板的超大处理能力和高效率可以解决现有装置改造处理量翻番的难题,可广泛应用于化工、制药和炼油等行业的吸收和分离提纯过程中,尤其适合于老设备的技术改造,可达到提高生产能力和产品收率、节能降耗的目的。
The two important problems are energy and resource which puzzled us for many years. The energy structure of rich coal, poor oil and deficient gas made that our main energy consumption is coal. The coal ration of energy would decrease in the near future of 20 or 30 years but our energy structure would never change. We should develop car-used fuel made from coal and make up the shortage of oil resource in order to solve problem of energy safety in a long period. Less pollution indexes and rich resource than other fuel used today, dimethyl ether is also called“clean energy in 21 century”.
     Dimethyl produced from syngas in one step has advantages such as high single path conversion, short process, low investment on equipment and low cost compared with two-step dimethyl ether synthesis. At present, researchers focused on double-functional catalysts and the design of reactors. There is no industrialized equipment so the research of separation of dimethyl ether is not common. Most of separation process are used in laboratory and models made by computer. These processes have not been take into practice and have many disadvantages which has great bad influence on the way to industrialization.
     In this paper, in order to improve recovery and reduce energy waste, we developed a new kind of separation process called efficient NS complicated plate which made with vertical-ladder-strip cap composited with structured packing considering process and equipment. After investigation on its hydrodynamics characters and mass transfer ability, we found that this kind of structure has advantages for need of separation and structure amplification.
     In NS plate, structured packing composited with double-dual flow tray has all advantages of plate tower and packing tower. A series of NS efficient plates with“full mixture”, high point efficiency, low pressure drop and large flux were developed and also their hydrodynamics characters and mass transfer ability are investigated to provide technology support for energy saving and drainage reducing in industrialized instillation production and it also provide technology support for distillation theory transformation from practical-basis or semi-practical basis to semi-theory basis or theory-basis. Based on the investigation, we developed a non-equilibrium stage model for point efficiency and also a MEPSH mathematical model.
     Based on investigation of absorption and separation, we developed variable pressure absorption separation process in one step synthesis for dimethyl ether in which products made in process is used as absorbent. We adopted three kinds of absorbent such as methanol, water and methanol-water and optimized process by process model. After comparison of energy consumption of different process, we got the low energy consumption and high efficiency separation process for dimethyl ether which provide technology support and guarantee for dimethyl ether synthesis industrialization.
     On the other hand, we also made a hot model test in industrial separation related to composited plate absorption and separation.
     1 Investigation on absorption equipment in dimethyl ether separation in one step synthesis.
     (1) The pressure drop of NS composited plate is lower than ordinary ones. The dry pressure drop is 100% lower than F1 valve tray while wet pressure drop is 30% lower than F1 valve tray. Venturi orifice structure is better than plate structure. Structured packing has little influence on pressure drop.
     (2) NS composited plate’lower limits are controled by liquid leakage and its upper limits are controled by entrainment. Operation range F is 7~30 much larger than F1 valve tray’s 4~13. The operation upper limit is improved efficiently by adding structured packings.
     (3) NS composited plate has great production ability. The gas flux in NS plate is two or three times of F1 valve tray because of tray free areas and spray operation improved. On the other hand, gas enters cap through poles on plate without flow through liquid layer on plate, liquid flow on the plate has little gas in it so liquid flow ability can be improved by 80%~100% with same downcomer.
     (4) Leakage and gas-liquid distribution on NS-3 plate with venture pole is better than NS-4 tray with horizontal hole structure and F1 valve tray.
     (5) mass transfer efficiency in efficiency area on NS-5 plate is 10%~30% much than F1 valve tray and when gas velocity is much than F1 valve operation upper limits but NS-5 is still in its operation range; according to NS-3 plate, efficient structured packing out of cap can strengthen mass transfer and reduce foam which made efficiency 10%~20% much than NS-5 plate and the operation upper limits are improved together.
     2 Investigations on efficient distillation equipment in one step dimethyl ether synthesis process.
     (1) considering the influence of NS efficient composited plate structure on hydrodynamics characters and mass transfer ability of dry and wet pressure drop, entrainment, foam height and liquid height, we adopted NS-8 standard structure with plate which has large opening ration and pole diameter and a doubled-plate with the ratio of diameter of pole and plate spacing is 3/1 and also structured packing is added under the composited plate. This structure can satisfied the need of high efficiency, large flux, low pressure drop, large operation range and stability operation. At the same time,“full mixture”structure makes it possible for simplifying modeling and improving modeling precision in distillation stage.
     (2) NS-6 plate with large opening ratio and pole diameter composited with double-plate which has pole diameter and plate spacing ratioed 3/1 is favorite to coking and blocking system.
     (3) We investigate the hydrodynamics characters of NS efficient plate. The results show that NS efficient plate has low pressure drop, low entrainment, large foam height and the empty tower kinetic energy factor can reach 2.41(m.s-1)(kg.m-3)1/2 .
     (4) NS composited plate can also split bubbles on trays to make a favorite foam layer and the reform ratio of gas-liquid contact is improved which can strengthen mass and heat transfer and improve efficiency. After comparison, mass transfer efficiency of composited plate is 20% much than ordinary ones and the efficiency in the full operation range is more than 80% almost near 100% at high gas velocity.
     3 Construction of non equilibrium stage model based on point efficiency.
     (1) Model for non equilibrium stage based on point efficiency is made based on series of composited efficient reflux plate. Combined point efficiency equation (P) with phase equilibrium equation (E), we adopted MEPSH equations to get the temperature, composition, flow and mathematical models of gas and liquid on plates in tower.
     (2) compared with calculation model of equilibrium staged distillation, calculation model of non equilibrium staged distillation based on Murphree gas plate efficiency EMV and mass transfer rate and three dimensional non equilibrium mixture model,“full mixture”of non equilibrium stage model based on point efficiency is true and practical. The result from MEPSH modeling can be tested in practical industrialized distillation but also can guide the distillation operation.
     4 Investigations on separation process of one step dimethyl ether synthesis in amplified engineering.
     (1) Considering operation pressure of dimethyl synthesis reactor related to adsorb-separation pressure and also the efficiency, energy saving and investment in large scaled production, we developed a new kind of variable pressure adsorb-separation process in dimethyl synthesis. In this process, CO2 is absorbed in high pressure stage while being desorbed at media press stage and dymethyl and methanol are separated and lower pressure stage, at the same time, a part of methanol recirculated as primary absorber while water as secondary absorber. The dymethyl recovery is higher than 99% with purity more than 99.5% and the purity of methanol is more than 99.7%.
     (2) Products or media-products such as methanol, water and methanol solution are adopted as absorber in simulation. We compared these three absorbers based on energy consumption and operation convenience and made water as absorber in re-absortion tower.
     (3) We simulated dimethyl synthesis process by one step from syngas and made sure the favourate operation conditions and theoreatical plate number, tower diameter, load of reboiler and condenser, full load of cooler and full energy consumption of separation.
     (4) Take pressure and flow parameters into consideration comprehensively, NS tilt composite plates are adopted in tower in separation process while NS efficient plates are adopted in dymethyl distillation tower and methanol distillation tower, diameter and height of the tower are decreased more than 40%.
     5 Hot model test on composite plate
     (1) In order to prove and valuate the efficiency of NS tilt composite plate, we adopted ethylene oxide produced from ethylene as model because the characters and composition of ethylene oxide are similar to dimethyl products. The industrial results showed that NS tilt composite plate is a new kind of efficient plate with super capacity and in capacity expansion revamping, the capacity of tower would be improved more than four times if only adopt NS plates and the also the efficiency would be improved more than 25%. These plates suitable to dimethyl separation in dimethyl synthesis by one step.
     (2) The advantages of NS plates such as super capacity and efficiency are the key factors in transformation of equipments to double their capacity and it can be implied widely in separation and absorption process such as chemical, medicine and oil refinery, especially in technological transformation of old equipment. After transformation, the production capacity and products yeild can be improved and energy consumption reduced.
引文
[1]付融冰,张慧明.中国能源的现状[J].能源环境保护,2005,19(1):8-12.
    [2]上海新互动网.研究报告——2007年我国成品油行业发展趋势浅析( 1 ) . http://www.shlxhd.gov.cn/pubnews/pubnews/PubNewsViewPage/newsmainid/40281f92185aa9a601185e9acf9b0309,2008-02-28.
    [3]荆襄.汽车柴油化是世界性趋势[J].汽车运用,2000(11):13.
    [4]吉力.中国汽车柴油化一个不可抗拒的趋势[J].汽车与社会,1999(6):5.
    [5]吴海燕.清洁替代燃料二甲醚的环境效益及产业化分析[J].工业技术经济,2006,25(6):130-133.
    [6]乔建芬.二甲醚合成技术进展及应用开发[J].煤化工,2002(6):11-14.
    [7]杨立新,徐红燕.二甲醚生产技术及应用前景[J].化工进展,2003,22(2):204-207.
    [8]梁生荣,何力,张君涛等.合成气一步法合成二甲醚的研究进展[J].西安石油学院学报(自然科学版),2002,17(1):49-53.
    [9]Suk-Hwan Kang, Jong Wook Bae, Ki-Won Jun,etc. Dimethyl ether synthesis from syngas over the composite catalysts of Cu–ZnO–Al2O3/Zr-modified zeolites. Catalysis Communications, Volume 9, Issue 10, 10 June 2008, Pages 2035-2039.
    [10]Hu Yanfang, Zhao guang Nie, Fang Dingye,Simulation and model design of pipe-shell reactor for the direct synthesis of dimethyl ether from syngas. Journal of Natural Gas Chemistry, Volume 17, Issue 2, June 2008, Pages 195-200.
    [11]E.J. Kim, N.-K. Park, G.B. Han, etc. A Reactivity Test of Cu–Zn-Based Catalysts Prepared with Various Precursors and Precipitates for the Direct Synthesis of DME. Process Safety and Environmental Protection, Volume 84,Issue 6,November 2006, Pages 469-475.
    [12]P. Chen, P. Gupta, M.P. Dudukovic,etc. Hydrodynamics of slurry bubble column during dimethyl ether (DME) synthesis: Gas–liquid recirculation model and radioactive tracer studies. Chemical Engineering Science, Volume 61, Issue 19, October 2006, Pages 6553-6570.
    [13]G.R. Moradi, S. Nosrati, F. Yaripor,Effect of the hybrid catalysts preparation method upon direct synthesis of dimethyl ether from synthesis gas. Catalysis Communications, Volume 8, Issue 3, March 2007, Pages 598-606.
    [14]P. Chen, P. Gupta, M.P. Dudukovic, B.A. Toseland,Hydrodynamics of slurry bubble column during dimethyl ether (DME) synthesis: Gas–liquid recirculation model andradioactive tracer studies. Chemical Engineering Science, Volume 61, Issue 19, October 2006, Pages 6553-6570.
    [15]A. Bakopoulos, Multiphase fluidization in large-scale slurry jet loop bubble columns for methanol and or dimethyl ether production.Chemical Engineering Science, Volume 61, Issue 2, January 2006, Pages 538-557.
    [16]小川高志,小野正己,水口雅嗣.ツソチルエ一テルの制造方法[P].日本专利特开平10-182534,1998-07-07.
    [17]沃斯,乔恩森,汉森.燃料级二甲醚的制备方法[P].中国专利96191760.1,2002-05-29.
    [18]Xiang-Dong Peng;Barry W.Diamond;Tsun-Chiu Robert Tsao;etc.Separation process for one-step production of dimethyl ether from synthesis gas[P].United States Patent:US6458856B1,2002-10-01.
    [19]李仕禄,严学安,王留书.一种由合成原料气直接制取二甲醚甲醇水溶液吸收工艺[P].中国专利:01133649.8,2002-06-05.
    [20]蔡光宇,石仁敏,姜增全.一种合成气制取二甲醚工艺[P].中国专利:98114227.3,1999-05-05.
    [21]郑丹星,金红光,曹文等.精制二甲醚同时回收二氧化碳的节能分离工艺[P].中国专利:02119856.x,2003-12-3.
    [22]唐宏青,房鼎业,唐锦文等.合成气一步法制二甲醚的分离方法[P].中国发明专利03134277.9,2003.5.21.
    [23]杜佩衡,于文奎,王庆瑶.新型垂直筛板流体力学性能研究[J].石油化工设备,1986,15(9):1-8.
    [24]杜佩衡.新型垂直筛板塔(New VST)的开发与进展[J].化肥设计,1999,37(6):49-52.
    [25]西田勇.气液接触としての液分散型トレイの开发———NewVST[J].石油学会志(日),1975,(8):19-22.
    [26]杜剑婷,杜佩衡.我国垂直筛板塔流体力学与传质性能研究[J].石油化工设备,2002,31(5):35-39.
    [27]徐维勤.新垂直筛板塔的性能及工业应用[J].现代化工,1996,(10):41-45.
    [28]杜冬云,方云进,肖文德.一种改进的新型垂直筛板[J].华东理工大学学报,2000,26(3):251-254.
    [29]刘珩烈,佛明义,徐修建.关于新型垂直筛板的初步探讨——流体力学[J].化学工程,1982,(2):16-24.
    [30] [张生富,王昂,倪炳华等.高负荷导向垂直栅板的研究(Ⅰ)——实验测定及关联[J].化学工程,1990,18(1):9-15.
    [31]佛明义.矩形喷射塔板初步研究[J],化学工程,1986,(3):16-24.
    [32]郑学明,何鸿业.宝塔罩型塔板性能研究[J],化学工程,1995,23(2):10-13.
    [33]黎树根,张旭东,唐薰等.梯矩组合型三维传质塔板的流体力学性能研究[J].湖南大学学报,2003,30(3):18-20.
    [34]刘继东,吕建华,张竞平等.新型立体传质塔板及其流体力学性能[J],化工学报,2005,56(6):1144-1149.
    [35]杜佩衡,董艳河,王荣良等.梯矩形立体连续传质塔板流体力学性能[J].化工学报,2005,56卷(4):253-257.
    [36]杜佩衡,董艳河,杜剑婷等.立体连续传质复合塔板流体力学特性[J].化工学报,2006,57(6):1314-1318.
    [37]王金戎,尚振华,兰仁水等.喷射式并流填料塔板流体力学和传质性能[J].化学工程,1999,27(1):15-18.
    [38]杜剑婷,杜佩衡.我国垂直筛板塔流体力学与传质性能研究[J].石油化工设备,2002,31(5):35-39.
    [39]兰州石油机械研究所.现代塔器技术[M].北京:烃加工出版社, 1990.520-521.
    [40]江西工学院化工系试验组.双孔径穿流塔板的特性[J].石油化工设备,1976(4):4-7.
    [41]张继鉴.双孔径穿流塔板流体力学[J].化学工程,1977,5(2):59-62.
    [42]王良华,计建炳,姚克俭等.提高复合塔板操作弹性和通量研究[J].化学工程,2003,31(5):17-20.
    [43]王良华,计建炳,姚克俭等.非均匀开孔率复合塔板性能研究[J].石油化工,2003,32(6):499-503.
    [44]张桂昭,洪大章,蒋述曾.非均匀开孔率穿流塔的设计[J].化工设计,1997(2):7-11.
    [45]赵哲山.非均匀开孔率穿流塔板传质过程的研究[J].化学工业与工程,1995,12(4):47-52.
    [46]赵哲山.非均匀开孔率穿流塔板的流体力学性能测试[J].吉林化工学院学报, 1985, (2): 33-37.
    [47]洪大章,蒋述曾,张桂昭等.非均匀开孔率穿流塔板板效率的研究[J].化学工程, 1987, 15 (3):33-41.
    [48]蒋述曾,洪大章,周肇义.非均匀开孔率穿流塔板流体力学性能研究[J].化工机械, 1988, 15 (1):25-29.
    [49]兰州石油机械研究所.现代塔器技术[M].北京:烃加工出版社,1990:530-539.
    [50]金涌,沈静珠.穿流式浮板塔的流体力学和传质过程的实验[J].化工学报,1980(1):1-10.
    [51]河越幹男,郑志胜.新型浮动筛板塔的流动特性[J].石油化工设备, 1981,(05):1-16.
    [52]河越幹男,郑志胜.新型浮动筛板塔的流动特性(续) [J].石油化工设备, 1981,(06):6-16.
    [53]兰州石油机械研究所.现代塔器技术[M].北京:烃加工出版社,1990:521-530.
    [54]兰州石油机械研究所.国外塔器近况[J],化学工程, 1977,(2):1-29.
    [55]徐孝民,周青,沈复.国外气液传质设备的一些发展趋势[J].化工进展,1994(1):24.
    [56]陈大昌.塔填料的工业应用及评价[J],化学工程, 1995, 23 (3), 15-23.
    [57]Mix,T.W. and J.Erichson, Vapor-liquid Contacting, U.S.Pat, 3,887,665 (1975).
    [58] Pagnolo,D.A.and K.T.Chuang , Improving Sieve Tray Performance With knitted Mesh Packing,Ind.Eng.Chem.Proc.Dev.23,561-565(1984).
    [59] G.X.Chen,A.Afacan,C.Xu and K.T.Chuang, Performance of Combined Mesh Packing and Sieve Tray in Distillation, Can.J.Chem.Eng., 68, 382-386, (1990).
    [60]钱嘉林,叶泳恒, Chuang, K.T.,网筛板塔流体力学性能的研究[J],化学工程, 1993,21(4),11-15.
    [61]Salem,A.-BSH, Separation Science and Technology, 28(13&14), 22552272, (1993 ).
    [62]徐崇嗣, Karl T.Chuang.塔设备的对比及其改进[J].石油化工设备,1989,(3):2.
    [63] Gautreaux M F, 0' conell E, Effect of length of liquid path on plate efficiency. Chem Eng Prog, 1955, 51 (5) : 232-237.
    [64]ΠeбeдеB,Ю.Н.,М.А.Апексадров,Д.Д.Зъгбов.Теор.ОСН.ХИМ.Тех.,2,183(1968).
    [65] Bruin S , Freije A 0. Trans Tnst Chem Engrs. 1974, 52-75.
    [66] Yoshida H. Liquid Flow Over Distilation Column Plates [J]. chem. Eang. Comm., 1987,51:261-275.
    [67] Fiscer C H,Quarini G L.Three-dimensional heteroge-neous modeling of distillation tray hydraulics [R]. MiamiBeach, USA. Paper presented at the AIChE annualmeeting,1998.
    [68] Krishna R,et al.CFD simulation of sieve tray hydrody-namics[J].Chem Eng Research &Design, 1999, 77(A7):639-642.
    [69]李建隆.大型精馏塔板上液体流动特性的研究[D].天津:天津大学1985.
    [70] Zhang M Q, Yu G C, Yu K T. Simulation of Two Dimensional Liquid Phase Flow on a Distillation Tray [J] chinese J . of chem. Eng.,1994,2(2);63-68
    [71]王晓玲.精馏塔板上流体三维流场及传质的模拟[D].天津:天津大学,2002.
    [72]袁希钢,尤学一.筛孔塔板气液两相流动的速度场模拟[J].化工学报,1995, 46(4)511-515.
    [73] Liu C J, Yuan X G, Yu K T, et al. A Fluid-dynamic model for flow pattern on a distillation tray .Chem Eng Sci, 2000, 55 (12):2287-2294.
    [74] Henley E J,Seader J D. Equilibrium-Stage Separation Operations in Chem ical Engineering. New York:John Wiley & Sons,1981.556-612.
    [75]Deshpanda P B. Distillation Dynamics and Control. NewYork:Instrument Society of America,1985.303-329.
    [76] Murphree E V. Ind Eng Chem,1925,17(7):745-750.
    [77]Wesselingh J.A.Non-equilibrium modelling of distillation. Chemical engineering research & design ,1997,75(6):529-538.
    [78] Ovejero G. ,Grieken R.V., Rodriguez L. , Valverde J. L. Simulation of Multicomponent Distillation Using a Nonequilibrium Stage Model. Separation Science and Technology, 1994 , 29(14):1805 -1821.
    [79]Krishnamurthy R,Taylor R. A nonequilibrium stage model of multicomponent separation processes. Part I: Model description and method of solution.AIChE J,1985,31(3):449-456.
    [80] Krishnamurthy R,Taylor R. A nonequilibrium stage model of multicomponent separation processes. Part II: Comparison with experiment. AIChE J,1985,31(3):456- 465.
    [81]Taylor R., Kooijman H.A., Woodman M.R., Industrial Applications of a NonEquilibrium Model of Distillation and Absorption Operations, I.Chem.E. Symp. Ser., No. 128, Birmingham, UK, September (1992), pp. A415-427.
    [82] Krishnamurthy R,Taylor R. A nonequilibrium stage model of multicomponent separation processes. Part III: The influence of unequal component-efficiencies in process design problems. AIChE J,1985,31(12):1973-1985.
    [83] Kooijmana H. A., and Taylora R. Modelling mass transfer in multicomponent distillation. The Chemical Engineering Journal and the Biochemical Engineering Journal,1995, 57(2):177-188.
    [84]余国琮,顾芳珍.大型塔板的模拟与板效率的研究(Ⅱ)——二维定数混合池模型[J],化工学报,1981,33(2):97-110.
    [85]余国琮,宋海华,黄洁.精馏过程数学模拟的新方法——三维非平衡混合池模型[J],化工学报,1991,42(6):653-659.
    [86] Weiler D U,Delnicki W V. Distillation flow hydranlics of large diameter tray. Chem Lang Prog, 1973, 69( 10):67- 72.
    [87] Lockett M ,J, Safekourdi A. The effect of the liquid flow pattern on distillation plate efficiency. Chem Eng Prog, 1976, 11:112- 121.
    [88] Gautreaux M F, O’Connell H E,. Effect of length of liquid path on plate efficiency. Chem Eng Prog, 1955, 51( 5):232-237.
    [89] Bruin S,Freije A D. A simple liquid mixing model for distillation plates with stagnant zones. Trans lnstn Chem Engrs,1974, 52(1):75- 79.
    [90] Burghhardt A et al. Diffusional Models of Multicemponeut Distillation and Their Experimental Verification.Chem Eng J, 1983, 26:71-84.
    [91]路秀林.液体滞留区对塔板效率的影响(一) [J].化学世界,1987,13(01):9.
    [92]路秀林.液体滞留区对塔板效率的影响(二) [J].化学世界,1987,13 (02):7.
    [93]路秀林.液体滞留区对塔板效率的影响——汽体不混合、液体部分混合[J].华东理工大学学报,1987,19(04):17.
    [94]路秀林,赵大企,张平安.汽体不混合时液体混合对塔板效率的影响[J].华东理工大学学报, 1983,21(04) :5.
    [95]钟思青,余美娟,刘时贤等.大型塔板液体流动状况的研究[J].华东理工大学学报, 1998,24(03):274-278.
    [96]佘国踪,黄洁,张泽延.中、双溢流塔板液体停留时间分布和板效率的研究[J].化工学报.1986,30(2):15-16.
    [97] Kalbassi M A, Biddulph M W. A Modified Oldershaw Column for Distillation Efficiency Measurements. IEC Res, 1987, 26: 1127-1132.
    [98] Gerster J A et al. Tray Efficiencies in Distillation Columns. Final Report from University of Delaware.AIChE. New York, 1958.
    [99] Krishna R. Model for Prediction of Point Efficiencies for Multicomponent Distillation. Chem Eng Res Des,1985, 63:312-322.
    [100] Toor H. L., Burchard John K. Plate efficiencies in multicomponent distillation. AIChE Journal 1960,6(2):202– 206.
    [101]余国琮,黄洁.大型塔板的模拟与板效率的研究(Ⅰ)——不均匀速度场的涡流扩散模型[J].化工学报, 1981,25(01):1.
    [102]余国琮,宋海华,黄洁.精馏过程数学模拟的新方法——三维非平衡混合池模型[J],化工学报,1991,42(6):653-659.
    [103] Han Yuanyuan,Zhang Haitao,Ying Weiyong et al. Modeling and Simulation of Production Process on Dimethyl Ether Synthesized from Coal-based Syngas by One-step Method. Chinese Journal of Chemical Engineering, 2009 ,17(1):108-112.
    [104] Peng X,Diamond B W,Tsao T R,Bhatt B L.Separation process for one-step production of dimethyl ether from synthesis gas.US 6,458,856,2002.10.01.
    [105]小川高志,小野正己,水口雅嗣.ツソチルェーテルの製造方法.日本专利特开平10-182534,1998.07.07.
    [106]刘芙蓉,金鑫丽,王黎.分离过程及系统模拟[M],第一版,北京,科学出版社,2001,73-75.
    [107]王静康.化工设计[M].第一版,北京:化学工业出版社,2004.
    [108]郑丹星.化工热力学教程[M].第一版,北京:中国石化出版社,2002.
    [109] ASPEN PLUS 10.0用户指南[M],7-2-7-3.
    [110]王树楹.现代填料塔技术指南[M].中国石化出版社,1998.8,205.
    [111]中华人民共和国行业标准SH/T 3121-2000,2001-03-01,9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700