四氟乙烯基热塑性含氟高分子流变行为与加工性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含氟高分子,特别是全氟离子聚合物,是太空、能源、国防等核心基础和战略尖端行业不可或缺的高性能材料,因此一直是各国重点开发和研究的对象。随着资源枯竭忧虑加深和能源供应日趋紧张,国际社会对含氟高分子的关注急剧升温,科研与工业部门迫切希望更充分、全面地掌握含氟高分子微观结构与宏观性能之间的关系(构效关系),为含氟高分子的生产、加工提供准确可靠指导,从而使其能更好地满足上述重要经济部门和行业的需要,也为含氟高分子成型及产品性能优化提供理论依据。
     考察物质构效关系的手段众多,流变学即为其中重要、有力且操作方便的一种。流变学研究方法具有宏观统计的特征,材料流变行为与其内部结构、加工特性及宏观性能有着千丝万缕的联系,因此本论文通过线性粘弹性、傅里叶变换流变学(FTR)、加工流变学对四氟乙烯基热塑性含氟高分子(聚全氟乙丙烯(FEP)、乙烯-四氟乙烯交替共聚物(ETFE)和全氟磺酰氟树脂(全氟磺酸离子交换树脂前驱体,PFSF)的加工性能、流动行为和微观结构之间的关系进行了系统研究,以期为四氟乙烯基热塑性含氟高分子的加工成型和流动行为模拟及预测提供实验支持,从而为控制、优化此类含氟高分子的生产及调控终端产品性能提供指导依据。本论文主要研究内容如下:
     1.研究了FEP、ETFE和PFSF的高速挤出流动行为。分别确定了上述三种含氟高分子的稳定流动区和粘度的剪切速率、温度、分子参数依赖性,同时对剪切粘度进行了模型拟合和数值分析;报道了上述三种含氟高分子的拉伸流变性质及其在稳定区外的流动和熔体破裂(及相应临界应力值);考察了氟含量对直链(线形)四氟乙烯基含氟高分子加工性能的影响。结果发现:1)FEP高速挤出时稳定流动区非常窄(335°C下<86s-1),加工性能极差。证实了FEP加工性能“低劣”的深层原因是FEP分子链中F原子的大尺寸(相对于H原子)和C-F键的强极性(相对于C-H键)所引起的含氟分子链间独特的强相互作用,这使得FEP分子具有较强的链刚性,在剪切流动过程中应力难以耗散而迅速累积达到熔体破裂临界应力以致极早出现不稳定流动;2)与FEP相比,ETFE稳定流动区宽、加工性能优异。通过比较FEP、ETFE和PE(聚乙烯)等的高速挤出流动行为,发现氟含量增加将导致直链四氟乙烯基含氟高分子稳定流动区变窄、熔体破裂临界应力降低;3)加工流变学能灵敏、准确地评价PFSF的加工性能并反映PFSF分子参数对加工性能的影响——窄MWD(分子量分布)PFSF(nPFSF)剪切粘度高但随剪切速率增大而急剧下降;而宽MWD PFSF(wPFSF)剪切粘度低但粘度下降先慢后快;nPFSF熔体弹性大、临界应力极低(280°C时也仅为~0.07MPa,远低于通用高分子和其他含氟聚合物熔体的响应值),熔体破裂极早,而wPFSF的熔体弹性仅为nPFSF树脂的1/5,稳定流动区宽,加工性能好。
     2.研究了FEP、ETFE和PFSF的动态振荡剪切流变性质(线性粘弹性)。发现各四氟乙烯基热塑性含氟高分子具热流变简单性,构建了各四氟乙烯基热塑性含氟高分子的动态模量主曲线,通过更具鲁棒性的数值方法——普适正则算法(generalized regularization method)获得了松弛时间谱。结果发现松弛时间谱能全面、准确地表征三种含氟高分子的流动行为,阐明分子结构对流动行为的影响。
     3.首次研究了四氟乙烯基热塑性含氟高分子(FEP、ETFE和PFSF)的非线性动态流变学。非线性动态流变学能灵敏地区分含氟高分子结构,并跟踪其对外部流场的响应。研究表明含氟高分子的非线性动态流变行为与非氟高分子有许多不同。首次发现在本文实验条件下无论是全氟高分子(FEP、PFSF),还是部分含氟高分子(ETFE),其非线性条件下的I31(3次谐波相对强度)是应变的线性函数,而相应报道的非氟高分子的I31为应变的二次幂函数;基于Whilhelm非线性动态流变模型推出ETFE非线性粘弹性起始的临界应变为0.17,而PFSF-A、B和C树脂对应的临界应变分别为0.28、0.32和0.42。同种树脂较大的临界应变说明加工性好、抵抗破坏能力强,这从侧面说明非线性动态流变学可以用来评估含氟高分子的加工性能;实验显示PFSF的非线性强度与MW、MWD的关系与非氟高分子不同,当MW降低、MWD变窄时,非线性强度反而变大,具体原因尚在研究中。同时发现PFSF无应变Q系数(Q0系数)的频率函数在0.5Hz处有一个极大值,与线性粘弹模量函数的等模量(G’=G’’)交点频率不一致,这可能是PFSF的磺酰氟支链松弛或者测试过程中PFSF变质(交联或降解)所致,具体情形还有待进一步的实验验证。
Fluoropolymers, especially perfluorinated ionomers, are essential highperformance materials employed in fundamental basic industries and Hi-tech fieldssuch as aerospace exploration, energy utilization, and defense and securityapplications etc, and therefore attract continually intense and enormous attentionfrom all over the world. Moreover, with growing anxieties in resources exhaustingand insufficiency in energy support, fluoropolymers are a growing rapid hot focus ininternational scientists and engineers’ community and thus driving them to getinsight into the intrinsic relationship between microscopic structures andmacroscopic properties (the structures-properties relationship) of fluoropolymers.Understanding on such relationship not only guides synthesis, production, andprocess of fluoropolymers, and thus qualifies better application in the fundamentalbasic industries and Hi-tech fields above mentioned, but also set partially atheoretical basis for the further improvement and optimization of fluoropolymersperformance.
     Among a great variety of techniques in exploring the structures-propertiesrelationship of polymers, rheology is one of such techniques with huge importance,applicability and easiness in operation. Rheology holds macroscopic statisticalcharacteristics, and rheological behaviors of materials are the mirror of their internalstructures, processability and other macroscopic performances, and herein therelationship between the processability, flow behaviors and molecular structures ofthree tetrafluoroethylene-based thermoplastic fluoropolymers, fluorinated ethylenepropylene copolymer (FEP), ethylene tetrafluoroethylene alternative copolymer(ETFE) and perfluorosulfonic acid ion exchange resin precursor (orperfluorosulfonyl fluoride resin, PFSF), was researched systematically and detailedly based on rheology, with aim to1) model, also predict, the processing and flowcharacteristics,2) control and optimize fluoropolymers forming and production, and3) tailor fluoropolymer products end performances. The outlines of this thesis are asfollowing:
     1. Extrusion flow behaviors with high shear rates of FEP, ETFE and PFSF werepresented. The stable flow region and the temperature, shear rate dependence ofshear viscosity of the three fluoropolymers were determined, and modeling towardthe shear viscosities was also performed. Extensional viscosities, and flowperformance and melt fracture beyond stable flow region of the three fluoropolymerswere reported. Effect of fluorine substitution on processability of linearfluoropolymers was estimated. The results are listed below.1) FEPs possess quitenarrow stable flow region (<86s-1at335°C) and very poor processability; specialstrong interchain interaction of FEP originated from the bigger size of F atom than Hatom and stronger electronic polarity of C-F bond than C-H bond is the intrinsicdriving force of its poor processability. The bigger size of F atom and strongerelectronic polarity of C-F bond both cause strong chain stiffness of FEP. Duringshear flow, stress is cumulated quickly due to difficulty in energy dissipation withinhigh viscosity melt, and thus exceeds easily critical stress of melt fracture and thenmelt distortion occurs.2) Compared to FEP, ETFE holds wider stable region andsuperber processability. Researching on the high shear rate extrusion of FEP, ETFEand PE, it can be concluded tentatively that the more in fluorine substitution thenarrower steady flow region, the lower critical shear stress in melt fracture.3)Process rheology is adept enough in evaluation the processability of PFSFs andreflecting prompt the effect of microscopic structures of PFSFs on their processperformance. It appears that the PFSF with narrow molecular weight distribution(MWD)(nPFSF) possesses high shear viscosity and the viscosity sharply shifts downwhen shear rate increases. While the PFSF with wide MWD (wPFSF) holds lowshear viscosity and shear viscosity decreases slowly at the first and then the decreaseaccelerates with slower rate. At the same time, the nPFSF holds high melt elasticityand very low melt fracture critical shear stress (~0.07MPa within260~280°C), farlower than that of common polymers and other fluoropolymers, melt distortionappears extremely early. Contrary, the wPFSF, bears lower melt elasticity and widersteady flow region.
     2. Dynamic oscillatory shear rheological characteristics of FEP, ETFE and PFSF were evaluated. Experiments justify that the three fluoropolymers havethermorheological simplicity. Corresponding dynamic modulus master curves ofeach the fluoropolymer were constructed and relaxation time spectra extracted fromdynamic modulus were obtained based on a more robust numeric analysis technique,Generalized regularization algorithm. Results confirm that relaxation time spectracan characterize the molecular motion and relaxation of the fluoropolymersaccurately, and also map molecular structure dependence of the fluoropolymers meltflow.
     3. Nonlinear dynamic rheological properties of FEP, ETFE and PFSF wereexplored for the first time. It is found that nonlinear dynamic rheology can mapsensitively effect of oscillatory shear force field on the rheological behaviors of thefluoropolymers and differentiate their molecular structures. Compared withpolyolefins, some novel nonlinear dynamic rheological phenomena occur influoropolymers. It is the first discovery and report that I31(the third harmoniccomponent) value of fluoropolymers scale up in proportion with strain acted, ratherthan with the square of strain like non-fluoropolymers reported by Hyun et al. ViaWhilhelm model on nonlinear dynamic rheology, critical strain, which nonlinearviscoelasticity of polymer melts initiates, of ETFE is0.17and critical strains ofPFSF-A, PFSF-B and PFSF-C are0.28,0.32and0.42, respectively. Larger criticalstrain of the same resin means better processability and stronger resistance todeformation and structure breakage, which means that nonlinear dynamic rheologycan estimate processability of fluoropolymers. It is found that MW and MWDdependence of I31value of PFSF is not the same as that of polyolefins. When MWdecreases and MWD narrowens, I31of PFSF increases, while that of polyolefinsreported shifts down.There exists a local maximum in the frequency function of Q0coefficient (vanishing strain Q coefficient) of PFSF, which means have molecularrelaxation or network disentanglement corresponding to this maximum. Thefrequency corresponding to this local maximum is0.5Hz, not equal to the crossfrequency of equal modulus (G’=G’’) in the dynamic modulus master curves ofPFSF. Consequently, the maximum may correlate with sulfonyl fluoride branchrelaxation or crosslinking (and/or degradation) of PFSF during measuring whichneeds further experiments.
引文
[1] Ameduri B. From vinylidene fluoride (VDF) to the applications of vdf-containing polymersand copolymers: recent developments and future trends (dagger)[J]. Chemical Reviews,2009,109(12):6632-6686.
    [2] Ameduri B, Boutevin B. Copolymerization of fluorinated monomers: recent developmentsand future trends[J]. Journal of Fluorine Chemistry,2000,104(1):53-62.
    [3] Ebnesajjad S. Fluoroplastics, Volume2-Melt Processible Fluoropolymers[M]. New York:Plastics Design Library,2000.
    [4]张永明,李虹,张恒.含氟功能材料[M].化学工业出版社,2008.
    [5]钱知勉.我国氟树脂的加工应用现状[J].化工生产与技术,2003,10(1):1-21.
    [6] Mauritz KA, Moore RB. State of understanding of Nafion[J]. Chemical Reviews,2004,104(10):4535-4586.
    [7] Grot W. Fluorinated Ionomers[M]. William Andrew Publishing/Plastics Design Library,2008.
    [8]科技部.国家科技支撑计划“全氟离子交换膜工程技术研究”重大项目通过验收[W].2011. http://most.cn/kjbgz/201103/t20110310_85274.htm
    [9] Drobny JG. Technology of fluoropolymers[M]. CRC Press,2000.
    [10] Nakajima T, Groult H. Fluorinated materials for energy conversion[M]. Elsevier London,2005.
    [11] Giannetti E. Semi-crystalline fluorinated polymers[J]. Polymer International,2001,50(1):10-26.
    [12]王凤霞,苑会林,曹慧林.全氟磺酸树脂的熔融挤出加工性能及其离子交换膜的制备[J].膜科学与技术,2007,27(5):74-77.
    [13]徐安厚.超临界二氧化碳中四氟乙烯基含氟聚合物的制备与性能研究[D].上海:上海交通大学,2011.
    [14]史观一.四氟乙烯-六氟丙烯共聚物的结晶机制[J].科学通报,1982,27(3):168-170.
    [15] Rosenbaoum E. Rheology and processability of teflon FEP resins for wire coating[D]: theUniversity of British Columbia,1998.
    [16] Schlick S, Chamulitrat W, Kevan L. Electron spin resonance study of peroxy labels in acopolymer of tetrafluoroethylene-hexafluoropropylene[J]. The Journal of Physical Chemistry,1985,89(20):4278-4282.
    [17] Park Y, Tasaka S, Inagaki N. Surface modification of tetrafluoroethylenehexafluoropropylene (FEP) copolymer by remote H2, N2, O2, and Ar plasmas[J]. Journal ofApplied Polymer Science,2002,83(6):1258-1267.
    [18]史观一,张国光,乐俊士.全氟乙丙烯共聚物的超分子结构与结晶性质[J].高分子通讯,1981,(5):355-361.
    [19]史观一.差示扫描量热法研究全氟乙丙稀共聚物的化学组成分别[J].高分子通讯,1979,(5):298-304.
    [20] Bonardelli P, Moggi G, Turturro A. Glass transition temperatures of copolymer andterpolymer fluoroelastomers[J]. Polymer,1986,27(6):905-909.
    [21] Tuminello W. The solubility of tetrafluoroethylene/hexafluoropropylene copolymers[J].International Journal of Polymer Analysis and Characterization,1996,2(2):141-149.
    [22] Villani V, Pucciariello R. Calorimetric study of the room-temperature transitions oftetrafluoroethylene-hexafluoropropylene copolymer: Thermal history and crystalline state[J].Thermochimica Acta,1992,199(1):247-254.
    [23] Modena M, Garbuglio C, Ragazzini M. A new high temperature thermoplastic material:Tetrafluoroethylene‐ethylene copolymer[J]. Journal of Polymer Science Part B: PolymerLetters,1972,10(2):153-156.
    [24] D'Aniello C, De Rosa C, Guerra G, et al. Influence of constitutional defects on polymorphicbehaviour and properties of alternating ethylene-tetrafluoroethylene copolymer[J]. Polymer,1995,36(5):967-973.
    [25] Radice S, Del Fanti N, Castiglioni C, et al. Vibrational analysis as a tool for detectingelectronic mobility. The case of the alternating ethylene-tetrafluoroethylene copolymers[J].Macromolecules,1994,27(8):2194-2199.
    [26] Kostov G, Bogdanov B, Nikolov A. Melting and crystallization oftetrafluoroethylene-ethylene copolymers[J]. Journal of Thermal Analysis and Calorimetry,1994,41(4):925-934.
    [27] Arai K, Funaki A, Phongtamrug S, et al. Influence of alternating sequential fraction on themelting and glass transition temperatures of ethylene-tetrafluoroethylene copolymer[J]. Polymer,2010,51(21):4831-4835.
    [28] Arai K, Funaki A, Aida S, et al. Influence of the monomer sequential distribution on themechanical properties and temperature dependence of an ethylene–tetrafluoroethylenecopolymer in association with the phase-transition behavior[J]. Journal of Applied PolymerScience,2009,114(3):1710-1716.
    [29] Starkweather Jr HW. Internal motions in an alternating copolymer of ethylene andtetrafluoroethylene[J]. Journal of Polymer Science: Polymer Physics Edition,1973,11(3):587-593.
    [30]陈晓勇.乙烯-四氟乙烯共聚物的辐照交联及辐照敏化剂研究[J].化学推进剂与高分子材料,2011,9(3):19-24.
    [31] Chen J, Asano M, Yamaki T, et al. Preparation and characterization of chemically stablepolymer electrolyte membranes by radiation-induced graft copolymerization of four monomersinto ETFE films[J]. Journal of Membrane Science,2006,269(1-2):194-204.
    [32] Morelli JJ, Fry CG, Grayson MA, et al. The thermal oxidative degradation of an ethylene–tetrafluoroethylene‐copolymer‐based electrical wire insulation[J]. Journal of Applied PolymerScience,1991,43(3):601-611.
    [33]张成德.非全氟聚合物热稳定性的改善[J].化工生产与技术,2006,13(6):6-8.
    [34]张万喜,张月芳,孙家珍等.含氟聚合物交联度的XPS表征[J].科学通报,1985(6):1319-1322.
    [35] Funaki A, Arai K, Aida S, et al. Influence of third monomer on the crystal phase transitionbehavior of ethylene-tetrafluoroethylene copolymer[J]. Polymer,2008,49(25):5497-5503.
    [36] Phongtamrug S, Tashiro K, Funaki A, et al. Structural study of a series ofethylene-tetrafluoroethylene copolymers with various ethylene contents, Part1: Structure atroom temperature investigated for uniaxially-oriented samples by an organized combination of2D-WAXD/SAXS and IR/Raman spectra[J]. Polymer,2008,49(2):561-569.
    [37] Phongtamrug S, Tashiro K, Funaki A, et al. Structural study of a series ofethylene-tetrafluoroethylene copolymers with various ethylene contents, Part2: Phase transitionbehavior investigated by temperature dependent measurements of X-ray fiber diagrams[J].Polymer,2008,49(23):5072-5083.
    [38] Kostov GK, Nikolov AT. Study of radical copolymerization of tetrafluoroethylene withethylene in suspension[J]. Journal of Applied Polymer Science,1995,57(13):1545-1555.
    [39] Modena M, Garbuglio C, Ragazzini M. A new high temperature thermoplastic material:Tetrafluoroethylene-ethylene copolymer[J]. Journal of Polymer Science Part B: Polymer Letters,1972,10(2):153-156.
    [40] Clark D, Feast W, Ritchie I, et al. Applications of ESCA to polymer chemistry. IV. Thecomposition and structure of copolymers of ethylene with tetrafluoroethylene[J]. Journal ofPolymer Science: Polymer Chemistry Edition,1974,12(5):1049-1063.
    [41] Wilson FC, Starkweather HW. Crystal structure of an alternating copolymer of ethylene andtetrafluoroethylene[J]. Journal of Polymer Science: Polymer Physics Edition,1973,11(5):919-927.
    [42] Petraccone V, De Rosa C, Guerra G, et al. Fourier-transform analysis of models for theorthorhombic crystal phase of the alternating ethylene-tetrafluoroethylene copolymer[J]. Polymer,1992,33(1):22-26.
    [43] Pireaux J, Riga J, Caudano R, et al. X‐ray photoelectron spectroscopy of anethylene–tetrafluoroethylene copolymer[J]. Journal of Polymer Science: Polymer ChemistryEdition,1979,17(4):1175-1186.
    [44] Chu B, Wu C, Buck W. Light scattering characterization of an alternating copolymer ofethylene and tetrafluoroethylene.3. Temperature behavior of polymer size[J]. Macromolecules,1989,22(1):371-374.
    [45] Wu C, Buck W, Chu B. Light scattering characterization of an alternating copolymer ofethylene and tetrafluoroethylene.2. Molecular weight distributions[J]. Macromolecules,1987,20(1):98-103.
    [46] Chu B, Wu C. Light scattering characterization of an alternating copolymer of ethylene andtetrafluoroethylene.1. Static and dynamic properties[J]. Macromolecules,1987,20(1):93-98.
    [47] Chu B, Wu C. Light scattering characterization of an alternating copolymer of ethylene andtetrafluoroethylene[J]. Macromolecules,1986,19(4):1285-1286.
    [48] Nagarale R, Gohil G, Shahi VK. Recent developments on ion-exchange membranes andelectro-membrane processes[J]. Advances in Colloid and Interface Science,2006,119(2-3):97-130.
    [49] Heitner-Wirguin C. Recent advances in perfluorinated ionomer membranes: structure,properties and applications[J]. Journal of Membrane Science,1996,120(1):1-33.
    [50] Smitha B, Sridhar S, Khan A. Solid polymer electrolyte membranes for fuel cellapplications--a review[J]. Journal of Membrane Science,2005,259(1-2):10-26.
    [51] Elliott J, Hanna S, Elliott A, et al. Interpretation of the small-angle X-ray scattering fromswollen and oriented perfluorinated ionomer membranes[J]. Macromolecules,2000,33(11):4161-4171.
    [52] Elliott J, Hanna S, Newton J, et al. Elimination of orientation in perfluorinated ionomermembranes[J]. Polymer Engineering and Science,2006,46(2):228-234.
    [53]陈晓勇.燃料电池用质子交换膜[J].化学推进剂与高分子材料,2009,7(3):16-21.
    [54] Haworth B, Gilbert M, Myers D. Melt-state shear flow and elasticity of a thermoplasticfluorosulphonated—PTFE copolymer[J]. Journal of Materials Science,2005,40(4):955-964.
    [55] Li H, Law S, Sain M. Process rheology and mechanical property correlationship of woodflour-polypropylene composites[J]. Journal of Reinforced Plastics and Composites,2004,23(11):1153.
    [56]吴其晔,巫静安.高分子材料流变学[M].北京:高等教育出版社,2005.
    [57]周彦豪.聚合物加工流变学基础[M].西安:西安交通大学出版社,1988.
    [58] Tornqvist R, Sunderland P, Manson J. Non-isothermal process rheology of thermoplasticcomposites for compression flow moulding[J]. Composites Part A: Applied Science andManufacturing,2000,31(9):917-927.
    [59] Schramm G. A practical approach to rheology and rheometry[M]. Haake Karlsruhe,1994.
    [60] Binding DM, Walters K. On the use of flow through a contraction in estimating theextensional viscosity of mobile polymer solutions[J]. Journal of non-newtonian fluid mechanics,1988,30(2-3):233-250.
    [61] Binding DM. An approximate analysis for contraction and converging flows[J]. Journal ofnon-newtonian fluid mechanics,1988,27(2):173-189.
    [62] Binding D, Walters K. On the use of flow through a contraction in estimating theextensional viscosity of mobile polymer solutions[J]. Journal of non-newtonian fluid mechanics,1988,30(2-3):233-250.
    [63]Cogswell FN. Measuring the extensional rheology of polymer melts[J]. Journal of Rheology,1972,16(3):383-403.
    [64] Cogswell FN. Tensile deformations in molten polymers[J]. Rheologica Acta,1969,8(2):187-194.
    [65] Tanner RI. A theory of die-swell[J]. Journal of Polymer Science Part A-2: Polymer Physics,1970,8(12):2067-2073.
    [66] Bagley E. End corrections in the capillary flow of polyethylene[J]. Journal of AppliedPhysics,1957,28:624.
    [67] Kalika DS, Denn MM. Wall slip and extrudate distortion in linear low-densitypolyethylene[J]. Journal of Rheology,1987,31(8):815-834.
    [68] Tordella J. Fracture in the extrusion of amorphous polymers through capillaries[J]. Journalof Applied Physics,1956,27(5):454-458.
    [69] Vinogradov G, Ivanova LI. Wall slippage and elastic turbance of polymers in the rubberystate[J]. Rheologica Acta,1968,7:243-254.
    [70] Vinogradov G, Insarova N, Boiko B, et al. Critical regimes of shear in linear polymers[J].Polymer Engineering and Science,1972,12(5):323-334.
    [71] Benbow J, Lamb P. New aspects of melt fracture[J]. Polymer Engineering and Science,1963,3(1):7-17.
    [72] Howells E, Benbow J. Flow defects in polymer melts[J]. Transaction Journal PlasiticInstitute,1962,30:240-253.
    [73] Cogswell F. Stretching flow instabilities at the exits of extrusion dies[J]. Journal ofnon-newtonian fluid mechanics,1977,2(1):37-47.
    [74] Bergem N. Visualization studies of polymer melt flow anomalies in extrusion[C]. Proc8thInt Congr Rheol, Gothenberg,1976:50.
    [75] Ramamurthy A. Wall slip in viscous fluids and influence of materials of construction[J].Journal of Rheology,1986,30(2):337-357.
    [76] Wang SQ, Drda PA, Inn YW. Exploring molecular origins of sharkskin, partial slip, andslope change in flow curves of linear low density polyethylene[J]. Journal of Rheology,1996,40(5):875-898.
    [77] White JL. Critique on flow patterns in polymer fluids at the entrance of a die andinstabilities leading to extrudate distortion[C]. Applied Polymer Symposium,1973,20:155-174.
    [78] Bagley E, Schreiber H. Effect of die entry geometry on polymer melt fracture and extrudatedistortion[J]. Journal of Rheology,1961,5(1):341-353.
    [79]彭响方瞿金平周南桥等.聚合物动态挤出流变行为研究[J].中国塑料,2001,14(1):42-46.
    [80]慕晶霞,王新,魏琦等.高聚物熔体挤出不稳定流动的研究进展[J].现代塑料加工应用,2006,18(5):49-52.
    [81]刘祥贵,陆霞,王占杰等. mLLDPE/LDPE共混物的流变性能[J].合成树脂及塑料,2009,26(006):50-53.
    [82] Liang JZ. The elastic behaviour during capillary extrusion of LDPE/LLDPE blend melts[J].Polymer Testing,2002,21(1):69-74.
    [83] Liang JZ. A relationship between extrudate swell ratio and entry stored elastic strain energyduring die flow of tyre compounds[J]. Polymer Testing,2004,23(4):441-446.
    [84]肖建华,柳和生,黄兴元.高分子材料的挤出胀大和熔体破裂[J].高分子材料科学与工程,2008,24(9):36-40.
    [85]黄汉雄.几种消除熔体破裂的方法[J].高分子材料科学与工程,1990,6(1):11-18.
    [86]陈晓媛,王港,范五一等.熔体破裂的第二光滑区现象研究[J].中国塑料,2003,17(6):64-67.
    [87] Ferry JD. Viscoelastic properties of polymers[M]. John Wiley&Sons,1980.
    [88]张慧茹,刘小云,李冬霜等.流变法测定纤维素的分子量标度及分子量分布[J].高分子材料科学与工程,2009,25(3):96-99.
    [89] Zhang H, Tong M, Li R. Prediction of molecular weight scale and molecular weightdistribution of cellulose using a rheology based method[J]. Polymer Engineering and Science,2008,48(1):102-106.
    [90]占晓强.乙烯-四氟乙烯共聚物的结构和性能表征[D].杭州:浙江大学,2010.
    [91]占晓强,包永忠,黄志明等.乙烯-四氟乙烯共聚物平均分子量及其分布的动态流变法测定[J].高分子材料科学与工程,2011,27(2):122-125.
    [92]李新军.动态流变法测四氟乙烯—六氟丙烯共聚物分子量及分子量分布[D]:浙江大学,2010.
    [93]杨振忠,赵得禄,许元泽等.不完全相反转发展过程的流变行为[J].高分子学报,1999,2(4):129-133.
    [94]郑强,左敏.高分子复杂体系的结构与流变行为[J].中国科学(B辑:化学),2007,37(6):515-524.
    [95]上官勇刚,张春晖,谢严莉等.基于动态流变方法的抗冲丙烯共聚物熔体结构演化研究[C].第十届全国流变学学术会议,杭州.中国流变学研究进展(2010),2010:85-87.
    [96]刘琛阳,李育英,王进等.茂金属聚乙烯和低密度聚乙烯共混物的流变行为[J].高等学校化学学报,2001,22(2):298-302.
    [97] Zheng Q, Yang BB, Wu G, et al. A study of dynamic rheology for multicomponentpolymers[J]. Chemical Research in Chinese Universities,1999,20(9):1483-1490.
    [98]张秀娟,益小苏,许元泽.一些热塑改性热固性树脂体系结构对反应诱导相分离时间/温度依赖性的影响![J].高分子学报,2008,(006):600-608.
    [99]张晓黎,陈静波,邱碧薇等.聚合物流动诱导结晶研究进展[J].高分子通报,2009,(3):42-49.
    [100] Baumgaertel M, Winter H. Determination of discrete relaxation and retardation timespectra from dynamic mechanical data[J]. Rheologica Acta,1989,28(6):511-519.
    [101] Honerkamp J, Weese J. Determination of the relaxation spectrum by a regularizationmethod[J]. Macromolecules,1989,22(11):4372-4377.
    [102] Elster C, Honerkamp J. Modified maximum entropy method and its application to creepdata[J]. Macromolecules,1991,24(1):310-314.
    [103] Wilhelm M, Maring D, Spiess HW. Fourier-transform rheology[J]. Rheologica Acta,1998,37(4):399-405.
    [104] Wilhelm M. Fourier‐Transform Rheology[J]. Macromolecular Materials and Engineering,2002,287(2):83-105.
    [105] van Dusschoten D, Wilhelm M, Spiess HW. Two-dimensional Fourier transformrheology[J]. Journal of Rheology,2001,45:1319.
    [106] Wilhelm M, Reinheimer P, Ortseifer M. High sensitivity Fourier-transform rheology[J].Rheologica Acta,1999,38(4):349-356.
    [107]杨燕瑞,孙尉翔,黄丽浈等.利用大幅振荡剪切(LAOS)研究Laponite凝胶的流变性质[J].高等学校化学学报,2012,33(4):818-812.
    [108] Neidh fer T, Wilhelm M, Debbaut B. Fourier-transform rheology experiments andfinite-element simulations on linear polystyrene solutions[J]. Journal of Rheology,2003,47(6):1351.
    [109] Gamota DR, Wineman AS, Filisko FE. Fourier transform analysis: nonlinear dynamicresponse of an electrorheological material[J]. Journal of Rheology,1993,37(5):919.
    [110] Sun W, Yang Y, Wang T, et al. Large amplitude oscillatory shear rheology for nonlinearviscoelasticity in hectorite suspensions containing poly (ethylene glycol)[J]. Polymer,2011,52(6):1402-1409.
    [111] Watanabe H. Rheology of diblock copolymer micellar systems[J]. Acta Polymerica,1997,48(7):215-233.
    [112] Fleury G, Schlatter G, Muller R. Non linear rheology for long chain branchingcharacterization, comparison of two methodologies: Fourier transform rheology and relaxation[J].Rheologica Acta,2004,44(2):174-187.
    [113] Neidh fer T, Sioula S, Hadjichristidis N, et al. Distinguishing linear from star‐branchedpolystyrene solutions with Fourier‐transform rheology[J]. Macromolecular RapidCommunications,2004,25(22):1921-1926.
    [114] Kallus S, Willenbacher N, Kirsch S, et al. Characterization of polymer dispersions byFourier transform rheology[J]. Rheologica Acta,2001,40(6):552-559.
    [115] Wagner MH, Rolón-Garrido VH, Hyun K, et al. Analysis of medium amplitude oscillatoryshear data of entangled linear and model comb polymers[J]. Journal of Rheology,2011,(3):495-517.
    [116] Hyun K, Wilhelm M, Klein CO, et al. A review of nonlinear oscillatory shear tests:Analysis and application of large amplitude oscillatory shear (LAOS)[J]. Progress in PolymerScience,2011,36(12):1697-1753.
    [117] Hyun K, Wilhelm M. Establishing a new mechanical nonlinear coefficient Q fromFT-rheology: first investigation of entangled linear and comb polymer model systems[J].Macromolecules,2008,42(1):411-422.
    [118] Carotenuto C, Grosso M, Maffettone PL. Fourier transform rheology of dilute immisciblepolymer blends: a novel procedure to probe blend morphology[J]. Macromolecules,2008,41(12):4492-4500.
    [119] Vittorias I, Parkinson M, Klimke K, et al. Detection and quantification of industrialpolyethylene branching topologies via Fourier-transform rheology, NMR and simulation usingthe Pom-pom model[J]. Rheologica Acta,2007,46(3):321-340.
    [120] Hyun K, Baik ES, Ahn KH, et al. Fourier-transform rheology under medium amplitudeoscillatory shear for linear and branched polymer melts[J]. Journal of Rheology,2007,(6):1319-1343.
    [121] Hyun K, Ahn KH, Lee SJ, et al. Degree of branching of polypropylene measured fromFourier-transform rheology[J]. Rheologica Acta,2006,46(1):123-129.
    [122] Schlatter G, Fleury G, Muller R. Fourier transform rheology of branched polyethylene:experiments and models for assessing the macromolecular architecture[J]. Macromolecules,2005,38(15):6492-6503.
    [123] Hilles H, Monroy F, Bonales LJ, et al. Fourier-transform rheology of polymer Langmuirmonolayers: Analysis of the non-linear and plastic behaviors[J]. Advances in Colloid andInterface Science,2006,122(1-3):67-77.
    [124]贾广志,宫秀芬,闫礼军. Fs-46树脂熔体的流变行为[J].塑料工业,1982,10(3):36-39.
    [125]史观一,乐俊士,潘道成等.熔体中转变对四氟乙烯-六氟丙烯共聚物熔体流变性能的影响[J].高分子学报,1983,1(6):452-457.
    [126]彭万,梁基照. FEP熔体流动性能和结晶性能的研究[J].塑料科技,2007,35(11):48-52.
    [127]梁基照,彭万. FEP/PP共混物流动性能的研究[J].现代塑料加工应用,2008,20(1):30-33.
    [128] Wu S. Dynamic rheology and molecular weight distribution of insoluble polymers:tetrafluoroethylene-hexafluoropropylene copolymers[J]. Macromolecules,1985,18(10):2023-2030.
    [129] Tuminello WH. Molecular weight distributions of tetrafluoroethylene-hexafluoropropylenecopolymers[J]. Polymer Engineering and Science,1989,29(10):645-653.
    [130] Rosenbaoum EE, Hatzikiriakos S, Stewart C. Flow implications in the processing oftetrafluoroethylene/hexafluoropropylene copolymers[J]. International Polymer Processing,1995,10(3):204-212.
    [131] Rosenbaoum E, Hatzikiriakos S, Stewart C. The melt fracture behaviour of Teflon resins incapillary extrusion[J]. ANTEC'95,1995,1:1111-1115.
    [132] Barone J, Plucktaveesak N, Wang S. Interfacial molecular instability mechanism forsharkskin phenomenon in capillary extrusion of linear polyethylenes[J]. Journal of Rheology,1998,42(4):813-832.
    [133] Rosenbaoum EE, Hatzikiriakos SG. Wall slip in the capillary flow of molten polymerssubject to viscous heating[J]. AIChE Journal,1997,43(3):598-608.
    [134] Rosenbaoum E, Randa S, Hatzikiriakos S, et al. Boron nitride as a processing aid for theextrusion of polyolefins and fluoropolymers[J]. Polymer Engineering and Science,2000,40(1):179-190.
    [135] Kurose T, Takahashi T, Sugimoto M, et al. Uniaxial elongational viscosity of FEP/smallamount of PTFE blend[J]. Journal of Society of Rheology, Japan,2003,31(4):195-200.
    [136] Kurose T, Takahashi T, Nishioka A, et al. The effect of pre-thermal history on shear anduniaxial elongational viscosity of a tetrafluoroethylene/hexafluoropropylene copolymer near thecrystal melting transition[J]. Rheologica Acta,2003,42(4):338-344.
    [137] Uno T, Miyata S, Shirai H. Melt‐spinning process of a tetrafluoroethylene–hexafluoropropylene copolymer[J]. Journal of Applied Polymer Science,2002,84(13):2366-2371.
    [138] Wu C, Buck W, Chu B. Light scattering characterization of an alternating copolymer ofethylene and tetrafluoroethylene.2. Molecular weight distributions[J]. Macromolecules,2002,20(1):98-103.
    [139] Chu B, Wu C. Light scattering characterization of an alternating copolymer of ethylene andtetrafluoroethylene[J]. Macromolecules,2002,19(4):1285-1286.
    [140] Feng J, Chan CM, Weng LT. Influence of chain sequence structure of polymers onToF-SIMS spectra[J]. Polymer,2000,41(7):2695-2699.
    [141] Radice S, Del Fanti N, Zerbi G. Phase transition in ethylene-tetrafluoroethylene(ETFE)alternating copolymer. A spectroscopic study[J]. Polymer(Guildford),1997,38(11):2753-2758.
    [142] Tuminello W, Buck W, Kerbow D. Rheological molecular weight distributiondeterminations of ethylene/tetrafluoroethylene copolymers: implications for long-chainbranching[J]. Macromolecules,1993,26(3):499-503.
    [143] Funaki A, Phongtamrug S, Tashiro K. Crystal structure analysis of ethylene-tetrafluoroethylene alternating copolymer[J]. Macromolecules,2011,44:1540-1548.
    [144] Phongtamrug S, Tashiro K, Funaki A, et al. Structural study of phase transition behavior ofuniaxially-oriented ethylene-tetrafluoroethylene alternating copolymer [J]. MacromolecularSymposia,2006,242(1):268-273.
    [145] Saarinen V, Karesoja M, Kallio T, et al. Characterization of the novel ETFE-basedmembrane[J]. Journal of Membrane Science,2006,280(1-2):20-28.
    [146] Kostov G, Nikolov A, Atanassov A. Study of the thermal properties and relaxationtransitions in tetrafluoroethene-ethene copolymers[J]. Journal of Applied Polymer Science,2001,81(11):2626-2632.
    [147] Pucciariello R. Melting behavior of ethylene-tetrafluoroethylene alternating copolymer[J].Journal of Applied Polymer Science,1996,59(8):1227-1235.
    [148] Kung L, Chu B. Viscosity of Ethylene Tetrafluoroethylene Alternating Copolymers[J].Polymer,1995,36(11):2265-2269.
    [149] Wang Z, Tontisakis A, Tuminello W, et al. Viscosity characterization of an alternatingcopolymer of ethylene and tetrafluoroethylene[J]. Macromolecules,1990,23(5):1444-1446.
    [150] Nikolov AT, Dobreva AN, Georgiev DP, et al. Rheological behaviour of the alternatingtetrafluoroethylene-ethylene copolymer[J]. Bulgarian chemical communications,1994,27(1):118-124.
    [151] Liu Z, Song Y, Zhou J, et al. Simultaneous measurement of rheological and conductiveproperties of carbon black filled ethylene–tetrafluorothylene copolymer[J]. Journal of MaterialsScience,2007,42(20):8757-8759.
    [152] Thomas V, Giacomin A, Wolfenden A. A rheometer to measure the viscoelastic propertiesof polymer melts at ultrasonic frequencies[J]. Review of Scientific Instruments,1994,65(7):2395-2401.
    [153] Starkweather Jr HW. Crystallinity in perfluorosulfonic acid ionomers and relatedpolymers[J]. Macromolecules,1982,15(2):320-323.
    [154] Hodge I, Eisenberg A. Dielectric and mechanical relaxations in a Nafion precursor[J].Macromolecules,1978,11(2):289-293.
    [155] Kyu T, Hashiyama M, Eisenberg A. Dynamic mechanical studies of partially ionized andneutralized Nafion polymers[J]. Canadian Journal of Chemistry,1983,61(4):680-687.
    [156] Boyle N, McBrierty VJ, Eisenberg A. NMR investigation of molecular motion in Nafionmembranes[J]. Macromolecules,1983,16(1):80-84.
    [157] Hsu WY. Infrared study of helix reversal in" Nafion" perfluorinated membranes andprecursors[J]. Macromolecules,1983,16(5):745-749.
    [158] Gilbert M, Haworth B, Myers D. Structure and properties of an orientedfluorosulfonated/PTFE copolymer[J]. Polymer Engineering and Science,2004,44(2):272-282.
    [159] Philippoff W, Gaskins F. The capillary experiment in rheology[J]. Journal of Rheology,1958,2(1):263-284.
    [160]中国新闻网.菲律宾降生世界第70亿人联合国官员现场接见[W].中国新闻网.2011.http://www.chinanews.com/gj/2011/10-31/3424458.shtml
    [161] The Royal Society Science Policy Centre, Fuel cycle stewardship in a nuclearrenaissance[R]. London: The Royal Society,2011.
    [162]许元泽.高分子结构流变学[M].成都:四川教育出版社,1988.
    [163]江体乾.工业流变学[M].北京:化学工业出版社,1995.
    [164] Larson RG. The Structure and Rheology of Complex Fluids[M]. New York: OxfordUniversity Press,1999.
    [165] Han CD. Rheology in polymer processing[M]. Academic Press,1976.
    [166] Stewart CW. Wall slip in the extrusion of linear polyolefins[J]. Journal of Rheology,1993,37(3):499-514.
    [167] Tao Z, Huang J. Observation of melt fracture of polypropylene resins in capillary flow[J].Polymer,2003,44(3):719-727.
    [168] Huang J, Tao Z. Melt fracture, melt viscosities, and die swell of polypropylene resin incapillary flow[J]. Journal of Applied Polymer Science,2003,87(10):1587-1594.
    [169] Huang J, Leong K. Shear viscosity, extensional viscosity, and die swell of polypropylene incapillary flow with pressure dependency[J]. Journal of Applied Polymer Science,2002,84(6):1269-1276.
    [170] Kalika D, Denn M. Wall slip and extrudate distortion in linear low-density polyethylene[J].Journal of Rheology,1987,31(8):815-834.
    [171] Li H, Hürlimann HP, Meissner J. Two separate ranges for shear flow instabilities withpressure oscillations in capillary extrusion of HDPE and LLDPE[J]. Polymer Bulletin,1986,15(1):83-88.
    [172] Vega J, Munoz-Escalona A, Santamaria A, et al. Comparison of the rheological propertiesof metallocene-catalyzed and conventional high-density polyethylenes[J]. Macromolecules,1996,29(3):960-965.
    [173] Delgadillo-Velázquez O, Georgiou G, Sentmanat M, et al. Sharkskin and oscillating meltfracture: Why in slit and capillary dies and not in annular dies?[J]. Polymer Engineering andScience,2008,48(2):405-414.
    [174] Ariawan A, Hatzikiriakos S, Goyal S, et al. Effects of molecular structure on the rheologyand processability of blow-molding high-density polyethylene resins[J]. Advances in PolymerTechnology,2001,20(1):1-13.
    [175] Vinogradov G, Malkin A. Rheology of polymers: viscoelasticity and flow of polymers[M].Mir Moscow,1980.
    [176] Denn MM. Extrusion instabilities and wall slip[J]. Annual Review of Fluid Mechanics,2001,33(1):265-287.
    [177] Huang Z, Zhang Y, Kotaki M, et al. A review on polymer nanofibers by electrospinningand their applications in nanocomposites[J]. Composites Science and Technology,2003,63(15):2223-2253.
    [178]周持兴,俞炜.聚合物加工理论[M].北京:科学出版社,2003.
    [179] Liang J. A relationship between extrudate swell ratio and entry stored elastic strain energyduring die flow of tyre compounds[J]. Polymer Testing,2004,23(4):441-446.
    [180] Thomas DP, Hagan RS. The influence of molecular weight distribution on melt viscosity,melt elasticity, processing behavior and properties of polystyrene[J]. Polymer Engineering andScience,1969,9(3):164-171.
    [181] Tuminello WH, Treat TA, English AD. Poly(tetrafluoroethylene): molecular weightdistributions and chain stiffness[J]. Macromolecules,1988,21(8):2606-2610.
    [182] Doi M, See H. Introduction to polymer physics[M]. Oxford University Press, USA,1996.
    [183] Vlachopoulos J, Strutt D, Polydynamics I. The role of rheology in polymer extrusion:proceedings of,2003[C].
    [184] Barnes HA, Hutton JF, Walters K. An Introduction to Rheology[M]. Elsevier Science,1989.
    [185] Zeng J, Li Y, He J. Rheology and processability of metallocene polyethylene[J]. ActaPolymerica Sinica,2000,1(1):69-73.
    [186] Gupta R. Polymer and composite rheology[M]. CRC,2000.
    [187] Munstedt H. New universal extensional rheometer for polymer melt-measurements on apolystyrene sample[J]. Journal of Rheology,1979,23(4):421-436.
    [188] Meissner J. Rheometry of polymer melts[J]. Annual Review of Fluid Mechanics,1985,17(1):45-64.
    [189] Baldi F, Franceschini A, Riccò T. Determination of the elongational viscosity of polymermelts by melt spinning experiments. A comparison with different experimental techniques[J].Rheologica Acta,2007,46(7):965-978.
    [190] Padmanabhan M, Macosko C. Extensional viscosity from entrance pressure dropmeasurements[J]. Rheologica Acta,1997,36(2):144-151.
    [191] Nguyen T, Kausch H. Influence of nozzle geometry on polystyrene degradation inconvergent flow[J]. Colloid&Polymer Science,1991,269(11):1099-1110.
    [192] Cogswell FN. Converging flow of polymer melts in extrusion dies[J]. PolymerEngineering and Science,1972,12(1):64-73.
    [193] Binding DM, Jones DM. On the interpretation of data from Converging FlowRheometers[J]. Rheologica Acta,1989,28(3):215-222.
    [194] Chen K, Shen J, Tang X. Rheological properties of poly (trimethylene terephthalate) incapillary flow[J]. Journal of Applied Polymer Science,2005,97(2):705-709.
    [195]周持兴主编.聚合物流变实验与应用[M].上海:上海交通大学出版社,2003.
    [196] Gabriel C, Münstedt H. Creep recovery behavior of metallocene linear low-densitypolyethylenes[J]. Rheologica Acta,1999,38(5):393-403.
    [197] Rough S, Wilson D. Extrudate fracture and spheronisation of microcrystalline cellulosepastes[J]. Journal of Materials Science,2005,40(16):4199-4219.
    [198] Liang J. Effects of Extrusion Conditions on Melt Viscoelasticity during Capillary Flow ofLow-Density Polyethylene[J]. Journal of Thermoplastic Composite Materials,2009,22(1):99-110.
    [199]赵祥臻.辐射交联F40航空导线[J].上海工程技术大学学报,1995,9:14-18.
    [200]张万喜,张月芳,孙家珍. Characterization of radiation crosslinking density of F-40[J].Chinese Journal of Polymer Science,1990,8(3):283-286.
    [201]张万喜,何天白,孙家珍等.聚合物辐射交联中溶胶分数与剂量间的关系通式[J].科学通报,1986,(3):189-193.
    [202] Ho K, Kalinka G, Tran M, et al. Fluorinated carbon fibres and their suitability asreinforcement for fluoropolymers[J]. Composites Science and Technology,2007,67(13):2699-2706.
    [203]周应才,黄光琳,郭辉等. F40辐射交联电线的研究[J].核技术,1996,19(12):739-742.
    [204] Iuliano M, De Rosa C, Guerra G, et al. Structural variations in ethylene‐tetrafluoroethylene copolymers as a function of composition and temperature[J]. DieMakromolekulare Chemie,1989,190(4):827-835.
    [205]马德柱,何平笙,徐种德等.高聚物的结构与性能[M].北京:科学出版社,1999
    [206] Plazek DJ.1995Bingham Medal Address: Oh, thermorheological simplicity, wherefore artthou?[J]. Journal of Rheology,1996,40(6):987-1014.
    [207] Han C, Kim K, Siskovic N, et al. An appraisal of rheological models as applied to polymermelt flow[J]. Rheologica Acta,1975,14(6):533-549.
    [208] Chen XY, Yuan WZ, Zhao J, et al. Thermal-mechanical stability of ethylenetetrafluoroethylene alternating copolymer, and modification thereof[J]. Journal of PolymerResearch,2012,19(2):1-6.
    [209] Kazatchkov IB, Yip F, Hatzikiriakos SG. The effect of boron nitride on the rheology andprocessing of polyolefins[J]. Rheologica Acta,2000,39(6):583-594.
    [210] Sentmanat M, Hatzikiriakos SG. Mechanism of gross melt fracture elimination in theextrusion of polyethylenes in the presence of boron nitride[J]. Rheologica Acta,2004,43(6):624-633.
    [211] Note: for instance high density polyethylene, linear low density polyethylene,polybutadiene, polyisoprene, and linear polysiloxanes and fluorinated ethyl propylene copolymer,except polypropylene see Reference15,167,176.
    [212] Ramamurthy AV. Wall Slip in viscous fluids and influence of materials of construction[J].Journal of Rheology,1986,30(2):337-357.
    [213] Kim S, Dealy JM. Design of an orifice die to measure entrance pressure drop[J]. Journal ofRheology,2001,45(6):1413-1419.
    [214] Wu S. Polymer interface and adhesion[M]. New York: M. Dekker,1982.
    [215] Phan-Thien N. Understanding viscoelasticity: Basics of Rheology[M]. Springer,2002.
    [216] Van Gurp M, Palmen J. Time-temperature superposition for polymeric blends[J]. RheolBull,1998,67:5-8.
    [217] Han C D, Kim K U, Drexler L H, et al. An appraisal of rheological models as applied topolymer melt flow[J]. Rheologica Acta,1975,14(6):533-549.
    [218] Ke Q, Gotsis AD. Investigation on extensional viscosity of polymer melts and theirmolecular structures[J]. Journal of China textile university (english edition),1999,16(4):9-12.
    [219] Gotsis AD, Odriozola A. The relevance of entry flow measurements for the estimation ofextensional viscosity of polymer melts[J]. Rheologica Acta,1998,37(5):430-437.
    [220] Martyn M, Nakason C, Coates P. Measurement of apparent extensional viscosities ofpolyolefin melts from process contraction flows[J]. Journal of non-newtonian fluid mechanics,2000,92(2-3):203-226.
    [221] Christopher W. M. Rheology: Principles, measurements, and application[M]. New York:Wiley-VCH, Inc,1994.
    [222] Larson R. The structure and rheology of complex fluids[M].1995.
    [223] Graessley WW, Glasscock SD, Crawley RL. Die swell in molten polymers[J]. Journal ofRheology,1970,14(4):519-534.
    [224] Chen XY, Yuan W, Li H, et al. Rheological study on tetrafluoroethylene/hexafluoropropylene copolymer and its implication for processability[J]. Journal of AppliedPolymer Science (DOI10.1002/app.35665)
    [225] Xu A, Zhao J, Yuan WZ, et al. Tetrafluoroethylene copolymers with sulfonyl fluoridependants: syntheses in supercritical carbon dioxide, polymerization behaviors, and properties[J].Macromolecular Chemistry and Physics,2011,212(14):1497-1509.
    [226] Song Y, Zheng Q, Cao Q. On time-temperature-concentration superposition principle fordynamic rheology of carbon black filled polymers[J]. Journal of Rheology,2009,53(6):1379-1388.
    [227] Sugimoto M, Masubuchi Y, Takimoto J, et al. Melt rheology of polypropylene containingsmall amounts of high molecular weight chain. I. Shear flow[J]. Journal of Polymer Science PartB: Polymer Physics,2001,39(21):2692-2704.
    [228]何曼君.高分子物理(第三版)[M].上海:复旦大学出版社,2006.
    [229] Binding DM. Further considerations of axisymmetric contraction flows[J]. Journal ofnon-newtonian fluid mechanics,1991,41(1-2):27-42.
    [230] John M. D, Ronald G. L. Structure and Rheology of Molten Polymers: From Structure toFlow Behavior and Back Again[M]. Munich: Hanser publisher,2006.
    [231] Wu S. Characterization of polymer molecular weight distribution by transientviscoelasticity: Polytetrafluoroethylenes[J]. Polymer Engineering and Science,1988,28(8):538-543.
    [232] Kasehagen LJ, Macosko CW, Trowbridge D, et al. Rheology of long-chain randomlybranched polybutadiene[J]. Journal of Rheology,1996,40(4):689-709.
    [233] Wang H, Khariwala D, Cheung W, et al. Characterization of some new olefinic blockcopolymers[J]. Macromolecules,2007,40(8):2852-2862.
    [234]王万杰,郑强,郁秋明.由改进的BSW模型研究SEEPS嵌段共聚物的动态黏弹行为[J]. Chinese Science Bulletin,2005,50(15):1580-1583.
    [235] Liu C, He J, Ruymbeke E, et al. Evaluation of different methods for the determination ofthe plateau modulus and the entanglement molecular weight[J]. Polymer,2006,47(13):4461-4479.
    [236] Emri I, Tschoegl N. Generating line spectra from experimental responses. Part I:Relaxation modulus and creep compliance[J]. Rheologica Acta,1993,32(3):311-322.
    [237] Winter HH. Analysis of dynamic mechanical data: inversion into a relaxation timespectrum and consistency check[J]. Journal of non-newtonian fluid mechanics,1997,68(2-3):225-239.
    [238] Baumgaertel M, Winter H. Interrelation between continuous and discrete relaxation timespectra[J]. Journal of non-newtonian fluid mechanics,1992,44(1):15-36.
    [239] Roths T, Marth M, Weese J, et al. A generalized regularization method for nonlinearill-posed problems enhanced for nonlinear regularization terms[J]. Computer PhysicsCommunications,2001,139(3):279-296.
    [240] Roths T, Maier D, Friedrich C, et al. Determination of the relaxation time spectrum fromdynamic moduli using an edge preserving regularization method[J]. Rheologica Acta,2000,39(2):163-173.
    [241] Niedzwiedz K, Wischnewski A, Pyckhout-Hintzen W, et al. Chain dynamics andviscoelastic properties of poly (ethylene oxide)[J]. Macromolecules,2008,41(13):4866-4872.
    [242]何琪,俞炜,周持兴.高浓度不相容聚合物共混体系相形态与流变性能研究[J].高分子学报,2010,(1):114-119.
    [243]王鹏.高填充木塑复合材料流变行为与结晶性质研究[D]:上海交通大学,2011.
    [244]于同隐.高聚物的粘弹性[M].上海科学技术出版社,1984.
    [245] Kim BK, Jeong HM, Lee YH. Melt rheology of poly(ethylene terephthalate), polyarylate,and their blends[J]. Journal of Applied Polymer Science,1990,40(11-12):1805-1818.
    [246] Zoller P, Walsh D. Standard pressure-volume-temperature data for polymers[M]. CRC,1995.
    [247] Wilhelm M, Reinheimer P, Ortseifer M, et al. The crossover between linear and non-linearmechanical behaviour in polymer solutions as detected by Fourier-transform rheology[J].Rheologica Acta,2000,39(3):241-246.
    [248] Debbaut B, Burhin H. Large amplitude oscillatory shear and Fourier-transform rheologyfor a high-density polyethylene: Experiments and numerical simulation[J]. Journal of Rheology,2002,46(5):1155-1176.
    [249] Yu W, Wang P, Zhou C. General stress decomposition in nonlinear oscillatory shear flow[J].Journal of Rheology,2009,53(1):215-238.
    [250] Hyun K, Nam JG, Wilhellm M, et al. Large amplitude oscillatory shear behavior ofPEO-PPO-PEO triblock copolymer solutions[J]. Rheologica Acta,2006,45(3):239-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700