轮胎帘子线用Lyocell纤维的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Lyocell纤维是二十世纪九十年代开发出来的一种新型的纤维素纤维,同传统的粘胶纤维相比,其强度和模量更高、生产工艺简单环保,并能直接采用相对分子质量较高的纤维素原料进行溶解纺丝,这是粘胶工艺所无法达到的。因此,Lyocell纤维有望替代现有的粘胶帘子线作为一种轮胎帘子线用纤维素纤维。
     迄今为此,国内外尚未见Lyocell纤维应用于轮胎帘子线领域的相关报道。为此,本论文在研究各种纤维素原料溶解特性及其溶液流变性能的基础上,探讨了原料的性质、纺丝条件、氯化铵改性、热处理及交联处理等因素对最终所制得的Lyocell纤维结构和性能的影响,由此探索出了制备轮胎帘子线用Lyocell纤维的几种可行的方法。
     本论文首先采用带有CCD和热台的偏光显微镜跟踪观察了纤维素原料在N-甲基吗啉-N-氧化物一水合物(NMMO·H_2O)溶剂中的溶解过程,并利用HAAKE流变仪分析了各种溶液的流变性能。研究发现:纤维素的相对分子质量越高,溶解过程对温度依赖性越强,相应溶液出现切力变稀的临界剪切速率也越小,同时粘流活化能升高,且溶液均匀性下降。因此,采用较高相对分子质量的纤维素原料纺制Lyocell纤维时,应特别注意溶解工艺的合理选择及纺丝温度等纺丝条件的稳定控制。
     在上述研究基础上,本论文探讨了纤维素原料性质对所制得的Lyocell纤维性能的影响,结果表明:纤维素原料的相对分子质量(或聚合度)相对于α-纤维素含量而言对纤维力学性能的影响更大一些,原料相对分子质量越高,所得纤维的力学性能越好;当原料的相对分子质量接近时,纤维的力学性能则随原料中α-纤维素含量的增加而改善;并且,较高的α-纤维素含量还有利于纤维耐热性的提高。与此同时,本论文还利用凝胶渗透色谱(GPC)等手段分析了高(或超高)相对分子质量纤维素与中等相对分子质量纤维素的混合原料所形成的纺丝液的纺丝性能,发现通过在中等相对分子质量纤维素原料中混合适量的高相对分子质量纤维素原料可以改善所得Lyocell纤维的力学性能,但若两种原料的相对分子质量相差过大,则易引起纺丝液在流经纺丝组件过滤层时发生分层从而无法有效地提高纤维的力学性能。通过上述研究表明,采用以高相对分子质量纤维素或其与中等相对分子质量纤维素的混合体系为原料是提高Lyocell纤维力学性能和制备轮胎帘子线用Lyocell纤维的一种可行的途径。
     除了采用高相对分子质量纤维素为原料的方法外,本论文还探讨了在纺丝液中加入氯化铵添加剂来制备高性能Lyocell纤维的可行性,发现添加氯化铵对纤维素/NMMO·H_2O溶液流变性能的影响规律与提高纤维素相对分子质量十分相似:随着体系中氯化铵添加量的增加,溶液体系表观粘度、零切粘度和结构化程度均呈上升趋势,纤维素分子级溶解均匀性变差。因此,为确保良好的可纺性和纺丝稳定性,在纤维素/NMMO·H_2O纺丝液中氯化铵的添加量不宜过多。对所纺得纤维的分析结果表明:氯化铵的添加有利于纤维素Ⅲ结晶结构的形成,经适量氯化铵改性后的Lyocell纤维具有纤维素Ⅱ和纤维素Ⅲ两种结晶变体的混合结构,并且纤维总的结晶度和取向度均有所增加,力学性能也明显改善。由此可见,氯化铵改性也不失为制备高力学性能Lyocell纤维的有效方法。
     为了探索完善Lyocell纤维聚集态结构的合适方法,本论文还对Lyocell纤维结晶结构的形成过程进行了研究分析,结果发现:尚未干燥过的湿态初生Lyocell纤维中,纤维素的三维有序排列还未完全形成。Lyocell纤维的结晶结构是在其湿态初生纤维的失水干燥过程中形成的,随着纤维含水率的减小,准晶结构逐渐消失,结晶结构逐渐完善。当初生Lyocell纤维完全干燥后,其结晶结构便比较稳定,很难再被改变。因此,有望通过对尚未干燥过的初生Lyocell纤维进行适当的后处理来有效改善最终Lvocell纤维的聚集态结构,从而达到提高纤维力学性能的目的。
     为此,本论文进一步利用自制的热处理装置对尚未干燥过的初生Lyocell纤维进行了张力下热处理,探讨了预张力、热处理温度及时间和张力对最终纤维力学性能等性质的影响,并在最佳热处理条件下制得了强度和模量比室温干燥的Lyocell纤维分别提高29.7%和97.4%的纤维,且其干热收缩率和蠕变率也显著减小,相关性能均符合轮胎帘子线用纤维要求,由此表明对尚未干燥过的初生Lyocell纤维进行热处理也是获得轮胎帘子线用Lyocell纤维的一种可行方法。在此基础上,本论文还将氯化铵改性与热处理相结合,对湿态初生氯化铵改性Lyocell纤维在适当条件下进行热处理,最终可得到断裂强度高达到7.21cN/dtex、初始模量达到92.6cN/dtex、蠕变率低于0.5%、干热收缩率小于0.8%的高性能Lyocell纤维。由此可见,采用氯化铵改性和热处理相结合的方法有利于获得高性能的轮胎帘子线用Lvocell纤维。
     此外,由于Lyocell纤维具有易原纤化的特性,这种性能会影响纤维的耐疲劳性等性能,为此,为了提高Lyocell纤维的抗原纤化能力,以保证其具有优良的耐疲劳性和耐磨擦性能,本论文还摸索出了最佳的交联剂处理工艺,对尚未干燥过的初生Lyocell纤维进行了适当的交联处理,发现经交联处理后的Lyocell纤维中,基纤以及基纤聚集束尺寸均明显减小且含量增加,由此降低了微原纤从纤维主干上劈裂的可能性,使最终所得Lyocell纤维在保持原有力学性能的基础上,湿摩擦值(该值与抗原纤化能力成正比)达到733s左右,比普通Lyocell纤维提高了约13倍,且纤维的耐疲劳性也明显提高。这些研究结果表明,适当的交联处理可以改善Lyocell纤维应用于轮胎帘子线的综合性能。在此基础上,本论文进一步对尚未干燥过的初生氯化铵改性Lyocell纤维进行了交联处理及热处理,发现最终所得Lyocell纤维的力学性能、耐疲劳性、耐热性及尺寸稳定性等指标均远优于高模低收缩涤纶轮胎帘子线和高强粘胶轮胎帘子线。
     由本论文上述研究表明,(1)以高相对分子质量纤维素或其与中等相对分子质量纤维素的混合体系为原料、(2)添加氯化铵改性、(3)对尚未干燥过的初生Lyocell纤维进行张力下热处理等几种方法均为有效提高Lyocell纤维力学性能和获得轮胎帘子线用Lyocell纤维的可行方法,并且,通过氯化铵改性和热处理相结合(或进一步结合交联处理),可以获得综合指标佳、高性能的轮胎帘子线用Lyocell纤维。
Lyocell fiber is a new kind of regenerated cellulose fiber developed in the 1990s.Compared with traditional rayon fibers,it has higher strength and modulus.Lyocell process is a simple and environmentally friendly process. It can use higher relative molecular weight cellulose as raw material to prepare fiber directly,which is impossible for rayon process.Therefore, Lyocell fiber can expectedly be used as tire cord to replace the existing rayon tire cord.
     To date,there is no report on Lyocell fiber used as tire cord.In this thesis,the dissolving characteristic of various celluloses and the rheological properties of the spinning dopes were investigated firstly.Then the effects of various factors such as the raw material properties,the spinning condition, the addition of ammonium chloride,heat treatment and cross-link treatment on the structure and properties of the resultant Lyocell fiber were also investigated.Base on the above studies,some feasible ways for preparing Lyocell fiber used as tire cord have been found.
     In this thesis,the dissolving process of cellulose pulps were observed by using a polarizing microscopy with CCD and a heating stage and the rheological properties of the cellulose solutions were studied by HAAKE rheometer.The results showed that the higher the relative molecular weight of cellulose,the stronger the dependence of dissolving rate on temperature and the higher the activation energy of the cellulose solution.Also,the homogeneity of the solution became poorer and its critical shear rate was decreased.Therefore,the parameters for dissolution and spinning,such as temperature and so on,should be controlled strictly when the cellulose pulp having a higher relative molecular weight was used to prepare Lyocell fiber.
     The results based on the mechanical properties of the resultant fibers also showed that the relative molecular weight of cellulose played a more important role in improving the mechanical properties of fibers thanα-cellulose content.If the relative molecular weights of celluloses were similar,the mechanical properties of Lyocell fibers can be improved with the increasing ofα-ceUulose content in cellulose.The highα-cellulose content in cellulose had positive effect on heat and size stability of Lyocell fiber.Moreover,the properties of spinning dopes from the cellulose mixed by high(or super-high) relative molecular weight cellulose and medium relative molecular weight cellulose were analyzed by GPC.It was found that the mechanical properties of Lyocell fiber could be improved by mixing an appropriate amount of high relative molecular weight cellulose with medium relative molecular weight cellulose.However,if the difference between the relative molecular weights for two celluloses was too big,the resultant dope would be separated during its passing through filter of spinning components and therefore the mechanical properties of prepared Lyocell fiber could not be improved effectively.Therefore,using high relative molecular weight cellulose or its mixture with medium relative molecular weight cellulose as raw material is a feasible way for improving mechanical properties of Lyocell fiber and preparing Lyocell fiber used as tire cord.
     In this thesis,the feasibility of preparing high performance Lyocell fiber by adding ammonium chloride in the dope was further investigated. The results showed that the effect of adding ammonium chloride on the rheological properties of cellulose/NMMO·H_2O solution was similar to that of increasing relative molecular weight of cellulose.With the increase of ammonium chloride in the solution,the apparent viscosity,zero-shear viscosity and structural viscosity index for cellulose solution were increased, while the dissolution homogeneity of cellulose was decreased.In order to insure good spinnablity and spinning stability,the adding amount of ammonium chloride couldn't be too high.It was also found that the mechanical properties of resultant Lyocell fiber modified by an appropriate amount of ammonium chloride were improved and the modified Lyocell fiber has a mixture structure of celluloseⅡcrystal and celluloseⅢcrystal. Furthermore,the total crystallinity and orientation could be increased with adding ammonium chloride.This means that the modification by ammonium chloride is also an effective way to prepare Lyocell fiber with excellent mechanical properties.
     In order to find an effective method to improve the crystalline and orientation structure of Lyocell fiber,the formation of crystal structure of Lyocell fiber was also studied in this thesis.It was found the tridimensional order of never dried as-spun Lyocell fiber was not fully formed yet.With the decreasing water content of as-spun Lyocell fiber,its paracrystal structure disappeared gradually and meanwhile the crystal structure was improved.Once the Lyocell fiber was dried completely,its crystal structure had been stabilized and was difficult to be destroyed and rearranged. Therefore,it is hopeful to improve crystalline structure and mechanical properties of Lyocell fiber by appropriate post treatment using never dried Lyocell fiber as precursor.
     Therefore,in this thesis the never dried as-spun Lyocell fiber was heat-treated under tension by using a home-made heat treatment equipment. And the effect of pretension,temperature and time as well tension of heat treatment on the mechanical properties of resultant Lyocell fiber was also investigated.It was found that after optimal heat treatment,the tensile strength and initial modulus of Lyocell fiber could be increased by 29.7% and 97.4%,respectively,and its dry heat shrinkage and creep ratio were decreased obviously,which could accord with the requirements of tire cord. That means the heat treatment is a feasible way to obtain the Lyocell fiber used as tire cord.Based on the above studies,the never dried Lyocell fiber, which had been modified by ammonium chloride,was heat-treated.The strength and the modulus of resultant Lyocell fiber could reach 7.21 cN/dtex and 92.6cN/dtex,respectively.And the creep ratio and dry heat shrinkage were lower than 0.5%and 0.8%,respectively.Therefore,the modification by ammonium chloride combined with heat treatment was an effective method to prepare high performance Lyocell fiber.
     It is generally believed that the Lyocell fiber has high fibrillation tendency,which has negative effect on its fatigue properties.In order to increase the fibrillation resistance of Lyocell fiber to improve its fatigue resistance and wear resistance,the optimal cross-link treatment was also investigated by using the never dried Lyocell fiber as precursor.The results showed that the cross-link treatment could effectively decrease the sizes of elementary fibril and elementary fibril cluster and increase their contents, which led to reduce the possibility of the fibril separating from the fiber and improve fatigue resistance of Lyocell fiber.Therefore,the wet abrasion value of Lyocell fiber after cross-link treatment was 13 times higher than that of common Lyocell fiber.These results indicated that the appropriate cross-link treatment could improve the comprehensive properties of Lyocell fiber,which were necessary for tire cords.Based on the above studies,the never dried Lyocell fiber modified by ammonium chloride was cross-link treated firstly and then heat-treated.It can be found that the mechanical properties,fatigue resistance,heat and size stability of the resultant Lyocell fiber are much better than those of HLMS polyester tire cord and high strength rayon tire cord.
     The above investigations showed that the Lyocell fiber used as tire cord could be prepared by(1) using high relative molecular weight cellulose or its mixture with medium relative molecular weight cellulose as raw material, (2) modification by adding ammonium chloride,and(3) the heat treatment under tension using never dried Lyocell fiber as precursor.The high performance Lyocell fiber with excellent comprehensive properties,which can be used as tire cord,could be obtained by combining the modification by ammonium chloride with the heat treatment(or further with cross-link treatment).
引文
[1]淡联绒,潘鹏.我国汽车用纺织品发展浅析.河北纺织,2008(3):73-76.
    [2]张卫昌,庄苏桔,章于川.浅谈当今常用轮胎帘子线.合成纤维,2007(6):12-16.
    [3]陈达俊.我国汽车轮胎用涤纶帘子线的需求及发展探讨.江苏纺织,2006(2):6-9.
    [4]潘玮,李戎,段菊兰.各种轮胎帘子线纤维的发展.纺织导报,1995(5):91-93.
    [5]李汉堂.轮胎帘子线的发展.化工新型材料,1997(9):7-10.
    [6]鹿学凤,白继德.涤纶帘子线的开发与应用.山东纺织科技,2006(2):43-46.
    [7]周梦玲.芳香族聚酰胺纤维在轮胎中的应用.轮胎工业,1996(6):335-337.
    [8]林永明,钱军,赵弘等.聚酯及其纤维产品在汽车行业中的应用.金山油化纤,2005(3):37-39.
    [9]W.C Wake,D.B.Wootton.Textile Reinforcement of Elastomers.Applied Science Publishers Ltd,London,2002:1-11.
    [10]W.Colin,H.Developments.Developments in Rubber and Rubber Composites.Applied Science Publishers Ltd.,London,2004:17-45.
    [11]P.B.Rim,C.J.Nolson.Properties of PET Fiber with High Modulus and low shrinkage(HMLS):Part Ⅱ:Treated-Cords Properties.Journal of textile Institute,1992(8):78-92.
    [12]M.Liudmila,K.Kirill,S.Christopher,et al.Synthetic Layered Silicate as a Carrier for Liquid Ingredients for the Rubber-and Tire Industry.Macromolecular Symposia,2007(1):147-155.
    [13]M.Pasquali,S.Polter.The market development of the tire cord in the west Europen.Chemical Fibers International,2000(2):16-17.
    [14]A.Reisenbauer,A.Gr(u|¨)nberger,P.Federspiel,et al.Investigation of the wear behaviour of tyre steel cords using electrochemical methods.Wear,1993(1):57-62.
    [15]S.Hollinger,E.Depraetere,O.Giroux.Wear mechanism of tungsten carbide dies during wet drawing of steel tyre cords.Wear,2003(8):1291-1299.
    [16]M.Jamshidi,F.Afshar,N.Mohammadi,et al.Study on cord/rubber interface at elevated temperatures by H-pull test method.Applied Surface Science,2005(8):208-215.
    [17]郭乌义.植物纤维化学.北京:北京轻工业出版社.1991:2.
    [18]高称意.乘用车子午线轮胎体最佳骨架材料——人造丝的独特性能.现代橡胶技术,2003(9):14-18.
    [19]刘瑞刚,胡学超,章潭莉.新一代纤维素纤维Lyocell.合成纤维,1997(4):23-28.
    [20]D.Loubinoux,S.Chaunis.An experimental approach to spinning newcellulose fibers with N-methylmorpholine-N-oxide as a solvent.Textile Research Journal,1987(3):61-65.
    [21]武红艳.Lyocell纤维的纺丝生产工艺、性能和发展前景.纺织科学研究,1999(1):25-32.
    [22]H.Harms.Lenzing LYOCELL:Potentiale und Chancen einer neuen Fasergeneration.Materialwissenschaft und Werkstofftechnik,2003(3):267-271.
    [23]韩增强,武志云,汪少朋等.Lyocell纤维纺丝溶剂NMMO回收工艺.纺织学报,2008(6):15-19.
    [24]韩增强,武志云,汪少朋等.基于絮凝工艺的Lyocell纺丝溶剂NMMO的纯化回收.纺织学报,2008(2):29-32.
    [25]H.R.Zhang,H.H.Zhang,M.W.Tong,et al.Comparison of the structures and properties of Lyocell fibers from high hemicellulose pulp and high α-cellulose pulp.Journal of Applied Polymer Science,2008(1):636-641.
    [26]谢和平.Lyocell纤维与粘胶纤维生产对环境影响的比较分析.人造纤维,2007(6):22-24.
    [27]韩增强,武志云,汪少朋等.Lyocell纤维纺丝溶剂NMMO及回收工艺的研究.山东纺织科技,2007(3):7-9.
    [28]石东亮,李茂松.我国再生纤维素纤维的现状及发展趋势.丝绸,2007(10):44-46.
    [29]何曼君.高分子物理.上海:复旦大学出版社,1990,314-321
    [30]李庆春,黄知清,杨春波等.Lyocell纤维适合浆粕初探.广西化学通讯,2001(1):6.
    [31]丁亦平译.纤维的形成、结构及性能.北京:纺织工业出版社,1988,212-216
    [32]S.J.Peng,H.L.Shao,X.C.Hu.Lyocell Fibers as the Precursor of Carbon Fibers.Journal of Applied.Polymer Science,2003(7),1941-1947.
    [33]邵惠丽,段菊兰,胡学超.凝固浴条件对Lyocell纤维结晶结构的影响.合成纤维,2000(3):7-9.
    [34]J.Lu,H.H.Zhang,H.L.Shao,et al.Preparation and characteriazation of multi-walled carbon nanotubes/Lyocell composite fibers.Polyer (Korea),2007(3):436-441.
    [35]S.A.Mortimer,A.A.Peguy,R.C.Ball.Influence of the physical process parameters on the structure formation of Lyocell fibers.Cellulose Chemical Technology,1996(3):251-266.
    [36]段菊兰,邵惠丽,章潭莉等.凝固浴温度对lycell纤维结构及性能的影响.纺织学报,2001(1):13-14.
    [37]余立国,汪晓峰,刘强.Lyocell纤维纺丝工艺.合成纤维,1998(1):18-21.
    [38]孟志芬,胡学超,章潭莉.气隙长度和纺丝速度对Lyocell纤维性能的影响.纺织学报,1998(10):22-24.
    [39]彭顺金,张松洁,邵惠丽等.氯化铵改性Lyocell纤维的研究—Ⅰ:NH_4Cl存在下纤维素/NMMO·H_2O纺丝溶液的流变学性质.高分子材料科学与工程,2005(5):21-26.
    [40]H.D.Chanzy.Process for the preparation of a shapeable solution of cellulose in presence of a tertiary amine oxide and an additive.US Pat.4880469,1989.
    [41]H.D.Chanzy,M.Paillet.Spinning of cellulose from N-methylmorpholine N-oxide in the presence of additives.Polymer,1990(3):400-405.
    [42]S.M.Hudson,J.A.Cuculo.The solubility of unmodified cellulose:a critique of the literature.Journal of Macromolecules Science,1980(1):1-82.
    [43]DE Pat.389336(Bemberg)
    [44]A.M.Bochek,G.A.Petropavlovsky,O.V.Kallisto.Dissolution of cellulose and its derivatives in the same solvent,N-methylmorpholine N-oxide and the properties of the resulting solutions.Cellulose Chemical Technology,1993(2):137-144.
    [45]鲁江,简义辉,张慧慧.Lyocell/多壁碳纳米管复合纤维的制备及性能.新型炭材料,2007(2):159-164.
    [46]简义辉,鲁江,张慧慧等.碳纳米管添加剂对Lyocell纺丝原液流变行为及其纤维结构与性能的影响.东华大学学报,2007(8):24-29.
    [47]Z.Lewandowski.Application of a linear synthetic polymer to improve the properties of cellulose fibers made by the NMMO process.Journal of the Applied Polymer Science,2002(3):2762-2773.
    [48]B.S.Sprague,H.D.Noether.Factors influencing the crystal structure of cellulose triacetate.Textile Research Journal,1961(3):858-859.
    [49]D.H.Vries.Dynamic modulus of elasticity of regenerated cellulose fibers in relation to large deformation.Applied Science Research,1952(3):111-114.
    [50]A.Sarko,J.Southwick,J.Hayashi.Packing analysis of carbohydrate and polysaccharides.Polymer,1976(9):857-863.
    [51]A.Sarko.What is the crystalline structure of cellulose.Journal of Polymer Science,1978(6):59-61.
    [52]A.Buleon,H.Chanzy.Single crystals of cellulose Ⅱ.Journal Polymer Science:Polymer Physical,1978(6):833-839.
    [53]H.J.Wellard.Variation in the lattice spacing of cellulose.Journal Polymer Science:Polymer Physical,1954(3):471-476.
    [54]A.Buleon,H.Chanzy.Single crystals of cellulose Ⅱ.Journal Polymer Science:Polymer Physical,1978(6):833-839.
    [55]R.H.Marchessault,A.Sarko.X-ray structure of polysaccharides.Advanced Carbohydrate Chemistry,New York:Academic Press,1967,421-483.
    [56]R.H.Atalla,D.L.Vanderhart.Native cellulose:A composite of two distinct crystalline forms.Science,1984(3):283-285.
    [57]R.H.Atalla,D.L.Vanderhart.Studies of microstructure in native cellulose using solid state C-~(13) NMR.Macromolecules,1984(7):1465-1472.
    [58]李之工.纤维素物理化学.北京:中国财政经济出版社,1965,16-19.
    [59]杨之礼,蒋听培,王庆瑞等.纤维素与粘胶纤维(上册).北京:纺织工业出版社,1981:91-96.
    [60]K.H.Gandner,J.Blackwell.Hydrogen bonding in native cellulose.Biochemical et Biophysical Acetate,1974(4):233-237.
    [61]R.H.Atalla,D.L.Vanderhart.Native cellulose:A composite of two distinct crystalline forms.Science,1984(3):283-285.
    [62]H.P.Fink,P.Weigel,H.J.Purz,et al.Structure Formation of Regenerated Cellulose Materials from NMMO-solutions.Progress in Polymer Science,2001(11):1473-1524.
    [63]P.Weigel,H.P.Fink,E.Walenta,et al.Structure formation of cellulose man-made fibres from amine oxide solution.Cellulose Chemical and Technology,1997(1):321-333.
    [64]A.Nechwatal,T.Reumann,C.Hauspurg.提高Lyocell的弹性模量.国际纺织导报,2002(2):10-15.
    [65]H.H.Zhang,H.L.Shao,X.C.Hu.Effect of Heat Treatment on the Structure and Properties of Lyocell Fibers.Journal of Applied Polymer Science,2006(3):1738-1743.
    [66]魏东山,戴冕,邵慧丽等.Lyocell纤维干燥工艺的选择.上海纺织科技,2003(2):10-13.
    [67]M.E.Vickers,N.P.Briggs,R.N.Ibbett,et al.Small angle X-ray scattering studies on Lyocell cellulosic fibres:the effects of drying,re-wetting and changing coagulation temperature.Polymer,2001(4):8241-8248.
    [68]W.Zhang,S.Okubayashi.Fibrillation Tendency of Cellulosic Fibers.Ⅶ.Combined Effects of Treatments with an Alkali,Crosslinking Agent,and Reactive Dye.Journal of Applied Polymer Science,2006(10):1176-1183.
    [69]S.A.Mortimer,A.A.Peguy,Methods for Reducing the Tendency of Lyocell Fiber to Fibrillate.Journal of Applied Polymer Science,2005(6):305-316.
    [70]W.Zhang,S.Okubayashi,T.Bechtold.Fibrillation Tendency of Cellulosic Fibers—Part 4.Effects of Alkali Pretreatment of Various Cellulosic Fibers.Carbohydrate Polymers,2005(6):427-433.
    [71]Bates,E.Maudm,P.DAS,et al.Cross-linking agents for the Protection of Lyocell Againsts Fibrillation:Synthesis,Application and Technical Assessment of 2,4-diacrylamidobengene-sulphonic Acid.Color Technology,2004(6):293-300.
    [72]张建春,施楣梧.Lyocell纤维的皮芯态结构的研究.纺织学报,2000(2):7-10.
    [73]张建春,施楣梧.Lyocell纤维的聚集态结构研究.纺织学报,1999(4):200-202.
    [74]S.A.Morimer.Methods for reducing the tendency of Lyocell fibers to fibrillate.Journal of Applied Polymer Science,1996(6):305-316.
    [75]圜国茂.加工技术.1996(5):293.
    [76]J.Lenz.The Fibrillar Structure of Cellulosic Man-made Fibers Spun from Different Solvent Systems.Journal of Applied Polymer Science,1988(8):1987-2000.
    [77]K.P.Mieck,Contribution to the judgement of fibrillation of cellulose fibers.Chemical Fiber International,1995(5):106-112.
    [78]Bredereck Kardl.Fibrillation Propensity of Lyocell and the Influence of Reactive Dyeings.Melliand Textile,1997(10):155-158.
    [79]杨明煜.抗原纤化改性Lyocell纤维的性能.江苏丝绸,2005(1):23-25.
    [80]A.H.M.Renfrew,D.A.S.Phillips.Protection of Lyocell Fibres against Fibrillation:Mode of Action of the Crosslinking Agent,4-Dichloro-6- (β-Sulphatoethylsulphonyl)anilino-s-Triazine(Cibatex AE 4425),Lenzinger Berichte,2003(8):49-57.
    [81]叶金兴.防止Lyocell原纤化的交联剂的开发和评估.现代纺织技术,2006(2):61-63.
    [82]张惠芳,沈勇,赵阿金等.减少Lyocell纤维原纤化程度的化学方法研究.印染,2004(3):6-8.
    [83]N.Roger,A.S.Duncan,S.Kaenthong.A dye-adsorption and water NMR-relaxation study of the effect of resin cross-linking on the porosity characteristics of lyocell solvent-spun cellulosic fibre.Dyes and Pigments,2006(6):1-9.
    [84]W.S.Zhang,S.Okubayashi,W.Badura,et al.Fibrillation Tendency of Cellulosic Fibers.Ⅶ.Combined Effects of Treatments with an Alkali,Crosslinking Agent,and Reactive Dye.Journal of Applied Polymer Science,2006(8):1176-1183.
    [85]J.O.Karlsson,J.F.Blachot,A.Pegw,et al.Improvement of Adhesion Between Polyethylene and Regenerated Cellulose Fibers by Surface Fibrillation.Improvement of Adhesion,1996(2):300-304.
    [86]Bates,E.Maudm,P.DAS,et al.Cross-linking agents for the protection of Lyocell againsts fibrillation:synthesis,application and technical assessment of 2,4-diacrylamidobengene-sulphonic acid.Color Technology,2004(6):293-300.
    [87]李长龙,陈旭炜,李毓陵.Lyocell的原纤化及整理.中国纺织大学学报,1999(5):95-98.
    [88]A.H.M.Renfrew著,刘玉莉译,Lyocell纤维原纤化的防止:交联剂2,4-二氯-6-(β-硫酸乙磺酰)苯胺-s-三嗪的作用机理.国外纺织技术,2004(9):15-19.
    [89]王蕊,郝龙云,房宽峻等.交联处理对Lyocell纤维原纤化性质的影响.青岛大学学报(工程技术版),2005(2):51-55.
    [1]沈弋弋,刘瑞刚,胡学超.纤维素/NMMO·H_2O浆液的流变性能.中国纺织大学学报,2000(5):1-7.
    [2]H.Chanzy,S.Nawrot,S.Perez,et al.Proceeding of the TAPPI international dissolving and speciality pulps conference.Boston,1983,127-132.
    [3]董纪震,罗鸿烈,王庆瑞等.合成纤维生产工艺学(第二版)(上).1993,北京:纺织工业出版社,93-160.
    [4]杨之礼,蒋听培,王庆瑞等.纤维素与粘胶纤维(上册).1981,北京:纺织工业出版社,6-7.
    [5]S.A.Motimer,A.A.Peguy.The formation of structure in the spinning and coagulation of Lyocell fibers.Cellulose Chemistry Technology,1996(3):117-132.
    [6]L.Schulz,B.Seger,W.Burchard.Structure of cellulose in solution.Macromolecule Chemistry Physical,2000(3):2008-2022.
    [7]顾广新,沈弋弋,胡学超等.纤维素/NMMO/H_2O纺丝液组成的表征.合成纤维,2001(1):32-34.
    [8]R.G.Liu,H.L.Shao,X.C.Hu.The online measurement of Lyocell fibers and investigation of elongational viscosity of cellulose N-methylmorpholine-N-oxide monohydrate solutions.Macromolecule Material Engineering,2001(1):1-8.
    [9]C.Michels,F.Meister.Beitrag Zur Charakterisierung der Zelltoffeignung f(u|¨)r L(o|¨)seund Derivatisierung sprozesse.Das Papier,1997(4):161-165.
    [10]W.Berger,M.Keck,B.Philipp.On the mechanism of cellulose dissolution in O-basic system.Cellulose Chemistry Technology,1998(2):387-397.
    [11]C.R.Woodings.The development of advanced cellulosic fibers.International Journal Biology Macromolecule,1995(3):305-309.
    [12]H.Chanzy,B.Chumpitazi,A.A.Peguy.Solutions of polysaccharides in N-methyl morpholine N-oxide(NMMO).Carbohydrate Polymer,1982(1):35-42.
    [13]P.Nvard,J.M.Haudin.Thermal study of N-methylmorpholine N-oxide and its complexation with water.Journal of Thermal Analysis,1980(12):174-176.
    [14]彭顺金.高强Lyoeell纤维及其用于碳纤维原丝的研究.[博士学位论文],上海:东华大学,2003.
    [15]T.Bikova,A.Treimanis.Problems of the MWD analysis of cellulose by SEC using DMAc/LiCl:A review.Carbohydrate Polymer,2002(4):23-28.
    [16]J.L Ekmanis.Gel permeation chromatographic analysis of cellulose.Proceedings of the Conference on GPC Analysis of Cellulose.Pittsburgh,Atlanta City,NJ,1986,251.
    [17]J.M.Evans.Gel permeation chromatography:a guide to data interpretation.Polymer Engineering and Science,1973,(6):401-408.
    [18]顾广新.Lyocell工艺中纤维素溶液的制备及其表征.[博士学位论文],上海:东华大学,2001.
    [19]藏昆,藏己编.纺丝流变学基础.1993.北京:纺织工业出版社,12-16.
    [20]H.A巴勒斯,J.H赫顿,K.瓦尔特斯著.吴大诚,古大治等译校.流变学导引.1992.北京:中国石化出版社,1-194.
    [21]王进.聚合物加工复杂流动的实验和数值模拟.[硕士学位论文],北京:中国科学院化学研究所,1998.
    [22]张慧茹,童明伟,邵惠丽等.以高半纤维素浆粕为原料的Lyocell 产品得率及可纺性.合成纤维,2005(4):8-11.
    [23]董纪震,罗鸿烈,王庆瑞等.合成纤维生产工艺学(上册)(第二版).1991.北京:纺织工业出版社,102.
    [24]顾广新,胡赛珠,邵惠丽等.纤维素溶液的动态流变性质.东华大学学报(自然科学版).2001(4):12-16.
    [25]马德柱,何平笙,徐种德等.高聚物的结构与性能(第二版).1999.北京:科学出版社.318-355.
    [26]吴其晔,巫静安.高分子材料流变学.1994.北京:化学工业出版 社,41-44.
    [27]G.Schramm著.李晓晖译.实用流变测量学.1998.北京:石油工业出版社,27-31.
    [28]C.Michels.Beitrag zur bestimmung von molmassevertilungen in cellulosen aus rheologischen daten.Das Papier,1998(5):3-8.
    [1]杨之礼,蒋听培,王庆瑞等.纤维素与粘胶纤维(上册).1981,北京:纺织工业出版社,6-7.
    [2]H.H.Zhang,H.L.Shao,X.C.Hu.Effect of Heat Treatment on the Structure and Properties of Lyocell Fibers.Journal of Applied Polymer Science,2006,101(3):1738-1743.
    [3]R.H.Marchessault,A.Sarko.X-ray Structure of Polysaccharides.Advanced Carbohydrate Chemistry.New York:Academic Press,1967(13):421-483.
    [4]H.P.Fink,P.Weigel,H.J.Purz,et al.Structure Formation of Regenerated Cellulose Materials from NMMO-solutions.Progress in Polymer Science,2001(11):1473-1524.
    [5]李之工.纤维素物理化学.1965.北京:中国财政经济出版社,16-19.
    [6]彭顺金.高强Lyoeell纤维及其用于碳纤维原丝的研究.[博士学位论文],上海:东华大学,2003.
    [7]W.Gindl,M.Reifferscheid,K.J.Martinschitz.Reorientation of crystalline and noncrystalline regions in regenerated cellulose fibers and films tested in uniaxial tension.Journal of Polymer Science:Part B:Polymer Physics,2008(4):297-304.
    [8]W.Gindl,J.Keckes.Strain hardening in regenerated cellulose fibres.Composites Science and Technology,2006(2):2049-2053.
    [9]S.J.Peng,H.L.Shao,X.C.Hu.Lyocell fibers as the precursor of carbon fibers Journal of Applied Polymer Science,2003(9):1941-1947.
    [10]H.R.Zhang,H.H.Zhang,M.W.Tong,et al.Comparison of the Structures and Properties of Lyocell Fibers from High Hemicellulose Pulp and High Alpha-cellulose Pulp.Journal of Applied Polymer Science,2008(1):636-641.
    [1]H.H.Zhang,L.W.Guo,H.L.Shao,et al.Nano-carbon black filled Lyocell fiber as a precursor for carbon fiber.Journal of Applied Polymer Science,2005(9):65-74.
    [2]J.Lu,H.H.Zhang,H.L.Shao,et al.Preparation and characteriazation of multi-walled carbon nanotubes/Lyocell composite fibers.Polyer (Korea),2007(3):436-441.
    [3]彭顺金,张松洁,邵惠丽等.氯化铵改性Lyocell纤维的研究—Ⅰ:NH_4Cl存在下纤维素/NMMO·H_2O纺丝溶液的流变学性质.高分子材料科学与工程,2005(5):21-26.
    [4]H.DChanzy.Process for the preparation of a shapeable solution of cellulose in presence of a tertiary amine oxide and an additive.US Pat.4880469,1989.
    [5]H.Chanzy,M.Paillet.Spinning.of cellulose from N-methylmorpholine N-oxide in the presence of additives.Polymer,1990(3):400-405.
    [6]刘仁庆.纤维素化学基础.1995.北京:科学出版社:29-34.
    [7]孟志芬.东华大学硕士研究生毕业论文,1998.
    [8]W.Gindl,M.Reifferscheid,K.J.Martinschitz.Reorientation of crystalline and noncrystalline regions in regenerated cellulose fibers and films tested in uniaxial tension.Journal of Polymer Science:Part B:Polymer Physics,2008(4):297-304.
    [9]冯坤.东华大学硕士研究生毕业论文,2006.
    [10]彭顺金.东华大学博士研究生毕业论文,2003.
    [11]C.Michels,B.Kosan.Contribution to dissolusion state of cellulose in aqueous amine oxide characterized by optical and rheological methods.Lenzinger Berichte,2003(8):128-135
    [12]C.Michels,B.Kosan.Lyocell process-material and technological restrictions.Chemical Fibers International,2000(5):556-561.
    [13]D.Cagniant,P.Magri,R.Gruber.Ammoxidation of cellulose-a structural study.Journal of Analytical and Applied Pyrolysis,2002(6):1-23.
    [14]W.Mormann,T.Wagner.Silylation of cellulose with hexamethyl disilazane in liquid ammonia.Carbohydrate Polymers.2000(4):257-262.
    [15]C.Michels,R.Marond,E.Teager.Characteristics of the Amine Oxide Process Developed at the Turning Institute of Textile and Plastics.Fiber Chemistry,1996(2):198-203.
    [16]P.A.Koch.Lyocell Fibers-Alternative regenerated cellulose fibers.Chemical Fibers International,1997(4):298-304.
    [17]王正熙.聚合物红外光谱分析和鉴定.1989.四川:四川大学出版社,45-48.
    [18]杨之礼,蒋听培,王庆瑞等.纤维素与粘胶纤维(下册).1981.北京:纺织工业出版社,177-300.
    [19]彭顺金,邵惠丽,胡学超.氯化铵改性Lyocell纤维的研究—(Ⅱ)氯化铵对Lyocell纤维结构与性能的影响.高分子材料科学与工程,2005(5):22-26.
    [1]H.P.FINK,P.WEIGEL,H.J.PURZ,et al.Structure Formation of Regenerated Cellulose Materials from NMMO-solutions.Progress in Polymer Science,2001(11):1473-1524.
    [2]H.H.ZHANG,H.L.SHAO,X.C.HU.Effect of Heat Treatment on the Structure and Properties of Lyocell Fibers.Journal of Applied Polymer Science,2006(3):1738-1743.
    [3]R.H.MARCHESSAULT,A.SARKO.X-ray Structure of Polysaccharides.Advanced Carbohydrate Chemistry.New York:Academic Press,1967(10):421-483.
    [4]R.H.ATALLA,D.L.VANDERHART.Native cellulose:A Composite of Two Distinct Crystalline Forms.Science,1984(4):283-285.
    [5]D.L.VANDERHART,R.H.ATALLA.Studies of Microstructure in Native Cellulose Using Solid State C-~(13) NMR.Macromolecules,1984(6):1465-1472.
    [6]A.BULEON,H.CHANZY.Single Crystals of Cellulose Ⅱ.Journal Polymer Science:Polymer Physics,1978(10):833-839.
    [7]李之工.纤维素物理化学.1965.北京:中国财政经济出版社,16-19.
    [8]M.R.HUANG,X.G.LI,Thermal Degradation of Cellulose and Cellulose Ester's.Journal of Applied Polymer Science,1998(8):293-304.
    [9]P.H.HERMANS,A.WEIDINGER.Quantitative Investigation of the X-Ray Diffraction Picture of Some Typical Rayon Specimens,Textile Research Journal,1961(6):559-570.
    [10]X.P.HU,Y.HSIEH.Crystalline Structure of Developing Cotton Fibers.Journal of Polymer Science,Part B,1996(2):1451-1459.
    [1]J.Lenz,The Fibrillar Structure of Cellulosic Man-made Fibers Spun from Different Solvent Systems.Journal of Applied Polymer Science.1988(8):1987-2000.
    [2]K.P.Mieck,Contribution to the judgement of fibrillation of cellulose fibers.Chemical Fiber International.1995(45):106-112;
    [3]Z.Wangsun,S.Okubayashi,T.Bechtold.Fibrillation Tendency of Cellulosic Fibers-Part 4.Effects of Alkali Pretreatment of Various Cellulosic Fibers.Carbohydrate Polymers.2005(61):427-433.
    [4]E.Bates,D.Maudm,D.PhiUips et al.Cross-linking agents for the Protection of Lyocell Againsts Fibrillation:Synthesis,Application and Technical Assessment of 2,4-diacrylamidobengene-sulphonic Acid.Color Technology.2004.12(6):293-300.
    [5]李长龙,陈旭炜,李毓陵.Lyocell的原纤化及整理.中国纺织大学学报.1999,4(25):95-98.
    [6]Z.Wangsun,S.Okubayashi,W.Badura et al.Fibrillation Tendency of Cellulosic Fibers.Ⅶ.Combined Effects of Treatments with an Alkali,Crosslinking Agent,and Reactive Dye.Journal of Applied Polymer Science.2006(100):1176-1183.
    [7]C.Potter,D.Dobson.Fibre treatment.US patent 5779737.Issued on July 14,1998.
    [8]Eib1.Markus.Process for the treatment of cellulose fibres and of assemblies made from these fibres.US patent 6022378.Issued on August 2,2000.
    [9]周立明.Lyocell纤维的原纤化.广西纺织科技.1998.4.(27):45-48.
    [10]郭俊敏,邵惠丽,胡学超.用湿摩擦值法评价Lyocell纤维原纤化程度.上海纺织科技.2002(30):51-52.
    [11]E.L Hult,P.T.Larsson.T.Iversen.A comparative CP/MAS13C-NMR study of cellulose structure in spruce wood and kraft pulp.Cellulose.2000(7):35-55.
    [12]E.L.Hult,P.T.Larsson,T.Iversen.Cellulose fibril aggregation-an inherent property of kraft pulps.Polymer.2001(42):3309-3314.
    [13]陈燕.高模低收缩涤纶帘子线的动态力学性能研究.中原工学院学报.2007,6(18):42-45.
    [14]D.Cagniant,P.Magri,R.Gruber.Ammoxidation of cellulose-a structural study.Journal of Analytical and Applied Pyrolysis.2002(65):1-23.
    [15]W.Mormann,T.Wagner.Silylation of cellulose with hexamethyl disilazane in liquid ammonia.Carbohydrate Polymers.2000(43):257-262.
    [16]王正熙.聚合物红外光谱分析和鉴定.1989.四川大学出版社.四川大学,45-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700