用户名: 密码: 验证码:
开敞空间可燃气云爆炸的压力场研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在可燃气体的输送、贮存、加工和使用过程中,如果由于向大气泄漏而形
    成的可燃气体与空气混合物被意外地点燃,就发生气云爆炸。气云爆炸已造成
    了巨大的人员伤亡和财产损失。据统计,在石油化工、塑料、橡胶合成及天然气
    等行业,可燃气云爆炸在事故总数中所占的比例分别高达46%、42%和60%,而
    且单次事故所造成的危害大大高于其它事故。
     弱点火气云爆炸的实验研究基本上是针对某些特定工况的试验结果,未能
    通过归纳总结得出某种规律。工程中主要应用TNT当量法,然而它属于经验型
    模型,仅适用于对远场的粗略估计;在理论上,自相似方法是过度简化了的稳
    态燃烧模型;TNO多能模型虽然比较合理,但应用时还带有很强的主观性;数值模
    拟方法主要对流体力学方程进行求解,化学反应动力学和障碍物附近的湍流方
    程仍是学术界的热点问题。这方面的研究工作还远未完善。
     本文的研究思路是,在理论上,把气云爆燃过程分成两个过程进行考虑:
    一个是可燃气体混合物在燃烧过程中体积膨胀,从而推动外侧空气运动,即燃
    烧过程是空气中压力波传播的推动力,这个过程可以通过对能量方程采用几何
    微元法和能量均匀加入法进行求解;另一个是火焰外侧的压力波传播过程,这
    个过程是一个纯粹的气体动力学问题,可以通过气体动力学方程求解。在实验
    上,利用乙炔-空气为介质进行气云爆炸实验,对无约束开敞空间气云爆炸的压
    力场、气云外平板型障碍物上的压力分布进行较为系统的研究,探讨气云内障
    碍物对爆炸压力的加强作用。实验的目的,其一是通过对实验结果进行整理与
    分析,得到基本规律;其二是对理论计算结果进行验证。论文的主要工作和结
    论如下。
     以半球形气云为研究对象,建立了无约束气云爆炸的物理模型,通过气体
    动力学、热力学和燃烧物理学分析,得到计算气云爆炸压力的数学模型,通过
    对动量方程和质量方程积分的方法,得到了爆炸场的基本计算式为
     建立气云爆炸实验系统,进行了乙炔-空气气云的爆炸实验。在这个过程中,
    主要解决了两个难题。第一,由于气云爆炸实验具有较大的危险性,所以首先
    
    
    要解决安全问题。为此建立了一个四千余平方米的野外气云爆炸实验基地,基
    地内有各种安全防护措施。第二,气云爆炸是个极快的过程,通常在几十毫秒
    内完成,所以对压力测试的要求较高。为此,本文设计了山压力变送器、*D转
    换卡、数据采集卡、计算机和电火花点火装置组成的同步实时测试系统。系统
    的动态响应时间小于千分之一秒,测试精度为0.5级。
     (1)对无约束半球形气云爆炸过程进行了较系统的实验研究。通过对实验
    数掘进行回归处理和方差分析,得到了无约束气云爆炸压力的基本规律
     ^。。丛
     p=A“
     厂
    即爆炸压力与气云半径的平方成正比,与离开半球形气云球心的距离成反比。
     N)迎过几何微元法,利用能量均匀加入模型求解了爆燃过程的能量方程,
    再根据压力波传播过程的质量守恒方程和动量守恒方程的积分结果,编制了无
    约束气云爆炸过程的计算程序.根据计算结果,分析了可燃气云爆炸产生的压
    力场。结果表明,气云直径越大,相同无量纲距离或对比距离处,气云爆炸压
    力越大,影响范围也越广。经实验检验,在本文实验范围内计算结果与实验结
    果的偏差不大于20%。本文计算模型可用于进行更大规模的无约柬气云爆炸压
    力的预测。
     (5)在上述基础上,利用压力波的反射原理,研究气云边界外有平板形隙
    碍物时的爆炸压力分布场,获得平板上压力分布与无约柬气云爆炸压力之间的
    关系
     6邮[_2。
     纫。=(l+cos#;汹尸,+——cos“4,
     八尸+7凡
    讨论了平板形障碍物上的压力分布以及平板布置对爆炸场的影响。
     (6)对气云外界的平板形障碍物与可燃气云爆炸压力的相互作用进行了较
    为系统的实验研究,通过曲线拟合和方差分析获得了平板上的压力分布与气云
    半径、平板距气云中心的距离以及平板上点的坐标之问的关系
     _2
     k—。。JIt.—_.H \““0
     凸D“=All+ COS O.)“
     厂
     (7)气云内部障碍物对气云爆炸强度的影响很复杂,它涉及到障碍物的形
     互且
    
     状、尺寸、位置以及多个障碍物之间的nl互作用等。本文在这方面也做了探讨
     性研究,力求对进一步研究提供基础和思路。利用气体动力学方程组,爿。引入
     障碍物扰动因子,建立了内部有障碍物的气云爆炸压?
During the transportation, storage, processing and using of nammable gases, the
    cloud explosion may hapPen if the mixture of flammable gases and air caused by
    their leakage towards air is accidentally ignited. The cloud explosion has made great
    damage to people and proPerty loss. Statistic data show that the portion of numbers
    of accidents caused by cloud explosion to those of total ones reached as far as 46%,
    42% and 60% in petfoleum, plastics, rubber synthetization and natural gas industry
    respectively. Moreovef, the damage and property loss from such an accident is much
    higher than other industrial accidentS.
    The experimental research on weak ignition cloud explosion fOcused on some
    experimental results under particular circumstances, which is not enough to draw a
    conclusion. On one hand of engineering, mT Equivalency Method, a kind of
    empirical mode1, is limited to make a rough estimation for far field of explosions. On
    the other hand, theoretical research is far from completed. For instances,
    Self Resemblance Method oversimplified the static combustion model. ThO
    Multi-energy Model needs too much subjective judgment during application despite
    its some reasonability Numerical simulation works for solving the equations of fluid
    mechanics, and there are still other problems unanswered such as chemical reaction
    dynaxnics, turbulencc equation near barriers.
    This paPer in theory considered the cloud explosion as two coupling processes.
    One is the flammable gas combustion that causes gas temperature rise and gas
    volume increase, which pushes the air around it fOrward and can be solved by means
    of finite geometrical cell method and even-energy adding method. The other is tl1e
    propagation of pressure wave, which is only a gas dynamics problem and can be
    solved through gas dynamics equations. In exPeriment, a systematical exPerimental
    research on the pressure field of cloud explosion in open space and the pressure
    distribution on plate bAners outSide cloud was conducted. The paper also tried to
    find out the strengthening of barriers to cloud could explosion pressure. The purpose
    of experiment is to gain somo fundamental rules by test data-analysis and rectify the
    theoretical results. The major work and conclusions of present paper are as
    
    
    l. The semi-sphere cloud was aimed to build physical model of unrestricted gas
    cloud explosion. The mathematical model was established through the analysis of
    gas dynamics, thermodynamics and combustion physics. After integrating the
    momentum conservative equation and mass conservative equation the explosion field
    can be calculated as
    n = Icy(E -- I)[2E rs,.= + nn-- 1(E -- I) n.: ] + l: =
    /).,,I - r r (h 2 r
    2. TWo difficulties were overcome during building the gas explosion experimental
    system. Firstly, safety was the prior consideration because of the great danger of
    explosion experiment. Therefore, a new open gas cloud explosion experimental base
    with safety protection equipment was deve1oped. Secondly, concerning that the
    whole explosion process was so rapid that it would complete within dozens of
    milliseconds the explosion pressure synchronically high speed data-collection system
    was specially designed which is consisted of pressure sensors, A/D transformef,
    data-collection tinit, computer and automaticaIly electric-ignition equipment. The
    dynamic responding time of this system was less than 0.00l second and
    measurement precision was in level 0.5.
    3. A systematical experimental research on unrestricted flammab1e gas cloud
    explosion was conducted. The relationship between explosion pressure and the cloud
    radius, the distance from ignition point is gained by regressing the experimentaI data
    and deviation analysis. that is
    AP = A Ai
    r
    4. A new computer progop describing the unrestricted cloud explosion process
    through combining the finite geometry cell method and even-energy adding method
    and integration of mass and momentum conservative equations. The deviation
    
    between com
引文
[1] 蒋运茂译.工业防爆技术(美).北京:劳动人事出版社,1987
    [2] 赵衡阳.气体和粉尘爆炸原理.北京:北京理工大学出版社,1996.2
    [3] 何碧,龙新平,蒋小华.燃料空气炸药爆轰参数的计算.全国空气动力学年会.成都:1999,61-67
    [4] 胡栋,龙属川,吴传谦,孙珠姝,程新路,王春彦.可爆性气体爆炸极限和爆燃转变成爆轰的研究.爆炸与冲击,1989,9(3):266-275
    [5] 洪滔,秦承森.气体—燃料液滴两相系统爆轰的数值模拟.全国空气动力学年会.成都.1999,24-29
    [6] 徐胜利,汤明钧,糜仲春.近地空中气云爆炸波遇地面反射的研究.爆炸与冲击,1996,16(4):298-304
    [7] Lindsted R P and Michels H J. Deflagration to Detonation Transitions in Mixtures of Alkane LNG/LPG Constituents with O_2/N_2. Combustion and Flame, 1988, 72: 63-72
    [8] 袁生学,黄志澄.管内爆燃转爆轰的热力学原理.燃烧科学与技术,1998,4(4):403-409
    [9] Nickolay N Smirnov, Michael V Tyurnikov. Experimental investigation of deflagration to detonation transition in hydrocarbon air gaseous mixtures. Combustion and Flame, 1995, 100: 661-668
    [10] Masri A R, Ibrahim S S, Nehat N and Green A R. Experimental Study of Premixed Flame Propagation over Various Solid Obstructions. Experimental Thermal and Fluid Science, 2000, 21: 109-116
    [11] 高泰荫,黄军涛,李元明,高越,信一兵.CH_4-O_2混合气中爆燃爆震转变的数值模拟.爆炸与冲击,1998,18(4):323-330
    [12] Catoire L, Bassin X, Dupre G, Paillard C. Shock Tube Study of Ignition Delays and Detonation of Gaseous Monomethylhydrazine/Oxygen Mixtures. Combustion and Flame, 1994, 99: 573-580
    [13] Abraham hasson, Michel Avinor and Alexander Burcat. Transition from deflagration to detonation, spark ignition, and detonation characteristics of cthylene-oxygen mixtures in a tube. Combustion and Flame, 1983, 49: 13-26
    
    
    [14] Smimov N N, Panfilov I I. Deflagration to Detonation Transition in Combustible Gas Mixtures. Combustion and flame, 1995, 101: 91-100
    [15] 张德良,李晓冬.可燃性气体爆燃向爆轰转变过程的数值研究初探.全国空气动力学年会.成都.1999,17-23
    [16] 毕明树,李志义,丁信伟,贺匡国.容器内可燃气体爆炸时泄放面积的计算.化工学报,1990,41(4):461-466
    [17] 毕明树,李志义,丁信伟,贺匡国.可燃气体爆炸强度的计算.化工机械,1991,18(4):217-220
    [18] 毕明树,丁信伟,贺匡国.容器容积和长径比对可燃气体爆炸强度的影响.化工机械,1993,20(1):29-32
    [19] 毕明树.容器内化学爆炸时泄放面积设计计算综述.化工机械,1991,18(5):304-306
    [20] HE KUANGGUO, DING XINWEI, BI MINGSHU, LI ZHIYI. A RESEARCH ON THE VIOLENCE AND VENTING OF GASEOUS EXPILOSION. PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON PRESSURE VESSEL TECHNOLOGY. 1988, 9, 1541-1547
    [21] 毕明树.容器内超压时的安全泄放量计算.大连化工,1991,(4):38-41
    [22] 毕明树,王淑兰,丁信伟.可燃气云爆炸强度计算综述.化工机械,1999,26(6):357-359
    [23] 毕明树,王淑兰,张凤玉.我国防爆泄压技术进展.锅炉压力容器安全技术,1996,(3):1-4
    [24] DING XINWEI, BI MINGSHU, WANG SHULAN. THE MAXIMUM PRESSURE AND RATE OF PRESSURE RISE OF FLAMMABLE GAS EXPLOSION IN CLOSED VESSELS. CHINA BOILER AND PRESSURE VESSEL SAFETY, 1996, 3: 28-35
    [25] HE KUANGGUO, DING XINWEI, BI MINGSHU, LI ZHIYI. THE DYNAMIC STRENGTH AND VENTING CHARACIERISTICS OF BURSTING DISKS UNDER EXPLOSION. SHENYANG INTEMATIONAL SYMPOSIUM ON DUST EXPLOSIONS, 1987, 9. 421-433
    
    
    [26] 王淑兰,毕明树,丁信伟.球形容器内可燃气体爆燃泄放超压的数值计算.中国锅炉压力容器安全,1999:8-10
    [27] 王淑兰,毕明树,丁信伟.气液平衡条件下压力容器泄放过程计算.锅炉压力容器安全技术,1998,(1):40-42
    [28] 王淑兰,毕明树,丁信伟.化学爆炸时化工设备的安全泄放设计.小国锅炉压力容器安全,1998,14(2):27-28
    [29] David C Bull. Review of Large-Scale Explosion Experiments. Plant/operations Progress, 1991, 11(1): 33-40
    [30] Hughes K J, Tomlin A S, Hampartsoumian E, Immo W, Zsely I G, Ujvari M, Turanyi T, Clague A R, and Pilling M J. An Investigation of Important Gas-Phase Reactions of Nitrogenous Species from the Simulation of Experimental Measurements in Combustion Systems. Combustion And Flame, 2001, 124: 573-589
    [31] 林柏泉等.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响.中国矿业大学学报,1999,28(2)
    [32] Leyer J C and Desboders D. Unconfined Deflagrative Explosions Without Turbulence: Experiment and Model. Journal of Hazardous Materials, 1993, 34: 123-150
    [33] 丁信伟,李志义,李应博.可燃气体云爆燃实验.化工学报,1999,50(4):558-562
    [34] 林柏泉,陈伯辉.瓦斯爆炸过程中厚度的实验室测定及其分析.中国矿业大学学报,2000,29(1):45-47
    [35] Munday G. Unconfined vapor-cloud explosions. The Chemical Engineer, 1976, 4: 278-281
    [36] Roger A Strehlow, Lester D Savage, and Gary M Vance. On the Measurement of Energy Release Rates in Vapor Cloud Explosions. Combustion Science and Technology, 1973, 6: 307-312
    
    
    [37] Mercx W P M, van den Berg A C, Hayhurst C J, Robertson N J, Moran K C. Developments in vapor cloud explosion blast modeling. Journal of Hazardous Materials, 2000, 71: 301-319
    [38] Christiansen E W, Law C K, and Sung C J. Steady and Pulsating Propagation and Extinction of Rich Hydrogen/Air Flames at Elevated Pressures. Combustion And Flame, 2001, 124: 35-49
    [39] Tang M J and Baker Q A. Comparison of Blast Curves from Vapor Cloud Explosions. Journal of Loss Prevention in the Process Industries, 2000, 13: 433-438
    [40] Van den Berg A C, Lannoy A. Methods for Vapor Cloud Explosion Blast Modeling. Journal Hazardous Materials, 1993, 34: 151-171
    [41] Baker WE 等著,张国顺等译。爆炸危险性及其评估。北京:群众出版社,1988
    [42] Berg A C Van den et all. Guidance for the Application of the Multi-Energy Method. The 2nd International Specialist Meeting on Fuel-Air Explosions, Bergen, Norway: June 27, 1996
    [43] Mercx WPM, Berg A C van den, H G. Modeling and Experimental Research into Gas Explosions, Overall Final report for CEC contact: STEP-CT-0111, 1994
    [44] Quentin A Baker, Ming Jun Tang, Ephraim A Scheier, Gustavo J Silva. Vapor cloud explosion analysis. Process Safety Progress, 1996, 15 (2) : 106-109
    [45] Kwon O C, and Faeth G M. Flame/Stretch Interactions of Premixed Hydrogen-Fueled Flames: Measurements and Predictions. Combustion And Flame, 2001, 124: 590-610
    [46] Librovich B V, Makhvilaze G M, Poberts J P, Yakush S E. Numerical analysis of laminar combustion of fuel gas clouds. Combustion and Flames, 1999, 118: 669-683
    [47] Dunn Rankin D, Mccann M A. Overpressures from nondetonating, baffle-accelerated turbulent flames in tubes. Combustion and Flames, 2000, 120: 504-514
    
    
    
    [48] Kuhl A L, Kamel M M, Oppenheim A K. Pressure Waves Generated by Steady Flames. 14th International Symposium On Combustion, 1973: 1201-1215
    [49] 徐胜利,汤明钧,糜仲春。低速定态传播火焰在可燃云雾中形成的压力波。南京理工大学学报,1995, 19(1) : 7-12
    [50] Roger A Strehlow. Blast waves generated by constant velocity flames: a simplified approach. Combustion and Flame, 1975, 24: 257-261
    [51] Guirao C M, Bach G G, Lee J H. Pressure waves generated by spherical flames. Combustion and Flames, 1979, 35: 297-310
    [52] Mercx W P M, Van den Berg A C. The Explosion Blast Prediction Model in the Revised "Yellow Book" . The 31st Annual Loss Prevention Meeting. Houston: March 9-13, 1997: 1-18
    [53] Pfortner H, Schnerder H. Progress Astronautics and Aeronautics, 1987, 114: 488-498
    [54] Layer J C, et all. Paper Presented in she 15th International symposium on combustion: 1975. 645-653
    [55] Harrison A J, Eyre J A. The Effect of Obstacle Arrays on the Combustion of Large Premixed Gas/Air Clouds. Combustion Science and Technology, 1987, 52: 121-137
    [56] Van Wingerden C J M. Experimental Investigation into the Strength of Blast Waves Generated by Vapor Cloud Explosions in Congested Areas. 6th Inther Symp. Loss. Prevention and Safety Promotion in the Process Ind., Oslo, Norway: 1998
    [57] Van den Berg A C. The Multi-Energy Method-A Framework for Vapor Cloud Explosion Blast Prediction. Journal of Hazardous Materials, 1985, 12: 1-10
    [58] Van den Berg A C. Evaluation of Consequence Models for Gas Explosions and Blast Propagation. The 8th Inter. Symp. on Loss Prev. and Safty Promotion in the Proc.Industries. Antwerp, Belgium: June 6-9, 1995. 1-69
    [59] Yuan Shengxue. On Supersonic Conbustion. Science in China Series A, 1999, 42(2) : 171-179
    
    
    
    [60] Henry O, et all. Case Study Demonstrating Benefit of Analyzing Blast Dynamics. International Conference and Workshop on Process Safety Management and Inherently Safer Processes. Florida: 1996, Oct. 8-11
    [61] Popat N R, Catlin C A, Arntzen B J, Lindstedt R P, Hjertager B H, Solberg T, Saeter O, Van den Berg A C. Investigation to Improve and Assess the Accuracy of Computational Fluid Dynamic Based Explosion Models. Journal of Hazardous Materials, 1996, 45: 1-25
    [62] 毕明树,王淑兰,丁信伟.可燃气云爆炸强度计算综述.化工机械,1999,26(6):357-359
    [63] AutoReagas theory manual: The Interactive Software for Reactive Gas Dynamics and Blast Analysis. Century Dynamics Inc. and TNO, 1994: 1-25
    [64] Bdzil J B, Kapila A K. Shock-to-detonation transition: a model problem. Phy. Fluids, 1992, A4(2): 409-418
    [65] 金辉,刘宪德,.魏育民,邱徐文.爆轰波通过惰性气层后再点火的实验研究.全国空气动力学年会.成都:1999:1-6
    [66] 刘宪德,邱徐文,魏育民,金辉,苏加宏.爆轰波在化学能非均匀分布的可燃气体混合物中的传播.全国空气动力学年会.成都:1999:1-9
    [67] 魏育民,金辉,苏加宏,刘宪德.管内可燃气体爆炸泻压过程中爆炸波的传播.全国空气动力学年会.成都:1999:1-6
    [68] Mercx Ir W P M. Protection Measures for Gas cloud Explosions on Offshore Platforms. EuropEX-International Seminar. The Netherlands: TNO Prins Maurits Laboratorium, March 1996. 1-12
    [69] Mercx W P M, Johnson D M, Puttock J. Validation of Scaling Techniques for Experimental Vapour Cloud Explosion Investigations. AIChE Loss Prevention Symposium. Atlanta, Georgia, USA: 1994, April 17-21. 1-20
    [70] Van den Berg A C, The H G, Mercx W P M, Mouilleau Y, Hayhurst C J. Offshore Structural Design-hazards, Safety and Engineering. International conference and exhibition. Forte Crest Bloomsbury Hotel, London WC1, UK: 15-16 November, 1994
    [71] Corr R B, Tam V H Y. Gas Explosion Generated Drag Loads in Offshore
    
     Installations. Journal of Loss Prevention in Process Industries, 1998, 11: 43-48
    [72] Puttock J S, Yardley M R, Cresswell T M. Prediction of vapor cloud explosion using the Scope model. Journal of Loss Prevention in Process Industries, 2000, 13: 419-431
    [73] Harrison A J and Eyre J A. "External Explosions" as a Result Explosion Venting. Combustion Sci. and Tech., 1987, 52: 91-106
    [74] Shetty N K, Guides Soares C, Thoft-Christensen P, Jensen F M. Fire safety assessment and optimal design of passive fire protection for offshore structures. Reliability engineering and system safety, 1998, 61: 139-149
    [75] Tarek Echekki, Ferziger J H. Studies of Curvature Effects on Laminar Premixed Flames: Stationary Cylindrical Flames. Combustion Sci. and Tech., 1993, 90: 231-252
    [76] Jiang H, MccomiskeyT, QianY, JeongY I, RheeK T, Kent J C. A New High-Speed Spectral Infrared Imaging Device Applied for Flame Studies. Combustion Sci. and Tech., 1993, 90: 341-356
    [77] Benteftifa C A, Becht C. Improve Building Performance to Survive Vapor-Cloud Explosions. Hydrocarbon processing, 1995, 10: 85-86
    [78] 王波,张捷宇,贺友多。层流预混火焰的数学模型及数值计算。包头钢铁学院学报,1999,18(1) :21-24
    [79] Shigeharu Ohyagi, Teruo Yoshihashi, Yasuo Harigaya. A study on initiation processes of gaseous detonation in Methane/Oxygen mixtures. JSME International Journal, series II, 1989, 32(1) : 115-120
    [80] Catlin C A. Scale Effects on the External Combustion Caused by Venting of a Confined Explosion. Combustion and Flame, 1991, 83: 399-411
    [81] Faisal I Khan, Abbasi S A. major accidents in process industries and an analysis of causes and consequences. Journal of Loss Prevention in Process Industries, 1999, 12:361-378
    [82] Dag Bjerketvedt, Jan Roar Bakke, Kees van Wingerden. Gas Explosion Handbook. Journal of Hazardous Materials, 1997, 52: 1-150
    
    
    [83] 李翼祺,马素贞.爆炸力学.北京:科学出版社,1992
    [84] Eckhoff Rolf K. Design of electrical equipment for areas containing combustible dust why dust standards cannot be extensively harmonised with gas standards. Journal of Loss Prevention in Process Industries, 2000, 13: 201-208
    [85] Bjorn H Hjertager. Simulation of Transient Compressible Turbulent Reactive Flows. Combustion Science and Technology, 1982, 27: 159-170
    [86] Vincenzo Tufano, Michele Maremonti, Ernesto Salzano, Gennaro Russo. Simulation of VCEs by CFD modeling: an analysis of sensitivity, Journal of Loss Prevention in the Prcess Industries, 1998, 11: 169-175
    [87] Huld T, Peter G, Stadtke H. Numerical simulation of explosion phenomena in industrial environments. Journal of Hazardous materials, 1996, 46: 185-195
    [88] Lindstedt R P, Sakthitharan V. Time Resolved Velocity and Turbulence Measurements in Turbulent Gaseous Explosions. Combustion and Flame, 1998, 114: 469-483
    [89] Weber H J, Mack A, and Roth P. Combustion and Pressure Ware Interaction in Enclosed Mixtures Initiated by Temperature Nonuniformities. Combustion and Flame, 1994, 97: 281-295
    [90] Philip R, Cleaver, Clive G. Robinson. An analysis of the mechanisms of overpressure generation in vapor cloud explosions. Journal of Hazardous materials, 1996, 45: 27-44
    [91] Heimerl J M, Coffee T P. The Detailed Modeling of Premixed, Laminar Steady-State Flames. Ⅰ. Ozone. Combustion and Flame, 1980, 39: 301-315
    [92] 丁云,丁大玉,汤明均.非理想爆源爆炸波的数值计算.爆炸与冲击,1995,15(4):289-299
    [93] Dorofeev S B, Bezmelnitsin A V, Sidorov V P. Brief Communication: Transition to Detonation in Vented Hydrogen-Air Explosions. Combustion and Flame, 1995, 103: 243-246
    [94] Raju M S, Strehlow R A. Numberacal Investigations of Nonideal explosions. Journal of Hazardous materials, 1984, 9: 265-290
    [95] Phillip Dagaut, Michel Cathonnet, Margaueite Mcguonness, John M Diffusion Flames. Combustion and Flame, 1995, 102: 129-160
    
     Simmie. The ignition of oxetane in shock waves and oxidation in a Jet-stired reaction: an experimental and kinetic modeling study. Combustion and Flame, 1997, 11: 409-417
    [96] Pickles J H and Bittlistion S H. Unconfined Vapor Cloud Explosions-The Asymmetrical Blast from an Elongated Cloud. Combustion and Flame, 1983, 51: 45-53
    [97] Deshaies B and Leyer J C. Flow Field Induced by Unconfmed Spherical Accelerating Flames. Combustion and Flame, 1981, 40: 141-153
    [98] Shin Tuen Lee and Chien Hsiung Tsai. Numerical Investigation of Steady Laminar Flame Propagation in a Circular Tube. Combustion and Flame, 1994, 99: 484-490
    [99] Buckmaster J, Smooke M, Giovangigli V. Analytical and numerical modeling of flame-balls in hydrogen-air mixtures. Combustion and Flame, 1993, 94: 113-124
    [100] Harold L Brode. Numerical Solutions of Spherical Blast Waves. Journal of Applied Physics, 1995, 26(6) : 766-775
    [101] Beshara F B A . Modeling of blast loading on aboveground structures-I. General Phenomenology and External Blast. Computers and Structure, 1994, 51 (5) , 585-596
    [102] Bull DC, Elsworth J E, Shuff P J. Detonation Cell Structures in Fuel/Air Mixtures. Combustion and Flame, 1982, 45: 7-22
    [103] Buckmaster J, Joulin G, Ronney P. The Structure and Stability of Nonadiabatic Flames Balls. Combustion and Flame, 1990, 79: 381-392
    [104] Gasser I, Szmolyan P. Detonation and Deflagration Waves with Multistep Reaction Schemes. SIAMJ. Appl. Math., 1995, 55(1) : 175-191
    [105] Chan C K. Collision of a Shock Wave with Obstacles in Combustible Mixture. Combustion and Flame, 1995, 100: 341-348
    [106] Kuldeep Prasad. Interaction of Pressure Perturbations with Premixed Flames. Combustion and Flame, 1994, 97: 173-200
    [107] Leung K M and Lindstedt R P. Detailed Kinetic Modeling of C_1C_3 Alkane
    
    
    [108] Budkmaster J, Joulin G. Radial Propagation of Premixed Flames and Behavior. Combustion and Flame, 1989, 78: 275-286
    [109] Jones W P and Lindstedt R P. Global Reaction Schemes for Hydrocarbon Combustion. Combustion and Flame, 1988, 73: 223-249
    [110] Zeldovich Ya B. Regime Classification of an Exothermic Reaction with Nonuniform Initial Conditions. Combustion and Flame, 1980, 39: 211-214
    [111] 李守巨,孟繁理,吴英.爆破作业引起井下瓦斯爆炸事故原因及预防措施.爆破器材,1997,26(3):30-32
    [112] 陈志华,范宝春,刘庆明,李鸿志.大型管中两相爆炸现象的实验研究.流体力学实验和测量,1998,12(3):44-49
    [113] 彭金华,汤明钧.非理想爆源产生的爆炸场数值模拟.爆炸与冲击,1997,11(4):289-296
    [114] 张忠珍,王继海.k—D—α—B模型和Richtmyer-Meshkov不稳定性的数值模拟.爆炸与冲击,1997,17(3):199-206
    [115] Kravchik T, Sher E. Numerical Modeling of Spark Ignition and Flame Initiation in a Quiescent Methane-Air Mixture. Combustion and Flame, 1994, 99: 635-643
    [116] 章冠人.冲击波基础知识.爆炸与冲击,1983,3(2):90-96
    [117] (英)凯恩·顾根(Kith Gugan)(著).孙方震,侯耀先(译).容器外可燃蒸气云爆炸.北京:化学工业出版社,1986
    [118] (日)安全工学协会.陈汉亮(译).爆炸.北京:冶金部安全教育中心,1986
    [119] (美)Kenneth K Kuo(著).陈义良,张孝春,孙慈,季鹤鸣编译.燃烧原理.北京:航空工业出版社,1992
    [120] 周力行.燃烧理论和化学流体力学.北京:科学出版社,1986
    [121] 范维澄,万跃鹏.流动及燃烧的模型与计算,合肥:中国科学技术大学出版社,1992
    [122] 水鸿寿.一维流体力学差分方法.北京:国防工业出版社,1998
    [123] 刘顺隆,郑群.计算流体力学.哈尔滨:哈尔滨工程大学出版社,1998
    [124] 王应时,范维澄,周力行等.燃烧过程数值计算.北京:科学出版社,1986
    
    
    [125] Leyer J C. An Experimental Study of Pressure Fields by Exploding Cylindrical Clouds. Combustion and Flame, 1982, 48: 251-263
    [126] Smirnov N N, Panfilov II, Tyurnikov M V, Berdyuguin A G, Dushin V R, Presnyakov Yu P. Theoretical and explosion transition of combustion to detonation transition in chemically active gas mixtures in closed vessels. Journal of Hazardous, 1997, 53: 195-211
    [127] StarkeR, Roth P. An Experimental Investigation of Flame Behavior During Explosions in Cylindrical Enclosures with Obstacles. Combustion and Flame, 1989, 75: 111-122
    [128] Buckmaster J D, Joulin G. Influence of Boundary-induced Losses On the Structure and Dynamics of Flame-Balls. Combustion Science and Technology, 1993, 89: 57-69
    [129] KhokhloV A M, Oran E S. Numerical Simulation of Deflagration-to-Detonation Transition: The Role of Shock-Flame Interactions in Turbulent Flames. Combustion and Flame, 1999, 117: 323-339
    [130] Ponizy B, Leyer J C. Flame Dynamics in a Vented Vessel Connected to a Duct: 1. Mechanism of Vessel-Duct Interaction. Combustion and Flame, 1999, 116: 259-271
    [131] Kwon S, Wu MS, Driscoll J F, Faeth G M. Flame Surface Properties of Premixed Flames in Isotropic Turbulence: Measurements and Numerical Simulations. Combustion and Flame, 1992, 88: 221-238
    [132] Yutaka Tanaka. Numerical Simulations for Combustion of Quiescent and Turbulent Mixtures in Confined Vessels. Combustion and Flame, 1989, 75: 123-138
    [133] Michael Epstein, Lan Swift, Hans K Fauske. Estimation of Peak Pressure for Sonic-Vented Hydrocarbon Explosions in Spherical Vessels. Combustion and Flame, 1986, 66: 1-8
    [134] Librovich B V, Makhviladze G M, Roberts JP, Yakush S E. Numerical Analysis of Combustion of Fuel Gas Clouds. Combustion and Flame, 1999, 118: 669-683
    
    
    
    [135] Fendell F E, Bush W E, Mitchell J A, Fink IV S F. Diffusion-Flame Burning of Fuel-Vapor Pockets in Air. Combustion and Flame, 1994, 98: 180-196
    [136] Sundararajan R, Jain S R. A Simple Method of the Detonation Velocity from Chemical Composition of Organic Explosives. Combustion and Flame, 1982, 45: 47-52
    [137] Lindstedt R P, Michels H J. Deflagration to Detonations Transitions and Strong Deflagrations in Alkane and Alkene Air Mixtures. Combustion and Flame, 1989, 76: 169-181
    [138] Mccann D P J, Thomas G O, Edwards D H. Gasdynamics of Vented Explosions Parts I: Experimental Studies. Combustion and Flame, 1985, 59: 233-250
    [139] Mccann D P J, Thomas G 0, Edwards D H. Gasdynamics of Vented Explosions Parts II: One-Dimensional Wave Interaction Model. Combustion and Flame, 1985, 60: 63-70
    [140] Cooper M G, Fairweather M, Tite J P. On the Mechanisms of Pressure Generation in Vented Explosions. Combustion and Flame, 1986, 65: 1-14
    [141] Paolo Canu, Renato Rota, Sergio Carra. Vented Gas Deflagrations a Detailed Mathematical Model Tuned on a Large Set of Experimental Data. Combustion and Flame, 1990, 80: 49-64
    [142] Renato Rota, Paolo Canu, Sergio Carra. Vented Gas Deflagration Modeling: A Simplified Approach. Combustion and Flame, 1991, 85: 319-330
    [143] Derek Bradley, Alan Mitcheson. The Venting of Gaseous Explosions in Spherical Vessels. I-Theory. Combustion and Flame, 1978, 32: 221-236
    [144] Derek Bradley, Alan Mitcheson. The Venting of Gaseous Explosions in Spherical Vessels. I I-Theory and Experiment. Combustion and Flame, 1978, 32: 237-255
    [145] Fairweather M, Vasey M W. A mathematical model for the prediction of overpressures generated in totally confined and vented explosions. 9th
    
    International Symposium On Combustion/The Combustion Institute, 1982: 645-653
    [146] 姚海霞,范宝春,李鸿志.障碍物诱导的湍流加速火焰流场的数值模拟.南京理工大学学报,1999,23(2):109-112
    [147] 郭长铭,李剑.爆轰波在阻尼管道中声吸收的实验研究.爆炸与冲击,2000,20(4):289-295
    [148] Nettleton M A. Pressure as a Function of Time and Distance in a Vented Vessel. Combustion and Flame, 1975, 24: 65-77
    [149] Chippett S. Modeling of Vented Defiagrations. Combustion and Flame, 1984, 55: 127-140
    [150] 郭长铭,张德良,谢巍.气相爆轰波在障碍物上Mach反射的实验验证.实验力学,2000,15(3):296-305
    [151] 孙珠姝,李常青,张寿齐,赵玉华,胡栋,王永国,朱连轩.利用多种光谱技术研究二叠氮丙烷冲击点火特征.全国空气动力学年会,成都:1999,11-16
    [152] 王宝兴,李振彦.可燃气体爆炸泄压过程中声动不稳定燃烧压力峰减弱方法的研究.爆炸与冲击,1989,9(2):130-136
    [153] 郑波,胡栋,丁儆.铝粉尘激波点火的实验研究.爆炸与冲击,1997,17(2):174-181
    [154] 徐胜利,汤明钧,糜仲春.稳定传播火焰在可燃云雾中产生的压力波.燃烧科学与技术,1995,1(2):176-183
    [155] 张发兴.炸药爆破冲击波压力的测量.爆炸与冲击,1983,3(1):66-68
    [156] 刘庆明,范宝春,李鸿志.两相介质中火焰诱导激波现象的研究.爆炸与冲击,1997,17(4):311-317
    [157] 王德生,韩长生,石功勋,马松合,丁宝贤,孙学林.爆炸冲击载荷作用下球、柱壳体连接方式研究.全国空气动力学年会.成都:1999,152-157
    [158] Phylaktou H, Andrews G E. The Acceleration of Flamc Propagation in a Tube by an Obstacle. Combustion and Flame, 1991, 85: 363-379
    [159] 郭长铭,张德良,谢巍.气相爆轰波在障碍物上Mach反射后流场的分析.中国科技大学学报,2000,30(6):692-685
    
    
    [160] 郭长铭,陈志刚。多孔钢板对气相爆轰波传播影响的实验研究。实验力学,。2000, 15(4) :398-407
    [161] Ritsu Dobashi . Experimental study on gas explosion behavior in enclosure. Journal Loss Prevention Process Industry, 1997, 10(2) : 83-89
    [162] Detlef Markus, Michael Spilling, Michael Beyer, Uwe Klausmeyer. Development of a Numerical Simulation of Explosions inside Containments. Chemical Engineer Technology, 1999, 22(1) : 41-44
    [163] Haruhiko Itagaki, Atsumi Miyake, Terushige Ogawa. Prediction of the relief of gas explosion in a tubular vessel by venting using a mathematical model. Journal Loss Prevention Process Industry, 1990, 3: 365-369
    [164] Giglio M . Spherical vessel subjected to explosive detonation loading. Int. J. Pres. Ves. & Piping, 1997, 74: 83-88
    [165] Howard W B, Russell W W. A procedure for designing gas combustion venting systems. Proceedings of symposium on chemical process hazards with special reference to plant design, 1974: 179-195
    [166] Makhviladze G M, Rogatykh D I. Nonuniformities in initial temperature and concentration as a cause of explosive chemical reactions in combustible gases. Combustion and Flame, 1991, 87: 347-356
    [167] By G Munday. The calculation of venting areas for pressure relief of explosions in vessels. 2~(nd) symposium on chemical process hazards with special reference to plant design, 1963: 46-54
    [168] Zalosh R G. Gas explosion tests in room-size vented enclosures. Journal Loss Prevention Process Industry, 1979, 13: 98-110
    [169] John C Cummings, John HS Lee, Allen L Camp, Kenneth D Marx. Analysis of combustion in closed or vented rooms and vessels. Plant/Operations Progress, 1984, 3(4) : 239-247
    [170] Toshisuke Hirano. Gas explosion processes in enclosures. Plant/Operations Progress, 1984, 3(4) : 247-254
    [171] Ian Swift. Venting deflagrations-theory and practice. Plant/Operations Progress, 1984, 3(2) : 89-93
    
    
    
    [172] 丁光骧.瓦斯热激波管热力动力问题和热力参数计算.煤炭学报,1999,24(2):155-157
    [173] Chappell W G. Pressure/time diagram for explosion vented space. Journal Loss Prevention Process Industry, 1977, 11: 76-86
    [174] Ian Swift. Designing explosion vents easily and accurately. Chemical Engineering/Appil, 1988, 11: 65-67
    [175] Mercx W P M, Van den Berg A C, The H G. Current Research at TNO on Vapor Explosion Modeling. International Conference and exhibition on safety, health and loss prevention in the oil, chemical and process industries, February 15-19, 1993
    [176] Guangping Zhen, Wolfgang Leuckl. Effects of ignitors and turbulence on the dust explosion. Journal Loss Prevention Process Industry, 1997, 10(5-6): 317-324
    [177] Lars Kjaldman, Risto Huhtanen. Numerical Simulation of Vapor Cloud and Dust Explosions. Technical research center of finland(vtt), nuclear engineering laboratory. 1985, 48
    [178] Lars Kjaldman, Risto Huhtanen. Simulation of flame acceleration in unconfined vapor cloud explosion. Technical research center of finland(VTT), nuclear engineering laboratory. 1985, 60: 1-53
    [179] 林柏泉,张仁贵,吕恒宏.瓦斯爆炸过程中火焰传播规律及其加速机理的研究.煤炭学报,1999,24(1):56-59
    [180] 向永,韩敦信,黄亨建,陈启珍.液体燃料气化爆炸特性研究.成都:中国工程物理研究院化工材料研究所.1999,74-76
    [181] 向永,陈启珍,韩敦信,黄亨建,液体燃料云雾爆轰及作用的试验研究.成都:中国工程物理研究院化工材料研究所.1999,68-73
    [182] Derek Bradley, Laws M, Scott M J, Mushi E M J. Afterburning in spherical premixed turbulent explosions. Combustion and Flame, 1994, 99: 581-590
    [183] 张连玉,汪令羽,苗瑞生.爆炸气体动力学基础.北京:北京工业学院出版社,1987 ··

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700