激光腐蚀/刻蚀技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光诱导液相腐蚀是利用激光在单色性、方向性、高亮度上的独特优势,以激光对材料的光子效应和热效应为基础,辅助材料的液相腐蚀进程,从而满足材料的刻蚀需要。激光诱导液相腐蚀与普通化学腐蚀相比,可以有效地消除晶体取向影响,制作出更加多样化的腐蚀图形;与激光诱导气相腐蚀相比,其工艺条件更加容易实现,操作更加简单;与干法离子刻蚀相比,对基片无离子损伤,过度腐蚀容易控制,成本低。正因如此,激光诱导液相腐蚀技术逐渐成为国内外学者研究的热点之一。因影响半导体激光诱导液相腐蚀效果的因素很多,要得到理想的腐蚀图样以及监控腐蚀进程有着很大的技术难度,至今没有得到有效解决。
     本文的工作就是围绕激光诱导液相腐蚀技术而开展的,主要的研究结果与创新之处如下:
     1)以激光诱导液相腐蚀技术为主线,以实现其应用为最终目的,深入开展基本原理、实时监测、加工工艺和器件应用四个层面的研究,搭建有效的激光诱导液相腐蚀研究体系。
     激光诱导液相腐蚀是典型的交叉学科技术,它以激光技术为基础,涉及到包括化学、材料等众多领域,知识背景复杂,使得现阶段激光诱导液相腐蚀的基本原理、加工工艺水平、实时监控以及实际应用等方面均存在急待解决的问题。因各个层面之间互相关联,独立研究很难达到推动实际应用的目的,本论文选择以搭建激光诱导液相腐蚀体系为切入点,开展广泛而深入的研究,成为本论文的主要特色之一。
     2)提出了利用红外热像实时监测,系统研究了激光诱导液相腐蚀进程中的腐蚀溶液的热环境分布、变化等特征,使温度这一影响激光诱导液相腐蚀的重要因素得以有效表征。
     温度是影响化学反应进程的重要因素之一。在激光诱导液相腐蚀的进程中,激光、化学反应热等因素均对反应的实际温度有很大的影响,加之热对流、热传导、热辐射等因素的存在,使得深入了解激光诱导液相腐蚀的热环境、分布特征成为难题。本论文提出利用红外热像实时监测,将温度差异引起的热辐射能转化为相应的红外可见图像,记录、储存并进行处理分析,获得需要的监测结果,并积极探索腐蚀进程、腐蚀速率、粗糙度等与红外热图像之间的内在联系。
     3)提出了获得材料反应启动时长(刻蚀材料与腐蚀溶液从开始接触到腐蚀开始的时间间隔)的测量方法,并对不同材料、不同腐蚀液浓度下的化学反应启动时长进行了实验研究,获得了有价值的实验结果。
     不断提高刻蚀速率,被普遍认为是湿法刻蚀技术持续发展的根本所在,因为,与干法刻蚀技术相比,只有不断提高刻蚀速率,才能克服横向腐蚀等缺陷,进一步突出其应用面广、成本低、选择腐蚀性能好等优势。随着刻蚀速率的不断提高,对时间的控制精度要求也越来越高,化学反应启动时长的存在,对快速刻蚀的时间控制而言,有着较大影响,已经不容忽视。但至今仍缺乏有效的技术手段对反应启动时长进行测定,往往对其进行大致估计或完全忽略,这一缺失,将最终制约快速刻蚀技术的进一步发展。本论文从化学反应过程伴随热生成这一现象,在对材料表面腐蚀液滴及腐蚀液膜红外辐射特性深入研究的基础上,利用红外热像实时监测系统,对竖直材料表面滑动液滴残留线形液膜进行红外灰度实时采集,从中成功获得了反应启动时长的相关信息。
     4)提出了包括抗蚀膜掩蔽法、次序选择腐蚀法、电极腐蚀法和两步腐蚀法在内的激光辅助液相腐蚀系列方法,并通过对加工方法的选择,实现了在不同材料刻蚀上的成功应用,取得了较理想的刻蚀效果。
     工艺技术研究是决定激光诱导液相腐蚀实际应用效果的关键环节之一。本论文以大量的实验研究为基础,并结合理论分析,最终建立了以抗蚀膜掩蔽法、次序选择腐蚀法、电极腐蚀法和两步腐蚀法为主的激光辅助液相腐蚀系列方法。抗蚀膜掩蔽法是在基片表面不需要腐蚀的区域用抗蚀膜覆盖,激光照射在无抗蚀膜区域,对基片进行腐蚀;电极腐蚀法是通过外加电压在溶液中形成腐蚀电流,促使中间离子产物脱离基片表面;次序选择腐蚀法是针对混合溶剂的使用先后顺序进行选择;两步腐蚀法是利用材料不同方向上刻蚀速度的差异,延长或缩短相应的刻蚀时间。在实际的刻蚀工艺中,可根据不同的需求,确定一种或多种工艺方法,本论文为阐述需要,对各种工艺进行独立分析。经理论分析和实验验证,以四种工艺为基础的系列方法,可以满足绝大多数刻蚀需要并取得较理想的刻蚀效果。
     5)以半导体激光诱导液相腐蚀技术为工艺基础,提出并设计了一种满足全方位自对准的圆孔型探测器;同样,以高温超导薄膜的激光诱导液相腐蚀工艺为基础,提出、设计、制作并测试了一种光控高温超导衰减器。
     激光诱导液相腐蚀在器件制作上的应用及其性能研究有着重要意义。本论文结合器件实际应用背景的需要,发挥激光诱导液相腐蚀技术的优势,提出了一种满足全方位自对准的圆孔型探测器,以及一种实现精确信号衰减的光控高温超导衰减器。
     据我所知,在国内、外文献中,均未见有关材料反应启动时长红外测量方法、液层下材料表面粗糙度表征、圆孔型探测器、激光腐蚀系统工艺方法、光控高温超导衰减器、激光化学腐蚀热环境监测等内容的报道。
The unique superiority of laser such as monochromaticity, directivity and high brightness are used in Laser assisted wet chemical etching (LAWE). Taken the laser to the material photon effect and the thermal reaction as the foundation, this technology can assist in the material aqueous etching process,thus satisfies the need of material etching. There are the following advantages with LAWE technology. First, compared with general chemical etching, the influence of crystal orientation can be eliminated effectively and the diverser etched figure is manufactured by LAWE. Secondly, it's much easier to realize the process conditions and simpler to operate than Laser introduced gaseous etching. Furthermore, compared with Dry ion etching, there is no ion damage to the substrate, the excessive etching is easier to control and the cost is low. So LAWE technology has become one of the world study focuses gradually. Because of many factors that influence the effect of the semiconductor Laser Aqueous Etching, it's very difficult to obtain the ideal etched figure and monitor the etching process.So far these problems have not been solved.
     This dissertation focuses on the Laser induced aqueous etching technology. The main research results and important contributions are as follows:
     1)Mainly based on the LAWE technology, to realize its application, the principle, the process real-time monitoring,processing and device application are researched. The LAWE study system is established effectively.
     Based on laser technology, LAWE is a typical interdisciplinary. Its content ranges from chemistry to material and many other fields. With the complex background, many problems related to the practical application(involving principle,processing level and process monitoring) press for solution. Because every aspect mentioned above correlates.The establishment of LAWE system is an important starting point in the dissertation. The extensive and in-depth research covering a wide range and requiring strong innovative capacity is conducted.
     2) The infrared thermal imaging method is used in real-time monitoring. The thermal environment distribution of the etching solvent in the LAWE process is studied systematically. So the important factor temperature which affects LAWE is characterized.
     The temperature is an important consideration in the chemical reaction. In the LAWE process, laser, chemical reaction heat and other factors all have a great influence on practical temperature. Additionally, thermal convection, heat conduction and thermal radiation are also taken into account. Using infrared thermal imaging for the real-time monitoring is proposed by the article. Thermal radiation caused by the temperature difference is converted into infrared visible image. With recording and processing, required monitoring results are obtained. The interrelationships between the process, rate and the surface roughness of etching process and infrared thermal image are explored.
     3)The measuring method to obtain the material reaction starting time length(it takes a certain period time to react between the material and etching solution from contact to etching)is put forward. Focused on different materials and etching solution concentrations, the chemical reaction starting time lengths are researched and valuable experiment results are obtained.
     Constantly increasing the etching rate is generally considered as the foundation for the sustainable development of the wet-etching technology. Because compared with dry-etching technology, the defects including lateral etching can be overcome only by continuous acceleration of etching rate. Thus the advantages of wet etching:wide application scope, low cost and excellent selective etching property stand out. With the continuous improvment of etching rate, the high control accuracy of time is required. The chemical reaction starting time length has great impact on controlling the fast etching time. So far the effective technology to measure the reaction starting time length is lacked. A rough estimate or complete neglect are in most cases. So the further development of fast etching is slowed down. From the phenomenon that the heat generation in the chemical reaction, this thesis has made thorough research to the etching droplet on the surface of the material and infrared radiation character of the etching liquid membrane. The infrared thermal real-time monitoring system is used to collect the infrared grey image real-timely of the linearis liquid membrane caused by the sliding droplets on the vertical material surface. The information about the reaction starting time length is acquired successfully.
     4) As one of the critical steps, study on processing technology determines the practical application results of LAWE.The laser-assisted aqueous etching processing system is proposed in this thesis including etch-resistant film masking method, oder-selective etching method, electrode etching method and two-step etching method. According to the selection of methods, the etching on the different materials are realized successfully. Ideal etching results are obtained.
     Etch-resistant film masking method:cover the substrate surface on which etching is not required with etch-resistant film. And laser irradiates to etch the region without the film.Electrode etching method:etching electric current is formed in the solution by applying electric voltage and causes the intermediate ion product to separate from the substrate surface. Oder-selective etching method focused on the using order of the mixed solvents. Two-step etching method takes advantages of the etching rate differences in the different direction of the materials to prolong or shorten the etching span.In the practical etching processing, one or more processing methods can be adopted for different demands. Various processing methods are analysed separately by this thesis. According to the theoretical analysis and experimental verification, the above four methods building the basic processing system can meet most etching need and gain ideal etching results.
     5) LAWE has the vital significance for the application of the device fabrication and its property's research. Based on LAWE technology as the processing foundation, an omnidirectional self-aligned circular detector is designed and an optically controlled high-temperature superconducting attenuator(it can realize the accurate signal attenuation) is fabricated.
     As far as I know, It is first reported both in domestic and abroad such as measuring method to obtain the material reaction starting time length, the surface roughness of etching process, self-aligned circular detector, laser-assisted aqueous etching processing system, optically controlled high-temperature superconducting attenuator and thermal environment distribution monitoring of the etching solvent in the LAWE process
引文
[1]叶玉堂.激光微细加工.成都:电子科技大学出版社,1995
    [2]F. L. HarPer and M. L. Cohen. ProPerties of Si diodes PrePared by alloying Al into n-type Si with heat Pulses from aNd:YAG laser. Solid State Electronies,1970,13:1103-1109
    [3]J. M. Fairfield and G.H. Schwuttke. Silicon diodes made by laser irradiation. Solid State Electronies,1968,11:1175-1176
    [4]D. J. Ehrlieh, J. Y. Tsao. Submicrometer-linewidth doping and relief definition in silicon by lase-controlled diffusion. Appl. Phys. Lett.,1982,41(3):297-299
    [5]P. Baumgartner, K. Brunner, G. Abstreiter, et al. Fabrication of in-Plane-gate transistor structures by focused laser beam-induced Zn doping of modulation-doped GaAs/AlGaAs quantum wells. Appl. Phys. Lett.,1994,64(5):592-594
    [6]M. Holzman, P. Buamgartner, C. Engel, et al. Fabrication of n-and P-channel in-Plane-gate transistors from Si/SiGe/Ge heterostructures by focused laser beam writing. Appl. Phys. Lett., 1996,68(21):3025-3027
    [7]P. Baumgarntner, W. Wegscheider, M. Bichier, et al. Single-electron transistor fabricated by focused laser beam-induced doping of a GaAs/AlGaAs heterostructure. Appl. Phys. Lett.,1997, 70(16):2135-2137
    [8]A. Pokhmurska, O. Bonchik, S.Kiyak et al. Laser doping in Si, InP and GaAs,APPlied Surface seienee,2000,154-155:712-715
    [9]A. Yu. Bonchik, S.G.Kijak, Z. Gotra, et al. Laser technology for submicron-doped layers formation in semiconductors. Optics & Laser Technology,2001,33:589-591
    [10]K. Sera, F. Okumur, Kaneko, et al. Excimer-laser doping into Si thin films. Journal of Applied Physies,1990,67(5):2359-2363
    [11]G.K. Giust and T. W. Sigmon. High-Performance thin-film tnarsistors fabricated using excimer laser Processing and grain engineering. IEEE Transactions on Electron Deviees, 1998,45(4):925-932
    [12]Cheon-Hong Kim, Sang-Hoon Jung, Juhn-Suk Yoo,et al. Poly-Si TFT fabricated by laser-indueed in-situ fluorine passivation and laser doping. IEEE Electron Device Letters,2001, 22(8):396-398
    [13]Dominique D.,Gurwan K.,Takasi N.,et al. Laser doping for ultra-shallow junctions monitored by time resolved optical measurements. IEICE Trans.Electron, 2002,E85-c(5):1098-1102
    [14]Eun Sik Jung, Ji Chel Bea, Young Jae Lee. Ultra-shallow junction with elevated SiGe source/drain fabricated by lase-induced atomic layer doping. Electronics Letters,2002,38(16):926-927
    [15]Y. Hatanka, T. Aoki, M. Niraula, et al. Laser doping technique for semieonduetors, Znse and CdTe. Proceedings of the 5th Asina SymPosium on Information DisPlay, Hsingehu, Taiwna: IEEE,1999:65-68
    [16]H. Tsukmamoto.150nm-gate p-channel MOSFET fabrication using laser annealing. Electronics Letters,1998,34(4):401-403
    [17]S.D. McDougall, O. P. Kowalski, J. H. Marsh, et al. Broad optical bandwidth InGaAs-InAlGaAs light-emitting diodes fabricated using a laser nanealing Process. IEEE Photonies Technology Letters,1999,11(12):1557-1559
    [18]H. S. Lim, V.Aimez, B. S. Ooi, et al. A novel fabrication technique for multiple-wavelength Photonie-integarted devices in InGaAs-InGaAsP laser heterostructures. IEEE Photonies Technology Letters,2002,14(5):594-596
    [19]Min-Cheol Lee, In-Hyuk Song and Min-Koo Han. Grain boundary controlled Poly-Si TFT Process employing selective Si ion imPlantation and excimer laser annealing Interational semiconductor device researh symposium,2001,Washington,DC, USA:IEEE,2001:85-88
    [20]Seong-Dong Kim, Cheol-Min Park and Jason C. S. Woo. Advanced souere/drain engineering for box-shaped ultrashallow junction formation using laser nanealing and pre-amorphization implantation in sub-100-nm SOI CMOS.IEEE Transactions on Eiecrton Devices, 2002,49(10):1748-1754
    [21]Soo Young Yoon, Nigel Young, P. J. Zang, et al. High-Performance Poly-SiTFTs made by ni-mediated crystallization through low-shot laser annealing. IEEE Electron Device Letters, 2003,24(1):1-3
    [22]Hassaun A.,Jones-Bey. Laser annealing moves into semiconductor manufacturing. Laser Focus World,2002,38(9):32
    [23]D. J. Ehrlich, et al.Spatially delineated growth of metalfilms via Photoehemical Prenucleation. Appl.Phys. Lett.,1981,38(11):946-948
    [24]D.J. Ehrlich, R. M. Osgood, et al.Laser-induced microscopic etching of GaAs and InP. Appl. Phys.Lett,1981,36(8):698-700
    [25]T. F. Deutch, D. J. Ehrlich, et al. Laser photodeposition of metal films with microscopic features. Appl. Phys. Lett.,1979,35(2):175-177
    [26]Hiroyuki Yabe, Akihisa Takahashi,Tetsumi Sumiyoshi, et al. Direct writing of conductive aluminum line on aluminum nitride ceramics by transvesrely excited atmosPheric CO2 laser. Appl. Phys. Lett,1997,71(19):2758-2760
    [27]李刚,沈复初,姚奎鸿,等.高阻硅低温欧姆接触.半导体学报,1988,9(2):208-210
    [28]马景林,周瑞英,李国辉,等.磷砷化稼离子注入层的CW CO2激光退火研究.半导体学报,1984,5(6):676-678
    [29]殷士端,张敬平,顾诠等.硅中注铅的连续CO2激光激光退火行为.半导体学报,1987,Vol.8,No.6:665-668
    [30]朱兵,鲍希茂,李和生.用连续CO2激光在n-InP上制备欧姆接触.半导体学报,1984,5(5):554-556
    [31]邹世昌,林成鲁.半导体的CO2激光退火和合金化.物理学报,1982,31(8):1038-1044
    [32]傅春寅,鲁永令.在N型硅中激光掺金.半导体学报,1984,5(3):323-326
    [33]弓继书,郑宝真,庄蔚华,等.注Zn+-GaAs的激光退火及GaAs欧姆接触的激光合金化.半导体学报,1980,1(4):311-316
    [34]王红卫,杨景铭,钱佩信.激光单条扫描定域再结晶SOI技术研究.电子学报,1996,24(2):22-27
    [35]叶玉堂,李忠东,洪永和,等.用固态杂质源在GaAs衬底上实现的连续波C02光诱导Zn扩散.中国激光,1997,24(3):237-241
    [36]叶玉堂,李忠东,洪永和,等.GaAs衬底的固态杂质源脉冲1.06微米激光诱导扩散.光学学报,1997,17(4):419-422
    [37]Qi hong Lou, Development of excimer laser and its applications at SIOFM. Proceedings of Pacific Rim Conference on lasers and electro-optics,1999, Seoul, South Korea:IEEE,1999:801
    [38]刘传珍,杨柏梁,李牧菊,等.激光退火法低温制备多晶硅薄膜的研究.液晶与显示,2000,15(1):46-52
    [39]张燕,李向阳,姜润清,等.砷注入磅锡汞的激光退火.红外技术,2000,22(4):26-29
    [40]蔡志华,田洪涛,陈朝,等.Nd:YAG连续激光诱导下InP的Zn掺杂.量子电子学报,2002,19(5):467-470
    [41]G. C. LIM, Tuan and Mal. Laser micro-fabrications:present to future applications. Second International Symposium on Laser Precision Micro fabrication,Proceedings of SPIE,2002,Vol. 4426:170-176
    [42]K. Naessens, Heidi ottevaere, P. Van Daele, et al. Flexible fabrication of microleeses in polymer layers with excimer laser ablation. Applied Surface Seience,2003,208-209:159-164
    [43]Satoshi Kawata, Hong-Bo Sun. Two-photon PhotoPolymerization as a tool of making micro-deviees. Applied Surface science,2003,208-209:153-158
    [44]Jakob P.,Chabal Y. J. Chemical etching of vicinal Si(111):dependence of the surface structure and the hydrogen termination on the pH of the etching solutions. J Chem Phys, 1991,95(4):2898-2900
    [45]H.Seidel,The Mechanism of Anisotropic, Electrochemical Silicon etching in Alkaline Solutions,IEEE,1990
    [46]Ghandour, Osman A.,Scarmozzino Robert, Osgood Richard M. Jr, et al. Laser-assisted thermally enhanced InP via etching for microwave device applications. IEEE Transactions on Semiconductor Mnaufacturing,1993,6(4):357-360
    [47]T. Akane, K. Sugioka, S. Nomura, et al. F2 laser etching of GaN. APPlied surface Science,2000, Vol.168:335-339
    [48]Twyford J.,A Picellated Grating Array Using Photoelectrochemical etching on a GaAs Waveguide. IEEE Phonics Technology Letters,1995,7(7):766-768
    [49]Mlcak R.,Tuller H. L.,Photo-assisted Electrochemical Machining of Micromechanical Structure. Proceedings of IEEE,1993,225-229
    [50]A. Starovoitov and S. Bayliss. Structured luminescent Porous silicon layers Produced with laser assisted chemical etching. Appl. Phys. Lett.,1998,73(9):1284-1286
    [51]Drouet D. Aubigny, Christian Y.,Walker C. K.,et al. Laser microchemical etching of waveguides and quasi-optical components. Proceedings of SPIE-The International Society for Optical Engineering, Micromaching and Microfabrication Process Technology, 2001,Vol.4557:101-110
    [52]Lim P.,Brock J. R.,Trachtenberg I. Laser-induced etching of silicon in hydrofluoric acid. Appl.Phys.Lett.,1992,60(4):486-488
    [53]Minsky S.,White M.,Hu E. L. Room-temperature photoenhanced wet etching of GaN. Appl. Phys. Lett,1996,68(11):1531-1533
    [54]Yang Fu-Hsiang, Hsiao Choa-Jen, Yang Ying-Jay, et al.Fabrication of blue GaN light-emitting diodes by laser ecthing. Japanese Jomual of Applied Physies, Part2:Letters,2002,41(4): L468-L470
    [55]Khare R.,Hu E. I. Via-hole formation in semi-insulation InP using wet photoelectrochemical etching. Indium Phophide and Related Materials,1993,537-540
    [56]Khare R.,Hu E. I.,Reynolds D. et al.,Photoelectrochemical etching of high aspect ratio submillimeter waveguide filters from GaAs wafers. Appl.Phys.Lett.,1992,61(24):2890-2892
    [57]C. J. Newsome, M. O. Nrell and R. J. Farley. Laser etched gratings on Polymer layers for alignment of liquid crystals. Appl. Phys. Lett.,2004,72(17):2078-2080
    [58]M. Mullenborn, H.Dirac and J. W. Petersen. Silicon nanostructures Produced by laser direct etching. Appl. Phys. Lett.,1995,66(22):3001-3003
    [59]刘霖,叶玉堂.激光化学腐蚀孔直径控制与横向腐蚀特性.光电子激光,2005,16(7):841
    [60]刘霖,叶玉堂.激光化学液相次序选择腐蚀新方法.中国激光,2005,33(1):49
    [61]Ma Q, Moldovan N, Mancini C et al., Wet etching of GaAs using synchrotron radiation x rays. J.Appl.Phys.,2001,89(5):3033-3040
    [62]杨杰.利用紫外激光以及H202和HF的混合溶液对硅片进行光化学刻蚀.科学通报,2001,46(20):1751-1754
    [63]宋登元,郭宝增,李宝通.Ar+激光诱导湿刻Si特性研究,激光技术,1999,23(3):190-193
    [64]张玉书.用准分子激光诱导湿刻实现对GaAs的图形转换.中国激光,1992,19(9):664-667
    [65]赵宇,孟庆端,胡礼中,等.激光刻蚀与化学腐蚀结合法制备量子线(点)结构.大连理工大学学报,2003,43(3):382-384
    [66]马柄和,苑伟政,李铁军,等.准分子激光直接刻蚀单晶硅研究.西北工业大学学报,2000,18(3):491-495
    [67]周炳琨,高以智.激光原理.北京:国防工业出版社,2004
    [68]古列维奇,波利斯科夫.半导体光电化学.北京:科学出版社,1989
    [69]李文郁.半导体器件化学.北京:科学出版社,1981
    [70]苏班.光化学原理.北京:人民教育出版社,1982
    [71]李家植.半导体化学原理.北京:科学出版社,1980
    [72]乔冠儒.半导体工艺化学原理.北京:国防工业出版社,1974
    [73]马兴孝,孔繁敖.激光化学.合肥:中国科学技术大学出版社,1990
    [74]韩爱珍.半导体工艺化学.南京:东南大学出版社,1991
    [75]徐振嘉.近代半导体材料的表面科学基础.北京:北京大学出版社,2002
    [76]徐淦卿,陈珏,陈东杰.红外与物理技术.西安:西安电子科技大学出版,1989
    [77]Rafael.C.Gonzalez,Richard E.Woods著.阮秋琪,等译.数字图像处理.北京:电子工业出版社,2006
    [78]金冶.和镓半导体材料.上海:上海科学技术出版社,1965
    [79]峨嵋半导体材料研究所译.砷化镓及其应用.北京:国防工业出版社,1975
    [80]Klockenbrink R.,Peiner E.,Wehmann H. H.,et al. Wet chemical etching of alignment V-grooves in(100) InP through Titanium or In0.53Ga0.47As masks. J Electrochem Soc, 1994,141(6):1594
    [81]C. Angulo Barrios, E. Rodriguez, M. Holmgren. GaAs/AlGaAs Buried Heterostructure Laser by Wet Etching and Semi-insulating GaInP:Fe Regrowth.Electrochemical and Solid-State Letters, 2000,3(9):439-441
    [82]Pani S.K.,Wong C. C.,Sudharsanam K.,et al. Variation of sidewall roughness of polymeric waveguides during reactive ion etching. Applied Physics Letters, 2004,85(7):1295-1297
    [83]Yamaguchi Ichirou, Kobayashi Koichi, Yaroslavsky Leonid, et al. Measurement of surface roughness by speckle correlation. Optical Engineering,2004,43(11):2753-2761
    [84]Fidecaro F.,Licitra G.,Bertolini A.,et al. Interferometric rail roughness measurement at train operational speed. Journal of Sound and Vibration,2006,293(3-5):856-864
    [85]Chae B.G,Ichikawa Y.,Jeong G C.,et al. Roughness measurement of rock discontinuities using a confocal laser scanning microscope and the Fourier spectral analysis. Engineering Geology,2004,72(3-4):181-199
    [86]Dai Gaoliang, Jung Lena, Pohlenz Frank, et al. Measurement of micro-roughness using a metrological large range scanning force microscope. Measurement Science and Technology, 2004,15(10):2039-2046
    [87]Lu RongSheng, Tian GuiYun. On-line measurement of surface roughness by laser light scattering. Measurement Science and Technology,2006,17(6):1496-1502
    [88]Sato Michio, Morooka Shinichi, Shirakawa Kenetsu, et al. Liquid film thickness on fuel rod under high pressure and high temperature steam-water two phase flow. Transactions of the Atomic Energy Society of Japan,2006,5(1):14-24
    [89]Usha R.,Ravindran R.,Uma B.,et al. Dynamics and stability of a thin liquid film on a heated rotating disk film with variable viscosity. Physics of Fluids,2005,17(10):102-103
    [90]Jiang W. Y.,Helenbrook B.,Lin S.P.,et al.Inertialess instability of a two-layer liquid film flow, Physics of Fluids,2004,16(3):652-663
    [91]Manev Emil D.,Nguyen Anh V.,Critical thickness of microscopic thin liquid films, Advances in Colloid and Interface Science,2005,114-115:133-146
    [92]Stanton Donald W.,Rutland Christopher J.,Multi-dimensional modeling of thin liquid films and spray-wall interactions resulting from impinging sprays, International Journal of Heat and Mass Transfer,1998,41(20):3037-3054
    [93]Vilar. M.,Beghdadi. J.,Debontridder, et al. Characterization of wet-etched GaAs(100) surfaces, Surface and Interface Analysis,2005,37(8):673-682
    [94]Sugawara, Saito,Yamauchi, et al. Chemical etching of{111} surfaces of GaAs crystals in H2SO4-H2O2-H2O system, Japanese Journal of Applied Physics,2001,40(12):6792-6796
    [95]Andrews G. T.,Clouter M. J. Influence of HF etching on the velocity of surface acoustic phonons in air-aged porous silicon layers. Semiconductor Science and Technology, 2001,16(8):679-681
    [96]Yi, E. H.,Parker, M. A.,Fabricating vertical sidewalls in GaAs/AlGaAs heterostructure using light-induced wet etching. Journal of the Electrochemical Society,2006,153(7):C496-C501
    [97]Sun Zhi-Gang, Mizuguchi Masaki, Akinaga Hiroyuki, Au/GaAs magnetoresistive-switch-effect devices fabricated by wet etching. Japanese Journal of Applied Physics, Part 1:Regular Papers and Short Notes and Review Papers,2004,43(4 B):2101-2103
    [98]Adachi Sadao. Chemical etching of InP (100) wafer based on a volcanic mineral water. Materials Science and Engineering B:Solid-State Materials for Advanced Technology, 2006,126(1):49-52
    [99]Liao Chin I.,Houng Mau Phon, Wang Yeong Her. Highly selective etching of GaAs on A10.2Ga0.8.Electrochemical and Solid-State Letters,2004,7(11):C129-C132
    [100]Walczak Rafal, Dziuban Jan, Fast wet anisotropic etching of silicon utilizing microwave treatment of KOH etchant. Measurement Science and Technology,2006,17(1):38-44
    [101]Tanaka Hiroshi, Yamashita Shuichi, Abe Yoshitsugu, et al. Fast etching of silicon with a smooth surface in high temperature ranges near the boiling point of KOH solution. Sensors and Actuators, A:Physical,2004,114(2-3):516-520
    [102]Chen Zhen-long, Ye Yu-tang, Liu Lin, et al. New method of getting a holes on GaAs substrate in laser induced wet-chemical etching. Optics Laser,2006,33(1):49-52
    [103]Kimura Shigeo, Okajima Atsushi, Kiwata, Takahiro, et al. Solidification in a water-saturated porous medium when convection is present (response of solid-liquid interface due to time-varying cooling temperature).Heat Transfer-Asian Research,2006,35(4):294-308
    [104]Zhuang D.,Edgar J. H.,Wet etching of GaN, A1N, and SiC:A review. Materials Science and Engineering R:Reports,2005,48(1):46
    [105]Kwong V. H.,Mossman M. A.,Whitehead L A 2004 Appl. Opt.43 808
    [106]Park H. C.,Byun K. T.,Kwak H. Y.,2005 Chem. Eng. Sci.60 1809
    [107]Fernandez-Nieves A.,Link D. R.,Rudhardt D.,Weitz D. A.,2004, Phys. Rev.Lett.92 105503-1
    [108]Wood T. A.,Gleeson H. F.,Dickinson M. R.,Wright A. J.,2004, Appl. Phys. Lett.84 4292
    [109]Hu G. Q.,Zhang X. S.,Bao D. S.,Tang X. W.,2004, Acta Phys. Sin.53 4277
    [110]Geng C.Y.,Wang C. Y.,Zhu T.,2005,Acta Phys. Sin.54 1320 (in Chinese)
    [111]Liu Y. Z.,Luo C.L.,2004, Acta Phys. Sin.53 592(in Chinese)
    [112]Mac Dowell L. G.,Virnau P.,Muller M.,Binder K.,2004, J. Chem. Phys.120,5293
    [113]Rivera A. L.,Palomino M. R.,De Icaza M.,Lozada-Cassou M.,Castano V. M.,2005,Phys. Rev. E Stat. Nonlinear Soft Matter Phys.71036603
    [114]Ha J. W.,Park I. J.,Lee S.B.,2005,Macromolecules 38 736
    [115]Dick V.P.,Loiko V. A.2004, J. Phys. D,37 1834
    [116]Fujiwara H.,Kondo M.2005,Appl. Phys. Lett.86 032112
    [117]Fan C.,Ye Y. T.,Jiao S. L.,Liu L.,Chen Z. L.,Wu Y. F.,Wang Y. L.,Tian X.2006, Guangdianzi Jiguang 17 875(in Chinese)
    [118]Wakana H.,Adachi S.,Tsubone K.,et al. Fabrication of high-temperature superconductor single-flux-quantum circuits using a multilayer structure with a smooth surface. Supercond Sci Technol,2006,19(5):8312-8315
    [119]Granozio F. M.,Scotti di Uccio U.,Valentino M.,et al. Morphology and surface properties of YBCO and TBCCO thin films:influence of etching processes. Phys C Supercond,1996, 271(1-2):83-93
    [120]Hammonds J. J. S.,Shannon M. A.,The effect of laser light propagation through a self-induced inhomogeneous process gas on temperature dependent laser-assisted chemical etching. International Journal of Heat and Mass Transfer,2003,46(3):523-534
    [121]Krasnov V. M.,Ericsson O.,Intiso S.,et al.Planar S-F-S Josephson junctions made by focused ion beam etching. Phys C Supercond Appl,2005,418(1-2):16-22
    [122]Lam S.K. H.,Gnanarajan S. The investigation of transport properties on Y1Ba2Cu3O7-x step edge junctions by ion beam etching. Phys C Supercond Appl,2003,385(4):466-472
    [123]Huhtinen H.,Raittila J.,Paturi P.,et al. Influence of sequential etching on YBCO films deposited by PLD from a nanostructured target. IEEE Trans Appl Supercond, 2003,13(2Ⅲ):2777-2780
    [124]Maruyama M.,Kito T.,Furutani T.,et al. Effects of etching conditions on interface-treated trilayer junctions. Phys C Supercond Appl,2001,357-360(SUPPL.1):1436-1439
    [125]Liu Lin, Ye Yu-tang, Wu Yun-Feng, Wang Yu-Lin, et al. New order-selective etching method in laser induced wet-chemical etching. Chinese Journal of Lasers,2006,33(1):49-52
    [126]Kimura Shigeo, Okajima Atsushi, Kiwata, Takahiro, et al. Solidification in a water-saturated porous medium when convection is present (response of solid-liquid interface due to time-varying cooling temperature). Heat Transfer-Asian Research,2006,35(4):294-308
    [127]Zhuang D.,Edgar J. H.,Wet etching of GaN, A1N, and SiC:A review. Materials Science and Engineering R:Reports,2005,48(1):46
    [128]Gary C. TISONE A.,Wayne JOHNSON.Laser-controlled etching of chromium-doped<100> GaAs. Appl. Phys. Lett,1983,42(6):530-532
    [129]Lee Cheon, Takai Mikio, Yada Toshiro, et al. Laser-induced trench etching of GaAs in aqueous KOH solution. Appl. Phys. A:Solids and Surfaces,1990,51(4):340-343
    [130]Das Gupta Nandita,Vangala Naveen Kumar,Kuna V. S. R.,Kishore,et al. Passive coupling of InGaAs/InP pin detector and single mode fiber using InP bulkmicromachining. Proceedings of SPIE,2000,Vol.4075:134-139
    [131]R. M. LUM,F. W. OSTERMAYER,J. R. Mical,et al. Improvements in the modulation amplitude of submicron gratings produced in n-InP by direct photoelectrochemical etching. Appl. Phys. Lett,1985,47(3):269-271
    [132]S. Mailis, G W. Ross, L. Reekie. Fabrication of surface relief gratings on lithium niobate by combined UV laser and wet etching. Electronics Letters,2000,36(21):1801-1803
    [133]T. Robert, Brown. Laser-assisted selective chemical etching for active trimming of GaAs waveguide devices. IEEE Photonics Technology Letters,1990,5(2):346-348
    [134]Dragan V.,PODLESNIK, Heinz H.,GILGEN Richard, M. OSGOOD, et al. Waveguiding effects in laser-induced aqueous etching of semiconductors, Appl. Phys. Lett,1986,48 (7):496-498
    [135]C. Angulo Barrios, E. Rodriguez, M. Holmgren. GaAs/AlGaAs Buried Heterostructure Laser by Wet Etching and Semi-insulating GaInP:Fe Regrowth. Electrochemical and Solid-State Letters,2000,3(9):439-441
    [136]张松,张春华,孙泰礼,等.激光熔覆钴基合金组织及其抗腐蚀性能.中国激光,2001,28(9)
    [137]张松,张春华,文效忠,等.合金表面Si3N4激光熔覆层的空泡腐蚀性能张.中国激光,2003,30(2)
    [138]李昌安,刘战辉,孙永康,等.虹吸动态化学腐蚀法制备近场光学显微镜光纤探针的研究.光学学报,2004,24(11)
    [139]Heiko J. Unold, Safwat W. Z.,Mahmoud, Roland Jager, et al.,Large-Area Single-Mode VCSELs and the Self-Aligned Surface Relief. IEEE Journal On Selected Topics In Quantum Electronics,2001,7(2):368-392
    [140]Kawagachi, Yoshizo, Sato, et al.,Etching a micro-trench with a maximum aspect ratio of 60 on silica glass by laser-induced backside wet etching. Japanese Journal of Applied Physics, Part 2:Letters,2005,44(1-7):L176-L178
    [141]Hrubesh, Norton, Molander, et al.,Chemical etch effects on laser-induced surface damage growth in fused silica. Proceedings of SPIE-The International Society for Optical Engineering, ,2001,Vol.4347:553-559
    [142]Steinsland, Elin, Finstad, et al.,Etch rates of(100),(111)and(110) single-crystal silicon in TMAH measured in situ by laser reflectance interferometry. Sensors and Actuators, A:Physical, 2000,86(1-2):73-80
    [143]T. Oishi, M. Goto, Y. pihosh, et al.,Silicon microstructure fabricated by laser micro-patterning method combined with wet etching process. Applied Surface Science,2005,241(1-2). SPEC. ISS.,2005:223-226
    [144]Yokouchi Noriyuki, Nanner Aaron.J, Choquette Kent.D, et al.,Etching depth dependence of the effective refractive index in two-dimensional photonic-crystal-patterned vertical-cavity surface-emitting laser structures, Applied Physics Letters,2003,82(9):1344-1346
    [145]Azevedo Manhaes, Lussara, Cerqueira Oliveira, et al.,Influence of Er:YAG laser surface treatment and primer application methods on microtensile bond strength self-etching systems, Photomedicine and Laser Surgery,2005,23(3):304-312
    [146]S. Mailis, G. W. Ross, L. Reekie. Fabrication of surface relief gratings on lithium niobate by combined UV laser and wet etching. Electronics Letters 2000,36(21):1801-1803
    [147]Liu Lin, Ye Yu-tang, Zhao su-ying, Liu juan-xiu et al. Laser etching holes diameter controlling and transverse etching, Journal of optoelectronics laser,2005,16(7):841-844
    [148]Niu D.C., Huang T. W.,Lee H. J.,et al. An X-band front-end module using HTS technique for a commercial dual mode radar. IEEE Trans Appl Supercond,2005,15(2):1008-1011
    [149]Wilson T. L. A high-temperature superconductor energy-momentum control system for small satellites. IEEE Trans Appl Supercond,2003,13(2 Ⅱ):2287-2290
    [150]Seaux J. F.,Lascaux C.,Madrangeas V. Interest of the superconductivity at 30 GHz: Application to the HTS preselect receive filters for satellite communications. IEEE MTT S Int Microwave Symp Dig,2004,2:1121-1124
    [151]Sun K. O.,Choi M. K.,Van Weide D. D.,A PIN diode controlled variable attenuator using a 0-dB branch-line coupler. IEEE Microwave Compon Lett,2005,15(6):440-442
    [152]Soares E. R.,Fuller J. D.,Marozick P. J.,Applications of high-temperature-superconducting filters and cryo-electronics for satellite communication. IEEE Trans. Microwave Theory Tech, 2000,48(7 Ⅱ):1190-1198
    [153]Sun K. O.,Van Weide D. D.,Design of pin diode controlled variable attenuator using slow wave microstrip lines. Microwave Opt Technol Lett,2005,47(4):323-327
    [154]Saavedra C. E.,Zheng Y.,Ring-hybrid microwave voltage-variable attenuator using HFET transistors. IEEE Trans. Microwave Theory Tech,2005,53(7):2430-2433
    [155]Raafat R. M. Microwave superconductivity. IEEE Trans Microw Theory Tech,2002,50(3): 750-759
    [156]Kouzakov K. A.,Berakdar J. S.,Photoinduced Emission of Cooper Pairs from Superconductors. Physical Review Letters,2003,91(25):257007/1-257007/4
    [157]H. Fukano etc., Edge-illuminated refracting-facet photodiode with high responsivity and low-operation voltage, Electronics Letters,1996,32(25):2346-8
    [158]M. Kato etc.,Large coupling tolerance side-illuminated mirror photodiode for low-cost surface hybrid integration, IEEE Photonics Technology Letters,1999,11(6):709-11
    [159]李娜.波导与探测器吸收层垂直耦合结构中的光耦合分析.光学学报,1998,18(9):1224-1227
    [160]M. Madhav etc.,Improvements in fiber alignment tolerance using chemically etched monolithically integrated microlenses on InGaAs:InP PIN photodetectors, Electronics Letters, 1997,33(10):891-2
    [161]肖德之.单片集成透镜高速1x4 InGaAs/InP PIN探测器阵列研究.红外与毫米波学报,1994,13(5):364-8
    [162]Nandita Dasgupta etc., Passive coupling of InGaAs/InP PIN detector and single mode fiber using InP bulkmicromaching, in Micro-Opto-Electro-Mechanical Systems, Richard R. A. Syms. Editor, Proceedings of SDIE,2000,Vol.4075:134-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700