浓乳液模板法制备多孔聚合物材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浓乳液模板法(Concentrated emulsion templating)制备多孔材料是将浓乳液的连续相作为聚合相,在一定温度下进行聚合反应,聚合结束后经洗涤干燥即可得到多孔结构的聚合物材料。与其它制备多孔材料的方法相比,浓乳液模板法具有可精确控制孔及通道直径的大小和分布的优点。本文用浓乳液聚合模板法制备了一系列具有多孔结构的聚合物材料。主要工作如下:
     1.用浓乳液聚合的方法合成了聚丙烯酰胺泡孔材料。其中以丙烯酰胺为单体,过二硫酸钾为引发剂,水为溶剂,十六烷基三甲基溴化铵为乳化剂,环己烷为分散剂,聚乙二醇为交联剂。得到的泡孔材料具有相互连通的多孔结构;讨论了乳化剂用量,分散相体积分数的变化对泡孔结构和材料密度的影响;研究了交联剂用量对材料吸水性的影响;且通过对比发现浓乳液法制得的聚丙烯酰胺泡孔材料比本体法制得的有较高的吸水性;
     2.用两步法合成了亲水/亲油多孔材料。其中用浓乳液聚合首先合成聚苯乙烯多孔基体,然后通过浸泡将丙烯酰胺填充到孔中并聚合,制得复合材料。采用压汞测孔法表征了其孔隙率和孔径,发现孔隙率随浓乳液分散相体积分数的增加而增大,孔径变化不大;改变丙烯酰胺溶液浓度时则对自由孔隙有明显影响,浓度越高孔隙越小。对复合材料进行吸水性和饱和水蒸气渗透测试,观察到丙烯酰胺浓度越低,材料吸水率越高,在饱和水蒸气中闭孔需要的时间越长;反之,当丙烯酰胺浓度越高,吸水率越低,越容易闭孔;
     3.研究了双酚A环氧树脂反相浓乳液体系的稳定性。发现有乳化剂存在的同时,在分散相中加入二氧化硅胶体粒子能大大改善浓乳液的稳定性,增强浓乳液体系中界面膜的强度,有效抑制液滴聚并;同时,环氧树脂的预固化能适当调节连续相的黏度,也能促使乳液稳定;乳化剂用量的增加能使体系的界面强度提高,抑制液滴间的聚并,有利于浓乳液稳定,而分散相体积分数的提高则不利于乳液稳定;
     4.用浓乳液模板法制备出了双酚A环氧树脂多孔材料。系统研究了二氧化硅胶粒浓度,连续相预固化程度,乳化剂用量,固化剂用量以及分散相体积分数等诸多因素的变化对多孔材料孔径和分布的影响。发现当预固化时间低于5min时连续相黏度较低,体系界面强度降低导致孔结构有所变型,当预固化高于60min不利于液滴的分散,孔径分布均匀性降低;当乳液浓度超过82%时,分散的液滴聚并的趋势增加,孔径分布均匀性变差,当乳液浓度为86%时,有大孔出现;
     5.系统的研究了对氨基苯酚三缩水甘油基环氧树脂浓乳液的稳定性。发现此液系统在HLB值为8.6时稳定性较高,HLB值较小或较大时,均不能得到足够稳定的浓乳液,因而不能得到理想的多孔结构;并且在HLB值为8.6的情况下研究了三种乳化剂(聚乙二醇型非离子乳化剂NPE-4、多元醇型非离子乳化剂Span 20和由Span 80和Tween 80组成的复合乳化剂)对浓乳液稳定性的影响。并通过对三种情况下多孔材料孔壁结构的观察和体系中分子之间相互关系对浓乳液体系界面模型进行分析模拟,合理的解释了浓乳液的稳定机理;
     6.用浓乳液模板法制备出了对氨基苯酚三缩水甘油基环氧树脂多孔材料。研究了二氧化硅胶粒胶粒浓度,乳化剂用量,连续相预固化时间,固化剂用量,分散相体积分数等因素对多孔形态的影响。发现连续相预固化时间,固化剂用量和分散相体积分数对多孔结构影响较大。当预固化时间低于15min时,乳液稳定性差,不能得到多孔材料;当预固化时间高于75min时,体系黏度过高,不利于浓乳液形成过程中液滴的分散,也得不到分布均匀的多孔材料;只有当预固化时间为60min时得到多孔材料的孔径最小。此外,还发现当连续相浓度大于76%时,得到的多孔材料相邻的孔之间形成相互连接的通道,并通过对材料孔隙率的测量发现材料为半开孔结构。
Preparation of porous materials via concentrated emulsion templating method is to polymerize the continuous phase at certain temperature, and then the porous monolith can be obtained when the polymerization completed after cleaning. Comparatively, concentrated emulsion templating method is convenient and inexpensive, more importantly; the pore size and distribution are controllable. In this dissertation, a series of polymer materials with porous structure were prepared. Many factors influenced the stability of the concentrated emulsion and the the morphology of porous monolith were investigated.
     1. The porous polyacrylamide (PAM) was polymerizated by the template of concentration emulsion, in which cyclohexane is the dispersed phase, acrylamide and poly (ethy glycol) is the continous phase. The density and porosity of PAM can be adjusted by the changing of the content of emulsifier, and the dispersed phase volume fraction. The water absorption of different porosity was studied. The results show that the water absorption of porous PAM is larger than bulk PAM, and increases with the porosity of porous PAM.
     2. A porous hydrophilic/hydrophobic composite was prepared by concentrated emulsion polymerization, which composed of a porous hudrophobic polystyrene matrix with its cells and intercellular pores partially filled with hydrophilic PAM. The permeation of ther resulted composites was controllable according to the environment humidity. In condition of low humidity, the materials kept open-celled and exhibited a high permeation, whereas at high humidity, the filled PAM was swolled by aqueous vapor and blocked the intercellular pore, the materials became nonpermeated.
     3. Inverse concentrated emulsions were prepared using aqueous colloidal silica suspension as the hydrophilic dispersed phase and a solution of diglycidyl ether of bisphenol -A (DGEBA), its curing agent polyamide resin, low molecular weight 650, surfactant nonyl phenol polyoxyethylene ether in 4-methyl-2-pentanon as the continuous phase. Without colloidal silica in the aqueous phase and the pre-curing of the continuous phase, the stability of the concentrated emulsion was poor. The colloidal silica tended to accumulated on the surface of the dispersed droplets forming an encapsulation, which strengthened the steric repulsion in the system and thus improved the stability. Pre-curing of the continuous phase provided an increased initial viscosity and enhanced the stability. Lower volume fraction of the dispersed phase can help to maintain stability of the concentrated emulsions.
     4. A DGEBA porous monolith was prepared via concentrated emulsion templating. The introduction of colloidal silica into the hydrophilic phase strengthened the steric repulsion at the interface and ensured the stability of the concentrated emulsion. A proper pre-curing of the precursors in the continuous phase viscosity, a larger amount of the curing agent accelerated the curing rate. All above factors effectively retarded the rate of phase separation and realized the formation of a porous structure.
     5. The uniform porous monoliths of glycidyl amino epoxy resin (GAE) were prepared via concentrated emulsion template method. It was found the nonionic surfactant, HLB=8.6, in the aid of colloidal silica were well suited to stabilize such concentrated emulsions. The effect of HLB values of non-ionic emulsifier was taken into account, and the correlation of oil phase, surfactant and colloidal silica was investigated. In addition, a model was built to interpret the stabilization mechanism of concentrated emulsion stabilized by the non-ionic emulsifier in the aid of colloidal silica.
     6. It was found that a proper pre-cure of the precursors and proper curing agent amount in the continuous phase viscosity can accelerated the curing rate and increased the stability of concentrated emulsion. It was also found when the emulsion concentration was higher than 0.76, the obtained porous monolith possessed high porous with a complex network of channels and interconnected pores.
引文
[1]杜毅,王其宝,孙兰英,宫作德.肌肉和脂肪组织工程骨中Ⅰ型胶原的表达[J].现代预防医学,2007.34(21):4039-4041
    [2]王迎军,陈晓峰,杨春蓉,邓春林,赵娜如.骨再生修复材料的放生制备及生物分子调控矿化[J].华南理工大学学报,2007.35(10):99-104
    [3]衣昕,金国华,田美玲,秦建兵,毛伟峰,黄镇,谭雪锋.壳聚糖支架与神经干细胞生物相容性的研究[J].神经解剖学杂志2007.23(5):506-510
    [4]刘树元,杨皴明,刘庆,郑显鹏,杜斌.多孔陶瓷材料在环境工程中的应用[J].济南大学学报(自然科学版),2008.22(1):66-71
    [5]尹作栋,潘则林,王才,董宇平,欧育湘天然高分子泡沫材料的复合结构与力学性能[J].复合材料学报,2007.42(3):89-93
    [6]漆小鹏,叶建东,王秀鹏,王迎军.具有定向孔隙结构的大孔磷酸钙骨水泥支架的制备与表征(英文)[J].硅酸盐学报,2007.35(12):1577-1581
    [7]杨春海,瞿万云,桑秋章,胡成国,胡胜水.刚果红功能化水溶性碳纳米管膜电极的制备及在电化学传感器中的应用[J].分析化学研究简报,2007.37(11):1629-1632
    [8]钟世安,贺国文,涂秋云,吴雄伟.大孔吸附树脂对酯型儿茶吸附性能的研究[J].离子交换与吸附,2007.23(5):392-399
    [9]林兰,张国亮,孟琴.新型中空纤维膜接触器用于乙醇/水体系分离的探索[J].化工学报,2007..58(11):2822-2827
    [10]贾彦龙,韩青,陈宪琳,苏新梅,王仁人.空气滤清器内不可压缩三维湍流流场的数值模拟[J].农业装备与车辆工程,2007.No 11:30-32,42
    [11]范云鸽,李燕鸿,马建标.聚二乙烯苯型多孔吸附剂的纳米孔结构表征[J].高分子学报,2002.(2):173-179
    [12]钱军民,李旭祥.聚合物基复合泡沫材料的吸声机理[J].噪声与振动控制,2000第二期:41-43
    [13]Qingzhou Wang,Fusheng Han,Jie Wu,Gangling Hao.Damping behavior of porous CuAlMn shape memory alloy[J].Mater.Lett.,2007.61:2598-2600
    [14]Gregg S J,Sing K S W.Adsorption Surface Area and Porosity[M].Academic Press,New York,1982
    [15]Sing K S W,et al.Porous polymer carbons.Ⅱ.Preparation and properties of porous poly(vinylidene chloride) carbons[J].Pure and Applied Chemistry,1985.57:603-615
    [16]Joannopoulous J D,Pierre R,et al.Calculation of the Shock Temperature of Porous and non-porous high explosives[J1.Nature,1997.386:143-156
    [17]向安,陈鸿奎,高建平等.光子晶体的制备及应用[J].化学通报,2002.101:669-674
    [18]何天白,胡汉杰.海外高分子科学的新进展[M].北京:化学工业出版社,1997
    [19]侯文华,徐林,颜其洁等.具有超大通道结构的介孔氧化硅柱层状钛酸的合成和催化应用初探[J].无机化学学报,2002.18(7):744-747
    [20]Estermann M,Mccusker L B,Baerlocher C,et al.A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening[J].Nature,1991.352:320-323
    [21]翟尚儒,蒲敏,张晔等.纯硅MCM-48的合成研究[J].无机化学学报,2002.18(11):1081-1085
    [22]颜学武,韩小伟,曹毅等.微波法研制碱土金属氧化物负载型MCM-48碱性介孔材料[J].无机化学学报,2002.18(11):1101-1106
    [23]刘信安,李伟,王里奥.球状多孔羟基磷灰石生物材料的制备与结构[J].应用化学,2003.20(3):223-227[
    24]刘培生,马晓明.多孔材料检测方法[M].北京:冶金工业出版社,2006.88-95
    [25]刘培生,马晓明.多孔材料检测方法[M].北京:冶金工业出版社,2006.59-76
    [26]刘培生,马晓明.多孔材料检测方法[M].北京:冶金工业出版社,2006.96-106
    [27]刘培生,马晓明.多孔材料检测方法[M].北京:冶金工业出版社 2006 122-140
    [28]顾惕人等著.表面化学[M].科学出版社出版,166-167
    [29]任智,陈志荣,吕德伟,鲁波.界面结构和HLB乳化规则(Ⅰ)界面模型与稳定机理[J].日用化学品工业,2000.30:5-10
    [30]Alexey Kabalnov and Hakan Wennerstrom.Macroemulsion stability:the oriented wedge theory revisited[J].Langmuir,1996.12(2):276-292
    [31]Pithayanukul P and Pilpel N.Stabilization of some emulsions with Nonionic surfactants [J].J.Colloid Interface Sci.,1982.89:494-503
    [32]郑钟,本字.分子力与胶体的稳定和聚沉[M].北京:高等教育出版社,1995:26
    [33]任俊,沈健,卢寿慈著.颗粒分散科学与技术[M].化学工业出版社,2005.44-48
    [34]Bernard P.Binks.Particles as surfactants-similarities and differences[J].Curr.Opin.Colloid Interface Sci.,2002.7:21-41
    [35]N.P.Ashby and B.P.Binks.Picketing emulsions stabilized by laponite clay particles[J].Phys.Chem.Chem.Phys.,2000.2,5640-5646
    [36]Stuart M.MacDonald.Paul D.I.Fletcher,Zheng-Gang Cui,Marcin Opallo,Jingyuan Chen,Frank Marken.Carbon nanoparticle stabilized liquidlliquid micro-interfaces for electrochemically driven ion-transfer processes[J].Electrochim.Acta,2007.53(3):1175-1181
    [37]Robert Aveyard,Bernard P.Binks,John H.Clint.Emulsions stabilized solely by colloidal particles|J].Adv.Colloid Interface Sci.,2003.101-102:505-546
    [38]任俊,沈健,卢寿慈著.颗粒分散科学与技术[M].化学工业出版社,2005.48-50
    [39]Npper,D.H.Steric Stabilization[J].J.Colloid Interface Sci.,1977.58:390-407
    [40]Overbeek J Th G.Recent developments in the understanding of colloid stability[J].J.Colloid Interface Sci.,1977.58:408-422
    [41]Mackor E L and vanderWaals J H.The statistics of certain colloidal dispersions[J].J.Colloid Interface Sci.,1952.7:535-550
    [42]姜英涛.乳化剂的复配[J].上海涂料,2007.45(5):5-6
    [43]黄英,刘香鸾,师彤.硅氧烷乳液聚合过程中大颗粒形成机理研究 Ⅰ.阳离子型乳液的耐电质稳定性[J].应用化学,1994.(2):44-47
    [44]刘正平,刘凤崎,罗晓韬等.外交联型丙烯酸系共聚乳液的研究—Ⅰ合成与性能.涂料工业,1992.(4):6-10
    [45]Drew Myers著,吴大诚等译.表面、界面和胶体—原理及应用[M].化学工业出版社,2005.216-217
    [46]巩建平.表面活性剂的HLB值[J].内蒙古石油化工,2003.29:43,80
    [47]张坤玲,李瑞珍,卢玉妹,尚平.HLB值与乳化剂的选择[J].石家庄职业技术学院学报,2004.16(6):20-22
    [48]Shigehiro Yamaguchi.Correlation between the mixing ratio surfactants and the water/oil ratio in middle microemulsions in water/oil mixed surfactant/hydrocarbon systems[J].Langmuir,1998.14 7183-7188.
    [49]Jordi Esquena,GSR Ravi Sankar,and Conxita Solans.Highly concentrated W/O emulsions prepared by the PIT method as templates for solid foams[J].Langmuir,2003.192983-2988
    [50]P.Izquierdo,J.Esquena,Th.F.Tadros,C.Dederen,M.J.Garcia,N.Azemar,and C.Solans.Formation and stability of nano-emulsions prepared using the phase inversion temperature method[J].Langmuir 2002.18:26-30
    [51]Kunieda H,Evans D F,Solans C.The structure of gel-emulsions in a water/nonionic surfactant/oil system[J].J Colloid and Surface Sci.,1990.47:35-43
    [52]Pans R,Erra P,Solans C.Viscoelastic properties of gel-emulsions:their relationship with structure and equilibrium properties[J].J Phy Chem.,1993.97(40):12320-12324
    [53]Ruckenstein E,Park J S.Selective permeation through hydrophobic-hydrophilic membranes[J].J Appl Polym Sci.,1989.38(3):453-461
    [54]Lissant K J.Geometry of high-inter-phase-ratio emulsions[J].J.Colloid Interface Sci.,1966.22:462-468
    [55]Solans C,Pons R,Kunieda H.Gel emusion-relationship between phase behavior and formation[M].In:Binks BP,editor.Modem aspect of emulsion science.UK:The Royal Society of Chemistry,1998.20:367-394
    [56]Hoffman H.Large shells in collective nuclear dynamics[J].Adv Colloid Interface Sci.,1990.32:123-129
    [57]Lissant K J.A study of medium and high internal phase ratio water/polymer emulsions[J].J Colloid Interface Sci.,1973.4(20):201-206
    [58]Lissant K J.Structure of high-internal-phase-ratio emulsions[J].J Colloid Interface Sci.,1974.47(2):416-423
    [59]Princen H M.Highly concentrated emulsions.Ⅰ.Cylindrical systems[J],J Colloid Interface Sci.,1979.71(1):55-66
    [60]Princen H M.Highly concentrated emulsions.Ⅱ.Real systems.The effect of film thickness and contact angle on the volume fraction in creamed emulsions[J],J Colloid Interface Sci.,1980.75(1):246-270
    [61]Princen H M.Rheology of foams and highly concentrated emulsions:1.Elastic properties and yield stress of a cylindrical model system[J].J Colloid Interface S.,1983.91(1):160-175
    [62]Ruckenstein E,Kim K J.Polymerization in gel-like emulsions[J].J Appl Polym Sci.,1988,36(4):907-923
    [63]Zhang C,Du Z,Li H,et al.High-rate polymerization of acrylonitrile and butyl acrylate based on a concentrated emulsion[J],Polymer,2002.43(20):5391-5396
    [64]Sun F,Ruckenstein E.Preparation of high molecular weight monodisperse polystyrene latexes by concentrated emulsion polymerization[J].J Appl Polym Sci.,1993.48(7):1279-1288
    [65]杜中杰,张晨,励杭泉.反相浓乳液方法制备聚苯乙烯/二乙烯基苯结构型泡孔聚合 物[J].高等学校化学学报,2002.23(8):1614-1617
    [66]黄皓浩,励杭泉.浓乳液法PS/PBMA及PS/PBA基团反应自增容合金的制备【J].高分子材料科学与工程,2001.17(6):99-102
    [67]Kim K J,Ruckenstein E.Preparation of latex carriers for controlled release by concentrated emulsion polymerization[J],J Appl Poly Sci.,1989.38(3):441-452
    [68]Lissant K J.The geometry of high-internal-phase-ratio emulsions[J],J Colloid Interface Sci.,1966,22(5):462-468
    [69]Ruckenstein E,Park J S.Hydrophilic-hydrophobic polymer composites[J].Journal of Polymer Science,Part C:Polym Lett.,1988.26(12):529-536
    [70]Ruckenstein E,Kim K.Polymerization in gel-like emulsions[J].Journal of Applied Polymer Science,1988.36(4):907-923
    [71]Ruckenstein E,Chen J H.Kinetically caused saturation in the deposition of cells-effects of saturation at the secondary minimum and of excluded area[J].Journal of Colloid and Interface Science,1989.128(2):596-601
    [72]Barbetta A,Carnachan R J.Smith K H.Porous polymers by emulsion templating[J].Macromol Symp,2005.226:203-211
    [73]Cameron N R.Sherrington D C.Synthesis and characterization of poly(aryl ether sulfone)polyHIPE materials[J].Macromolecules,1997,30:5860-5869
    [74]常海涛,鲁在君.油包水高内相比乳液模板法制备聚苯乙烯多孔材料[J].精细与专业化学品,2007.15(9):17-20
    [75]商淑瑞,瞿雄伟.高吸水性聚合物研究进展[J].塑料科技,2000.12(6):36
    [76]陈雪萍,翁志学.高吸水性树脂的研究进展和应用[J].化学生产与技术,2000.7(1):17-19
    [77]黄美玉.超高吸水性聚丙烯酸钠的制备[J].高分子通讯,1984.2:129-134
    [78]田义龙,张敬平,付国瑞.高吸水性树脂[J].塑料,2003.32(6):76
    [79]周正刚,李芮丽,张世超等.膨润土-SAR复合材料的研究[J].高分子材料科学与工程,2002.18(4):151-151
    [80]余晓皎,姚秉华.王军,余中.玉米淀粉与丙烯酸接枝共聚合成高吸水树脂[J].化学研究与应用,2006.17:837-839
    [81]Flory P J.Principles of polymer chemistry[M].New York:Cornel University Press,1953
    [82]云洋,励杭泉.超浓乳液界面引发制备核-壳粒子[J].高分子材料科学与工程,2001.17(5):144-152
    [83]张洪涛,陈莉,段铃丽.非离子型可聚合聚氨酯/苯乙烯的超浓乳液聚合[J].化学学报2007 65(5):437-444
    [84]Park,Jun Seo,Ruckenstein Eli.Encapsulation of solid particles by the concentrated emulsion polymerization method[J]Polyme,r 1990.31(1):175-179
    [85]Xiang Aimin,Du Zhongjie,Zeng Qinghua,Zhang Chen,Li Hangquan.Preparation of flexible polyhedral particles via concentrated emulsion templating polymerizaition[J].Polym Int.,2005,54(10):1366-1370
    [86]Menner Anqelika,Haibach Kristina,Powell Ponald,Bismarck Alexander.Tough reinforced open porous polymer foams via concentrated emulsion templating[J].Polymer,2006.47(22):7628-7635
    [87]Wendy Busby,Neil R Cameron and Colin AB Jahoda.Tissue engineering matrises by emulsion templating[J].Polym Int.,2002.51:871-881
    [88]Valery G.Babak and Marie-Jose Stebe.Highly concentrated emulsions:physicochemical principles of formation.J.Dispersion Science and Technology,2002.23(1-3) 1-22
    [89]R.Ivanova,B.Balinov,R.Sedev,D.Exerowa Formation of a stable,highly concentrated O/W emulsion modeled by means of foam films[J].Colloids and Surfaces A:Physicochem.Eng.Aspects,1999.149:23-28
    [90]David Turner,Bogdan Dlugogorski,Tony Palmer.Factors affecting the stability of foamed concentrated emulsions[J].Colloids Surf.,A:Physicochem.Eng.Aspects,1999.150:171-184
    [91]陈莉,张洪涛,段铃丽.超浓乳液聚合体系稳定性的研究[J].粘接,2006.27(5):35-37
    [92]Ruckenstein E,Sun F.New concentrated emulsion polymerization pathway[J].J Appl Polym Sci,1992.46(7):1271-1277
    [93]Jerzy Kizling,Bengt Krongerg,Jan Christer Eriksson.On the formation and stability of high international phase O/W emulsions[J].Adv.Colloid Interface Sci.,2006.123-126:295-302
    [94]Evrikleia G.Karayannidou,Dimitris S.Achilias,Irini D.Sideridou.Cure kinetics of epoxy-amine resins used in the restoration of works of art from glass or ceramic[J].Eur.Polym.J.,2006.42:3311-3323
    [95]R.Butler,I.Hopkinson,and A.I.Cooper.Synthesis of emulsion-Templated polymers using high internal phase CO2-in-water emulsions[J].J.Am.Chem Soc,2003.125:14473-14481
    [96]Jiawen Ren,Jie Ding,Kwong-yYu chuan and Huanting Wang.Dual-porosity carbon templated from monosize Mesoporous silica nanoparticles[J]Chem Mater,2007.19(11):2786-2795
    [97]Ostuni Emanuele,Chen Christopher S,Inqber Donald E,Whitesides George M.Selective deposition of proteins and cells in arrays of microwells[J].Langmuir,2001.17(9):2828-2834
    [98]Marcus Liew Kai Hoa,Meihua Lu,Yong Zhang.Preparation of porous materials with ordered hole structure[J.Adv.Colloid Interface Sci.,2006.121:9-23
    [99]Emanuele Ostuni,Christopher S.Chen,Donald E.Ingber,and George M.Whitesides[J].Langmuir 2001 17:2828-2834
    [100]Peter T.Tanev,Malama Chlbwe Thomas J.Pinnavala.Titanium-containing mesoporous molecular sleves for catalytic oxidation of aromatic compounds,1994.368:321-323
    [101]C.Solans,J.Esquena,N.Azemar Highly concentrated(gel) emulsions,versatile reaction media[J].Curr.Opin.Colloid Interface Sci.,2003.8:156-163
    [102]何宝平,杨家宽,杨述华,肖波,周敏.具有药物缓释功能的新型热种子的研制[J].材料科学与工程,2007.25(5):735-738
    [103]Mark E.Davia.Ordered porous materials for emerging applications[J].Nature,2002.47:813-821
    [104]Neil R.Cameron.High internal phase emulsion templating as a route to well-defined porous polymers[J].Polymer,2005.46:1439-1449
    [105]Ruckenstein Eli,Li Hangquan.Semiinterpenetrating polymer network latexes via concentrated emulsion polymerization[J].J Appl Polym Sci.,1995.55(6):961-970
    [106]Li Hangquan,Ruckenstein Eli.AB crosslinked polymer latexes via concentrated emulsion polymerization[J].Polymer,1995.36(11):2281-2287
    [107]Zhang Hongtao,Tan Bien,Wang Anlin,Cao Jianhua.Concentrated emulsion polymerization of methyl methacrylate/butyl acrylate initiated by a redox system[J].J Appl Polym Sci.,2005.97(4):1695-1701
    [108]常海涛,鲁在军.新型聚合物多孔材料的制备研究进展[J].化工新型材料,2007.35(8):23-25
    [109]陈宏娟,张晨,杜中杰,励杭泉.反相浓乳液方法制备多孔聚丙烯酸丁酯弹性体材料[J].合成橡胶工业,2006.29(3):186-188
    [110]凌锦龙,张利娟,王康成.甲基丙烯酸甲酯/丙烯酸丁酯/苯乙烯超浓乳液聚合及动力学研究[J].高分子材料科学与工程,2005.21(4):80-83
    [111]张晨,杜中杰,励杭泉.丙烯腈/丙烯酸丁酯浓乳液快速聚合的竞聚率[J].高分子材料与工程.2004.20(2):97-99
    [112]张心亚,涂伟萍,杨卓如,陈焕钦.乳液聚合中乳化剂对聚合物乳液稳定性的影响[J].粘接,2002.23(3):16-18,23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700