丙烯酸基可生物降解高吸水性树脂的结构设计与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高吸水性树脂(SAP)作为一种功能性高分子材料,由于其特有的高吸水性和保水性,已经在各个领域得到日益广泛的应用。国内外对高吸水性树脂的研究主要集中在合成方法和反应机理等方面,但考虑到环境保护和经济可持续发展,对使用高吸水性树脂造成的环境影响和其生物降解性的研究也逐渐被提上日程,已有不少研究机构做了这方面的工作。目前市场上使用的高吸水性树脂几乎都是聚丙烯酸(简写为AA)类,但其生物分解性差,易造成地下水及土壤环境污染,可生物降解高吸水性树脂的制备引起了学术界极大的关注。
     本文通过分子设计,首先合成了一种乙烯基含氧杂环化合物2-亚甲基-1,3-二氧杂环庚烷(简写为MDO),然后以这种乙烯基含氧杂环化合物MDO和丙烯酸为单体,通过开环共聚与交联反应,合成了主链上含有C-O-C醚键的可生物降解高吸水性树脂,并通过互穿网络结构的设计,改善了高吸水性树脂的机械强度和耐盐性。采用FTIR、~1H-NMR、13C-NMR、SEM、DSC等分析测试方法表征了MDO及所设计合成的新型高吸水性树脂的分子结构,研究了高吸水性树脂的溶胀性能和生物降解性能。具体研究内容及结果如下:
     以氯乙醛缩二甲醇和1,4-丁二醇为原料,D001型大孔离子交换树脂作为固体酸性催化剂,通过缩合反应制得中间产物2-氯亚甲基-1,3-二氧环庚烷(Cl-MDO),Cl-MDO再经脱氯反应制得MDO,考察并优化了合成工艺条件,其中:
     制备Cl-MDO的最优工艺条件为:原料配比n_(CDA):n_(BDO)为1:1.15,D001型离子交换树脂酸性催化剂的质量含量为1%,反应温度为115℃,当甲醇的收集量达到理论计算量时,反应结束。产物经减压蒸馏后得Cl-MDO,Cl-MDO的收率为95%以上。
     优化的MDO的合成条件为:原料配比n_((BuOK)):n_((Cl-MDO)):1.20:1.0,醇溶液摩尔比n_((BuOH)):n_((BuOK))=1.20:1.0,在105℃的温度下反应5h,再经减压蒸馏后得到收率为70%的MDO产物。
     分别采用静置溶液聚合法和反相悬浮聚合法,将AA与MDO进行开环交联共聚,制备主链上含有C-O-C醚键的P(AA/MDO)可生物降解高吸水性树脂。对两种聚合工艺进行了优化,结果如下:
     静态溶液聚合法以过硫酸钾为引发剂。N,N'-亚甲基双丙烯酰胺为交联剂,四丁基溴化氨为相催化剂。MDO质量含量为8%,引发剂质量含量为0.15%,交联剂质量含量为0.2%,相催化剂质量含量为2%,AA中和度为85%,单体浓度为30%,反应温度为75℃和反应时间为2h。在此条件下制备的高吸水性树脂吸水率和吸盐水率可分别达350g/g和82g/g。
     反相悬浮聚合法采用偶氮二异丁氰为引发剂,N,N-亚甲基双丙烯酰胺为交联剂。环己烷为溶剂,Span60为分散剂,四丁基溴化铵为相催化剂,优化的工艺条件为:MDO质量含量为8%,油水质量比为5.5:1,引发剂质量含量为0.3%,交联剂质量含量为0.2%,AA中和度为85%,分散剂质量含量为5.5%、相转移催化剂质量含量为3%,在反应温度为75℃条件下反应2h,在此条件下制备的高吸水性树脂吸水率和吸盐水率可分别达520g/g和85g/g。
     为了提高P(AA/MDO)高吸水性树脂的机械强度和耐盐性,采用反相悬浮聚合法制备了PEG-SIPN-P(AA/MDO)半互穿网络结构高吸水性树脂。研究了聚乙二醇(PEG)分子量和质量含量对PEG-SPIN-P(AA/MDO)吸液性能的影响。PEG是非离子直链型聚合物,通过PEG与P(AA/MDO)之间的氢键和相互缠绕作用,能明显提高高吸水性树脂的机械强度和耐盐性,而且当PEG4000的质量含量为4%时,SIPN型高吸水性树脂吸液性能最好,其中吸水率为506g/g。而吸盐水率由85g/g提高到98g/g。
     研究了MDO单体和互穿体PEG对高吸水性树脂溶胀性能的影响。由于MDO带有支链结构,而且MDO开环后带有羰基,提高了高吸水性树脂的吸液率和吸水速率,同时也降低了高吸水性树脂的脱水速率下降,即提高了保水性。当PEG4000的质量含量为4%时,形成的SIPN型高吸水性树脂机械强度适中,耐盐性能最好,吸水速率也最快。文中还研究了MDO和PEG对高吸水性树脂的溶胀温度效应的影响。
     采用琼脂板培养法和二氧化碳生成量(PCD)法研究了MDO单体对高吸水性树脂的生物降解性的影响。结果表明:由于引入了MDO单体,微生物枯草杆菌和黑曲霉均能在高吸水性树脂上生长,证明所设计、合成的P(AA/MDO)高吸水性树脂主链上含有C-O-C醚键,是可生物降解聚合物。而且P(AA/MOD)型高吸水性树脂的生物降解速率可以由其主链结构设计决定:MDO质量含量越大,主链上含有C-O-C醚键越多,高吸水性树脂生物降解速率越快:MDO质量含量越小,则降解速率越慢,而且反相悬浮聚合法所合成的高吸水性树脂的降解性能优于静态溶液聚合法。
Super-absorbent polymer (SAP), a functional macromolecular material, possesses excellent properties such as water-absorption, water-retention, etc. SAP has been widely used in many fields. Many studies have been carried out about the synthetic method and reaction mechanism. For the purpose of environmental protection and economic continuous development, this project focuses on the biodegradability of SAP based on acrylic acid (AA), because AA is the common monomer for the synthesis of SAP, and SAP based on AA is weakly biodegradable and will pollute underground water and soil.
     In this paper, a cyclic ketene acetal of 2-methylene-1,3-dioxepane (MDO) was prepared. And then biodegradable SAP with C-O-C in the backbone was synthesized by Ring-Opening copolymerization of MDO with acrylic acid (or acrylate). To improve the strength and anti-saline property, PEG was introduced into the SAP to give interpenetrated networks. During the study, structures of the intermediates, namely 2-Chloromethyl-1,3-Dioxepane(Cl-MDO), MDO, and biodegradable SAP were characterized with FT-IR, ~1H-NMR, ~(13)C-NMR, SEM, and DSC. The swelling property of the biodegradable SAP was studied as well. The detailed contents of this paper are as follows:
     2-Methylene-l,3-dioxepane can be synthesized by a two-step reaction. At first, an intermediate C1-MD0 was synthesized by condensation reaction of chloroacetaldehyde dimethyl acetal with 1,4-Butanediol (BDO) over D001 Ion Exchange Resin. Secondly, MDO was synthesized by reaction of C1-MD0 with potassium t-butoxode by using t-butyl alcohol as solvent. The optimized technological conditions were investigated, and the results are as follows:
     Cl-MDO was synthesized with: n_(CDA): N_(BDO) as 1: 1.15, the mass content of D001 Ion Exchange Resin was 1%, the reaction temperature was 115℃. When the calculated amount of methanol has been collected, the crude product is fractionally distilled to produce Cl-MDO. The yield was over 95%.
     MDO was synthesized with: n_((BuOK)):n_((Cl-MDO))= 1.20:1.0 and n_((BuOH)):n_((BuOK))= 1.20:1.0. The reaction temperature was 105℃. After 5h the crude product was fractionally distilled to produce MDO. The yield was over 70%.
     Biodegradable SAP with C-O-C in the backbone was synthesized by the Ring-Opening copolymerization of MDO with acrylic acid (or acrylate) by solution polymerization and suspension polymerization. The two methods are as follows:
     Biodegradable SAP was synthesized by Ring-Opening copolymerization of MDO with acrylic acid (or acrylate) by means of solution polymerization. The reaction was initiated by potassium persulfate and crosslinked by N,N'-methylenebisacrylamide with tetrabutylammonium bromide (TBAB) as catalyst. The optimized technological conditions were the mass content of MDO 8%, the mass content of initiator 0.15%, the mass content of catalyst 2%, the neutralization degree of acrylic acid 85%, the monomer concentration 30%, the reaction temperature 75℃, the time of reaction 2h. The best absorbability of in salt free water was 350g/g and 82g/g in 0.9% NaCl solution.
     Biodegradable SAP was also synthesized by Ring-Opening copolymerization of MDO with acrylic acid (or acrylate) by means of suspension polymerization. The reaction was initiated by AIBN and crosslinked by N,N'-methylenebisacrylamide with cyclohexane as solvent, SP-60 as dispersant and TBAB as catalyst. The optimized technological conditions were the mass content of MDO 8%, the mass ratio of cyclohexane, asdispersed phase, to water was 5.5:1, the mass content of initiator and crosslinking agent were 0.3% and 0.2% respectively, the neutralization degree of acrylic acid 85%, the mass content of dispersant 5.5%, the mass content of catalyst 3%, the reaction temperature 75℃and the reaction time 2h.The best absorbability of the SAP in salt free water was 520g/g and 85g/g in 0.9% NaCl solution.
     To improve the properties of strength and anti-saline, the biodegradable SAP of polyethylene (PEG)-Semi-IPN-P(AA/MDO) was synthesized by means of suspension polymerization. The effect of the molecular weight and mass content of PEG on the absorbability of PEG-Semi-IPN-P(AA/MDO) was studied. The results showed that PEG can improve the properties of strength and anti-saline of the biodegradable SAP effectively. The best absorbability of the SAP in salt free water was 510g/g, and the absorbability in 0.9% NaCl solution was improved from 85g/g to 98g/g when the mass of PEG4000 was 4%.
     The effect of MDO and PEG on the swelling property of the SAP was studied. The absorbability and the swelling rate of P(AA/MDO) increased because of MDO, while the dehydration rate decreased. The strength was suitable, the swelling property and anti-saline of PEG-SIPN-P(AA/MDO) were the best when the mass of PEG4000 was 4%. In this paper, the effect of MDO and PEG on the response of the SAP to swelling temperature was studied.
     At last, the effect of MDO on the biodegradability of P(AA/MDO) was studied by the method of agar flat analysis and the amount of CO_2 released by the SAP. The results showed that bacillus subtilis and aspergillus nigers can grow on the biodegradability SAP of P(AA/MDO); P(AA/MDO) with C-O-C in the backbone and they were biodegradable. The biodegradation behaviors of P(AA/MDO) were related to its backbone structure. The biodegradability can be improved as the mass of MDO increase with more C-O-C on the backbone. The biodegradability will become worse as the mass of MDO decreased. The sample prepared with the inverse suspension polymerization is easier to degrade than that prepared with the solution polymerization.
引文
1.邹新禧.超强高吸水性树脂[M]北京:化学工业出版社,1991.
    2.Masuda,Fusayoshi.Trends in development of superabsorbent polymer for dipers[J].Polymeric naterials science and engineering,proceedings of the ACS division of polymeric materials science and engineering,1993,69:484.
    3.Akers,Paul J.Future for superabsorbent fibers[J].Technical textiles international,1997,6(1):20-23.
    4.田义龙,张敬平,付国瑞.高吸水性树脂[J].塑料,2003,32(6):75-79.
    5.James D S.Micheal D C.Joachim H.Steven D A.D A.Biodegradation of Superabsorbent Polymers in Sail[J],ESPR,2000,7(2):83-88.
    6.Shimomura Tadao.Preparation and application of high performance superabsorbents[J].Polymeric materials science and engineering,proceedings of the ACS division of polymeric materials science and technology,1993,69:485-486.
    7.金益芬,麻立春.高吸水聚合物的应用与发展[J].化工新型材料,2001,29(5):6-8
    8.李晓阳,朱佩芳,胡嘉念.新型烧伤敷料的研制与评价[J].生物医学工程学杂志,1994,11(1):5-8.
    9.A.Pourjavadi,Sh.Barzegar and F.Zeidabadi.Synthesis and properties of biodegradable hydrogels of κ-carrageenan grafted acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid as candidates for drug delivery systems[J].Reactive and Functional Polymers,2007,67,(7):644-654.
    10.张楷亮,王立新,张文林,等.高吸水性树脂的研究及其发展趋势[J].河北化工,2002,(2):4-7.
    11.龙明策,王鹏,郑彤.高吸水性树脂的合成及其应用[J].高分子材料科学与工程,2002,18(5):31-35.
    12.潘晓磊.国外高吸水性树脂生产与应用[J].石油化工技术经济,2001,17(2):38-40.
    13.王正辉,廖宗文.高吸水树脂的合成及在农业上的应用[J].广东化工,2005,(1):70-72.
    14.袁俊霞.高吸水性树脂在节水农业中的应用.环境与可持续发展。2007,3:52.
    15.崔英德,郭建维,阎文峰,等.SA-IP-SPS型保水剂及其对土壤物理性能的影响[J].农业工程学报,2003,19(1):28-31.
    16.王传海,何都良,郑有飞,等.保水剂新材料γ-聚谷氨酸的吸水性能和生物学效应的初步研究[J].中国农业气象,2004,25(2):19-22.
    17.Huttermann A,Zommorodi M,Reise K.Addition of hydrogels to soil for prolonging the survival of Pinushalepensisseedling subjected to drought[J].Soil and Tillage Research,1999,50(4)295-304.
    18.Janardan Singh,Singh J.Effect of stockosorb polymers and potassium levels on potato and onion[J].Journal of Potassium Research,1998,(4):78-82.
    19.杜建军,王新爱,廖宗文,等.不同浸提条件对包膜控/缓释肥水中溶出率的影响[J].植物营养与肥料学报,2005,11(1):71-78.
    20.李雅丽.含微量元素土壤保水剂的合成研究[J].化工时刊,2003,17(5):21-24.
    21.詹发禄,柳明珠,郭明雨,等.具有缓释肥功能超强吸水树脂研究[J].兰州大学学报(自然科学版),2003,39(6):62-66.
    22.杜建军,廖宗文,王新爱,等.高吸水性树脂包膜尿素的水肥一体化调控效果研究[J].农业工程学报,2007,23(6):71-77.
    23.崔英德,郭建维,易国斌,等.可生物降解超强吸水剂及其制备技术进展[J].化工进展,2003,22(8):845-849.
    24.张新民,游庆红,徐虹,等.生物可降解型聚谷氨酸高吸水树脂的制备[J].高分子材料科学与工程,2003,19(2):203-205.
    25.刘云海,曹小红,彭道锋,等.海藻酸钠与丙烯酰胺微波共聚制备高吸水树脂[J].化学研究与应用,2005,17(2):279-280.
    26.郭源君,李文斌.粘土基吸湿膨胀堵漏材料研究[J].润滑与密封,2000,(5):69-70.
    27.王勇,汪水平.高吸水树脂在建材工业中的应用[J].化学建材,4-5.
    28.刘德荣,毛逢银,颜杰.高吸水树脂改性混凝土研究[J].化学建材,1999,(3):16-18.
    29.张宇,叶华,赵建青.高吸水树脂改性建筑砂浆和易性和粘结性能的研究[J].化学建材,2004,(5):53-56.
    30.Tsuji Masanori,Shitama Koichiro,Isobe Daisuke.Basic studies on simplified curing technique,and prevention of initial cracking and leakage of water through cracks of concrete by applying superabsorbent polymers as new concrete admixture[J].Journal of the society of materials science,1999,48(11):1308-1315.
    31.肖建斌,王永祥.NR/SBR吸水膨胀橡胶的性能研究[J].青岛科技大学学报,2004,25(6):507-509.
    32.肖建斌,刘锦春.用回归分析法研究吸水膨胀橡胶的性能[J].特种橡胶制品, 2005,26(2):12-14.
    33.钱明晏.吸水弹性材料制备研究[J].特种橡胶制品,1998,9(6):23-26.
    34.山路功.吸水橡胶及橡胶组成物的开发动向[J].橡胶译丛,1985(6):82-87.
    35.王彩旗,张国,董宇平,等.PEO-b-PBA对天然橡胶/高吸水树脂共混体系增容作用的研究[J].材料科学与工程,2002,20(2):180-182.
    36.张玉红,邹其超,何本桥等.吸水膨胀弹性体的研究[J].弹性体,2003,13(3):5-7.
    37.宗成中,张书香,夏宇正.有机介质中聚丙烯酸钠/SBR共混型WSR的溶胀性能[J].弹性体,2003,13(3):1-4.
    38.H.Omidian,S.A Hashemi,P.G Sammes,etal.A Model for the Swelling of Superabsorbent Polymers[J].Polymer,1999,39(26):6697-6704.
    39.XL,Yu,C,Lang,ZY,Wei,etal.Weak Gel RNJ-Las Flooding Fluid for Indepth Permeability Control in Low Temperature Reservoirs[J].Oil field Chemstry,2001,15(4):347-351.
    40.Smith E V.Enhanced Oil Recovery Update,Part 1-Improvement of Sweep Efficiency[J].Petroleum Engineer International,1988,(11):29-31.
    41.张维刚,崔英德,方岩雄.聚丙烯酸钠吸水性树脂在减阻润滑中的应用[J].化工进展,2007,26(5):735-738.
    42.张文政,孙芳,黄毓礼.油田用吸水性树脂的结构、性能与制备[J].辽宁化工,2004,33(12):702-705.
    43.纪朝凤,葛红江.调剖堵水材料研究现状与发展趋势[J].石油钻采工艺,2002,24(1):54-58.
    44.张晓凤,杨建胜,张兰.高倍吸水菌检纸垫的研制[J].四川造纸,1996,25(4):178-181.
    45.张晓凤,杨建胜.高吸水复合纸的研制及应用[J].纸和造纸,1994,(2):55-56.
    46.杨桂迎.高吸水树脂在日本生活用纸中的使用情况[J].造纸信息,1997,(1):13.
    47.李侃社,邵水源,闫兰英.聚丙烯酸钠吸水树脂/聚乙烯醇/高氯酸锂聚电解质的制备与性能[J].高分子材料科学与工程,2003,19(5):101-104.
    48.钱明晏.吸水弹性材料制备研究[J].特种橡胶制品,1998,9(6):23-26.
    49.山路功.吸水橡胶及橡胶组成物的开发动向[J].橡胶译丛,1985(6):82-87.
    50.黎园.PVA类高吸水树脂的性能及应用[J].天然气化工,2003,28(3):46-48.
    51.钟安永,陈德本,周宗华.电缆用无纺布堵水带高吸水树脂的研究[J].化学研 究与应用,1996,8(1):126-130.
    52.王巨梅,吴文斌.高吸水醋酸纤维素胶囊膜的制备[J].纤维素科学与技术,1996,4(3):36-42.
    53.Fredric L.Buchholz,AndrewT,Graham,Mordern Superabsorbent Polymer Technology[M],Wiley-VCH,New York,1998.
    54.A.Pourjavadi,Sh.Barzegar,F.Zeidabadi.Synthesis and properties of biodegradable hydrogels of κ-carrageenan grafted acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid as candidates for drug delivery systems.Reactive and Functional Polymers,2007,67(7):644-654
    55.A K Bajpai,J Bajpai,Sandeep,Shukla,Water sorption through a semi-interpenetrating polymer network(IPN)with hydrophilic and hydrophobic chains[J].Reactive & Functional Polymers,2002,50(1):9-21.
    56.Kim S J,Park S J,Shin M S,Lee Y H,.Thermal Characteristics of IPNs Composed of Polyallylamine and Chitosan[J].Journal of Applied Polymer Science,2002,85(9):1956-1960.
    57.陈义康,李立华.PVP/PVA半互穿网络材料的制备及其性能研究[J].功能高分子学报,2005,18(3):80-83.
    58.An Li,Junping Zhang,Aiqin Wang.Utilization of starch and clay for the preparation of superabsorbent composite[J].Bioresource Technology,2007,98(2):327-332.
    59.P.S.Keshava Murthy,Y.Murali Mohan,J.Sreeramulu.Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate):Preparation,swelling and diffusion characteristics evaluation.Reactive and Functional Polymers,2006,12(66):1482-1493.
    60.Chmelir,Miroslav.Process for manufacturing water adsorbing material and its use in sanitary articles and in soil amelioration.[P]Eur:476574,1992.
    61.Heidel,Klaus,Krause;Frank,Hofmann;Peter.Process for the preparation of finely divided,water-swellable polysaccharide graft polymers[P].US:5180800,1993.
    62.张小红,崔英德.聚AA钠/高岭土复合高吸水性树脂的制备及性能研究[J].化工学报,2005,56(6):1134.
    63.Ganslaw;Stuart H.,Katz;Howard G..Surface treatment process for improving dispersibility of an absorbent composition and product thereof[P].US:4043952,1977.
    64.Ganslaw,Stuart H.,Katz;Howard.G.,Absorbent composition of matter[P].US: 4090013,1978.
    65.Mark David F.,Lin Leo S.,Yu Lu;Shi-da,Wang;Alice M.Cysteine-depleted muteins of biologically active proteins[P].,US:4959314.1990.
    66.Ning,Xin,Sun Tong.Carboxyalkyl polysaccharides with improved liquid absorbability[P].Eur.:538904,1993.
    67.Qin Jian.Process for the preparation of crosslinked polysaccharides useful for super-absorhents for moisture[P].Eur:566118,1993.
    68.Qin Jian,Gross James Richard,Mui William Johannes.Crosslinked polysaccharides having enhanced absorbency and process for their preparation.[P].PCT Int.Appl:9511925,1995.
    69.Wirick M G.Aerobic biodegradation of carboxymethylcellulose[J].Journal Water Pollution Control Federation,1974,46(3):512-521.
    70.董奋强,崔英德,崔亦华.蛋白高吸水凝胶研究的进展[J].材料导报,2006,20(7):46-50.
    71.Rathna,G.V.N.,Damodaran Srinivasan.Effect of nonprotein polymers on water-uptake properties of fish protein-based hydrogel[J].Journal of Applied Polymer Science,2002,85(1):45-51.
    72.Rathna,G.V.N.,Damodaran Srinivasan.Swelling behavior of protein-based super absorbent hydrogels treated with ethanol[J].Journal of Applied Polymer Science,2001,81(9):2190-2196.
    73.Damodaran Srinivasan.Carboxyl-modified superabsorbent protein hydrogel[P].,US:6310105,2001.
    74.Rathna G V N,Srinivasan Damodaran.[J].J.Appl.Polym.Sci.2002,(85):45.
    75.Wood Louis L.Copolymers of polyaspartic acid[P].US:5502117,1996.
    76.Wood Louis L.Salt of polymer from maleic acid polyamind and ammonia[P].US:5286810.1994.
    77.Donachy Julie,Sike C Steven.Preparation of poly(amino acid)superabsorhents by thermal polymerization[P].WIPO:9217525 1992.
    78.冷一饮,欧阳平凯.可生物降解高吸水性树脂的合成与性能[J].石油化工,2006,35(2):169-172.
    79.Suzuki Masashi,Kuramochi Mayumi,Ohnuma Yoshinobu,Kanayama Kaoru.Acidic amino acid resin[P].Eur.683177,1995.
    80.张元琴,黄勇.国内外降解塑料的研究进展[J].化学世界,1999,40(1):3.
    81.戈进杰.生物降解高分子材料及其应用[M].北京:化学工业出版社.2002.10-11.
    82.冀玲芳,么敬霞.可生物降解材料[J].塑料科技,2002,5(151):52-53.
    83.张元琴,黄勇.以纤维素为基质的生物降解材料的研究进展[J].高分子材料科学与工程,1999,15(5):25.
    84.任杰.可降解与吸收材料[M].化学工业出版社,2003年.
    85.崔英德,郭建维.可生物降解超强高吸水性树脂及其制备技术进展[J].化工进展,2003,22(8):35-849.
    86.Anne Calmon.An automated test for measuring polymer biodegradation[J],Chemosphere.2000,41:645-651.
    87.丁浩.塑料应用技术[M].北京:化学工业出版社,1999:1082-1087.
    88.杨惠娣.现代塑料加工应用[J],中国塑料,1993,5(6):49.
    89.Anne Calmon.An automated test for measuring polymer biodegradation[J].Chemosphere.2000,41:645-651.
    90.Alan H.Tkaczyk,Bioabsorbable soy protein plastic composites:effect of polyphosphate fillers on biodegradability[J],Journal of polymers and the environment,2001,19(1):19-23.
    1.Bailey,William J.Carboxy-functional polymers and their use as detergent additives[P].,US:4923941,1990.
    2.Sun L.F.,Zhuo R.X.,Liu Z.L.Synthesis and enzymatic degradation of 2-methylene-1,3-dioxepane and methyl acrylate copolymers[J].Journal of Polymer Science,Part A:Polymer Chemistry,2003),41(18):2898-2904.
    3.S.Jin,K.E..Gonsalves.A Study of the Mechanism of the Free-Redical Ring-opening Polymerization of 2-Methylene-1,3-dioxepane[J].Macromolecules,1997,30:3104-3106.
    4.Yen Wei,EdWard J.Connors,Xinru Jia,Ce Wang..Controlled Free Radical Ring-Opening Polymerization and Chain Extension of Living Polymers[J].Journal of polymer science,Part A:Polymer Chemistry,1998,36:761-771.
    5.Peter C.Zhu,Zhihong Wu,and Charles U.Pittman,Jr.,Ring opening during the cationic polymerization of 2-methylene-1,3-dioxepane:Cyclic ketene acetal initiation with sulfuric acid supported on carbon[J].Journal of polymer science,Part A:Polymer Chemistry,1997,35:485-491.
    6.James D S.,Micheal D C.,Joachim H.,Steven D A.,Biodegradation of Superabsorbent Polymers in Soil[J].ESPR,2000,7(2):83-88.
    7.Swift,Graham.Directions for environmentally biodegradable polymer research[J].Accounts of Chemical Research,1993,26(3):105-10.
    8.Hayashi Takaya,Nishimura Hiroi,Sakano Kouichi,Tani Yoshiki.Microbial degradation of poly(sodium acrylate).Bioscience Biotechnology and Biochemistry 1994,58(2):444-446.
    9.Fukuda Hiroyuki,Hirota Masahiro,Endo Takeshi.Relationship between reaction rates and NMR chemical shifts in the reaction of cyclic ketene acetals with methanol[J].Tetrahedron Letters,1986,27(14):1587-1590.
    10.Bailey,W.J.Ring-Opening Polymerization,Comprehensive[J].Polymer Science,1989,3:285-319.
    11.Bailey William J.,Chen Paul Y.,Chen Shuh Cheng.Free radical ring-opening polymerization and its use to make biodegradable polymers and functionally terminated oligomers[J].Makromolekulare Chemie,Macromolecular Symp,1986,6:81-100.
    12.Reed,Daniel J.,Snedecor Jr.,T.Gayle..Process to produce vinylidene chloride using phase transfer catalyst[P].US:5396002,1995.
    13.Ruland Alfred Reuther,Wolfgang.Preparation of ketene O,O-acetals[P].,US: 4603224,1986.
    14.Bailey,W.J.;Wu,S.R.;Ni,Z.Synthesis of poly-ε caprolactone via a free radical mechanism.free radical ring-opening polymerization of 2-methylene-1,3-dioxepane.Polymer Science[J],Part A:Polym Chem 1982,20:3021-3030.
    15.薛松.有机结构分析[M].中国科学技术大学出版社.2005:279-310.
    16.朱淮武.有机分子结构波谱解析[M].化学工业出版社,2005:29-74.
    17.Robert M.Silverstein,Francis X.Webster,David J.Kiemle.有机化合物的波谱解析[M].华东理工大学出版社,2007:188-203.
    1.周俊,周海骏.互穿网络高吸水性树脂的合成及性能[J].化工新型材料.2005,33(12):5456.
    2.王二坡,赵家森,朱姝.新型P(DMAEMA/AA)半互穿网络水凝胶的研究[J].天津工业大学学报.2004,2(6):9-12.
    3.崔亦华,郭建维,崔英德,等.P(AA)/PVA SIPN高吸水性树脂的制备及性能研究[J],广州化学,2007,3:1-5.
    4.CUI-Yingde(崔英德),LI-Xinming(黎新明),The Swelling Behavior and Dehydration Behavior of hydrogel for Contact Lens[J],Journal of Chemical Industry and Engineering(China)(化工学报),2002,10:1~2.
    5.张先正,卓仁禧.温度敏感聚(N-异丙基丙烯酰胺)、聚(乙烯醇)水凝胶的制备及性能研究[J].高等学校化学学报.2000,21(11)1776-1778.
    6.崔英德,郭建维,廖列文,等.二元共聚高吸水性树脂的合成与溶胀性能[J].化工学报.2001,52(7):601-605.
    7.刘洋,谢建军,康红梅,等.AM/AMPS二元高吸水性树脂的合成与性能研究[J].精细化工.2002,19(10):584-587.
    8.熊蓉春,卜爱华,赵曦,等.聚(丙烯酸胺 丙烯酰胺)高吸水性树脂的合成与性能研究[J].北京化工大学学报.2005,32(2):42-46.
    9.Ji Zhang,Kun Yuan,Yun-Pu Wang,etc.Preparation and properties of polyacrylate/bentonite superabsorbent hybrid via intercalated polymerization[J].Materials Letters,2007,61(2):316-320.
    10.唐宏科,陈均志.反相悬浮法制备AA-AM共聚耐盐高吸水性树脂[J].合成化学,2004,12(3):293-296.
    11.万涛,杨凯,朱忠伟,等.反相悬浮聚合AA-AM-HEMA三元共聚高吸水性树脂的研究[J].功能高分子学报,2003,16(1):26-30.
    12.陈雪萍,朱耕宇,黄志明,等.反相悬浮法合成PNaAA高吸水性树脂的聚合工艺[J].2003,19(3):232-236.
    13.林纪辰,黄毓礼,熊光超.光聚合法合成聚AA-AA钠高吸水性树脂[J].北京化工大学学报.2001,28(2)26-29.
    14.龙明策,王鹏,郑彤.高吸水性树脂的微波辐射合成工艺及性能研究[J].高分 子材料科学与工程.2002,18(6):205-208.
    15.陈传品,王鹏,郑彤,等.微波辅助耐盐性高吸水性树脂的制备工艺及性能研究[J].现代化工.2002(增刊):127-230.
    16.刘宇光,李晓冰,侯静,等.辐射制备高分子复合吸水材料[J].化学工程师,2003,2:1-3.
    17.Anjali Panda.Synthesis and swelling characteristics of poly(N-isopropylacrylamide)temperature sensitive hydrogels crosslinked by electron beam irradiation[J].Radiation Physics and Chemistry,2000,58:101-110.
    18.Bailey,William J.Carboxy-functional polymers and their use as detergent additives[P].4923941,1990.
    19.Jin S.,K.E.G.AStudy of Mechanism of the Free-Radical Ring-pening Polymerization of 2-Methylene-1,3-Dioxepane[J].Macromolecules,1997,5:3104-3106.
    20.Liu ZS,Rempel GL.Preparation of superabsorbent polymers by crosslinking acrylic acid and acrylamide copolymers[J].Appl.Polym.Sci.,1997,64:1345.
    21.Backer J P,Hong L H,Blanch H W,Pransnits.J.M.Preparation and characterization of water-swellable natural rubbers[J].Macromolecules,1992,27:1446.
    22.Lee WF,Wu R J.Superabsorbent polymeric materials Ⅰ swelling behaviors of crosslinked poly(sodium acrylate-co-hydroxyethyl mathacrylate)in aqueous salt solution[J]Appl.Polym.Sci.,1997,64:2371.
    23.L.F.SUN,R.X.ZHUO,Z.L.LIU.Synthesis and Enzymatic Degradation of MDO and MA Copolymers.Journal of Polymers[J]Science:Part A.2003,41:2898-2904.
    24.S.Jin,K.E..Gonsalves.A Study of the Mechanism of the Free-Redical Ring-opening Polymerization of 2-Methylene-1,3-dioxepane[J].Macromolecules,1997,30:3104-3106.
    25.Robert M.Silverstein,Francis X.Webster,David J.Kiemle.有机化合物的波谱解析[M].华东理工大学出版社:2007:188-203.
    1.龙明策.王鹏,郑彤.高吸水性树脂的合成及其应用.高分子材料科学与工程.2002,18(5):31-35.
    2.刘爱红,姜发堂,张声华.超强高吸水性树脂的制备及其性能研究进展.胶体与聚合物.,2004,22(2):31~33.
    3.朱友良.高吸水性树脂合成技术进展.化学工程师.2005,115(4):42-44.
    4.Askari F,Nafisi S,et al.Synthesis and characterization of acrylic-based superabsorbents[J].Appl Polym Sci,1993,50(10):1851-1855.
    5.蒋笃孝,宗龄瑛,罗新祥.高吸水性树脂的制备及交联剂对树脂吸水性能的影响[J].化学与粘合,1998,(1):1-6.
    6.王解新,陈建定.高吸水性树脂研究进展.功能高分子学报.1999,12(2):211-217.
    7.郭建维,崔英德.反相悬浮法高吸水性树脂研究[J]。精细化工,2001(6):348-350.
    8.朱秀林,路建美.内交联型高吸水性树脂的合成及性能研究[J].高分子材料科学与1程,1993,9(4):19-2.
    9.崔英德,郭建维.Preparation of facrylic superabsorbents with core-shell structure by modified inverse suspension polymerization[J]化工学报,2000,(2),3-6.
    10.崔英德,郭建维,刘卅,等。静态溶液聚合法合成SA—IP—SPS型高吸水性树脂[J],化工学报,2003,54(5):665-66.
    11.潘祖仁.高分子化学[M].北京:化学工业出版社,1997.
    12.Jin S.,K.E.G.A Study of Mechanism of the Free-Radical Ring-pening Polymerization of 2-Methylene-1,3-Dioxepane[J].Macromolecules,1997,5:3104-3106.
    1.邹黎明,高德川,王依民.制备工艺对农林用高吸水材料凝胶强度的影响[J].东华大学学报(自然科学版),2001,27(1):10-12.
    2.邹黎明,李艳,王依民.农林用高吸水材料的凝胶强度与吸水倍率关系[J].纺织学报,2001,22(1):4-6.
    3.Cui Ying-de(崔英德),Guo Jian-wei(郭建维),Liao Lie-wen(廖列文).PREPARATION OF ACRYLIC SUPERABSORBENTS WITH CORE SHELL STRUCTURE BY MODIFIED INVERSE SUSPENSION POLYMERIZATION[J].Journal of Chemical Industry and Engineering(China)(化工学报),2000,12:723-724.
    4.谢建军.二元共聚高吸水性树脂PAMA的吸液与保水性能[J].高分子材料科学与工程,2007,23(5):116-119.
    5.张克举,王乐明,李小红,等.魔芋粉—丙烯酸—丙烯酰胺接枝聚合成高吸水树脂[J].化工学报,2007,58(6):1592-1597.
    6.王乐明 李小红,张克举,等.反相悬浮法合成耐盐性超强吸水剂[J].胶体与聚合物,2007,25(1):31-33.
    7.刘艳三,邹新禧.聚丙烯酰胺吸水性树脂的改性[J].湘潭大学自然科学学报[J],1996,(4):46-48.
    8.何培新,肖卫东,黄鹤,等.高吸水性三元共聚树脂的合成及性能研究[J]高分子材料科学与工程,1999,15(6):65-68.
    9.宋彦风,崔占臣,陈欣芳.耐盐性聚丙烯酸盐类高吸水树脂的制备[J].应用化学,1995,12(1):117-118.
    10.崔英德,郭建维,廖列文,等.二元共聚高吸水树脂的合成与溶胀性能[J]化学报,2001,52(7):601-605.
    11.Lee Wen-Fu,Wu Ren-Jey.Journalof Applied Polymer Science,1995,62(7):1099-1114.
    12.路建美,朱秀林,王丽华,等.微波法合成两性高吸水性树脂[J].石油化工,1997,26(3):152-155.
    13.王进,于善普,李旭东.超高吸水树脂的吸水性和抗电解质性能的研究[J].印染,2000,(9):16-18.
    14.Yukio Mizutani.Supembsorbent Poly(acrylic acid)complex[J].Joumal of Applied Polymer Science,1996(61):735-739.
    15.Michael S.Johson,Comelis J.Veltkamp.Slructure and Functioning of waterr-storing Agricultural polyacryllamides[J].Science Food Agriculture,1995(36):759-793.
    16.Yano Kazutaka Method for the Production of absorbent resin[P],EP:0559476A1,1993.
    17.张留成,刘玉龙.互穿网络聚合物[M].北京:烃加工出版社,1990.
    18.[美]L.H.斯伯林.互穿聚合物网络和有关材料[M].北京:科学出版社,1987.
    19.Dibakar Dhara,C K Nisha,P R Chatterji.Superabsorbent hydrogels:interpenetrating networks of poly(acrylamide-co-acrylic acid)and poly(vinyl alcohol):swelling behavior and structural parameters[J].J.M.S.-Pure Appl.Chem.,1999,36(2):197-210.
    20.Qunwei Tang,Jianming Lin,Jihuai Wu,etc.Two-steps synthesis of a poly(acrylate-aniline)conducting hydrogel with an interpenetrated networks structure[J]Carbohydrate Polymers,2007,67(3):332-336.
    21.刘姣,汪晓军,万小芳,等.互穿网络高吸水树脂IPN的合成[J].合成化学,2007,15(2):181-183.
    22.Doo-Won Lim,Kee Jong Yoon,Sohk-Won Ko.Synthesis of AA-Based Superabsorbent Interpenetrated with sodium.PVA Sulfate[J].J.Appl.Polym.Sci.,2000,78:2525-2532.
    23.崔英德,郭建维,刘卅,等.静态溶液聚合法合成SA-IP-SPS型高吸水性树脂[J].化工学报,2003,5:665-669
    24.陈义康,李立华,田冶,等.PVP/PVA半互穿网络材料的制备及其性能研究[J].功能高分子学报,2005,18(3):80-83.
    1.润雄,姜斌,黄毓礼.高吸水性树脂吸水机理的探讨[J].北京化工大学学报,1998,25(3):20-25.
    2.J Chen,H Park,K Park.Synthesis of superporous hydrogels:hydrogels with fast swelling and superabsorbent properties.[J]Journal of biomedical materials research,1999,(44):53-62.
    3.Czupryna Stephen W.Superabsorbent polymer materials:A high performance,cost-effective alternative to viscous filling and flooding compounds for optical cable[J].Wire industry,2000,67(794):69-82.
    4.Tamatani H,Nagatomo A,Ajioka M,et al.Superabsorbent polymers synthesized from amino acids[J].Annual technical conference-ANTEC,conference proceedings,1995,2:1510-1513.
    5.Omidian H,Hashemi S A,Sammes P G,et al.Modified acrylic-based superabsorbent polymers(dependence on particle size and salinity)[J].Polymer,1999,40(7):1753-1761.
    6.于善普,李旭东.吸水凝胶的物理化学[J].弹性体,1997,7(3):49-57
    7.焦剑,雷渭媛.高聚物结构、性能与测试[M].北京:化学工业出版社,2002.166-168.
    8.Lokhande H T,Varadarajan P V.New guargum-based superabsorbent polymer synthesised using gamma radiation as a soil additive[J].Bioresourse technology:biomass,bioenergy,biowastes,conversion technologies,biotransformation,produetion technologies,1992,42(2):119-122.
    9.Omidian H,Hashemi S A,Sammes P G,et al.Modified acrylic-based superabsorbent polymers.Effect of temperature and initiator concentration[J].Polymer,1998,39(15):3459-3466.
    10.Liu song,Jin yifen,Zhou xiang.Preparation of superabsorbent polymers with increased saline absorbency[J].Journal of donghua university(English edition),2002,19(4):20-23.
    11.Ye hua,Zhao jianqing,Zhang yonghua.Novel degradable superabsorbent materials of silicate/acrylic-based polymer hybrids[J].Journal of applied polymer science,2004,91(2):936-940.
    12.Cutie Sergio S,Martin Steven J.Size-exclusion chromatography of cross-linked superabsorbent polymers[J].Journal of applied polymer science,1995,55(4):605-609.
    13.焦剑,雷渭媛.高聚物结构、性能与测试[M].北京:化学工业出版社,2003:22.
    14.金益芬,麻立春.高吸水聚合物的应用与发展[J].化工新型材料,2001,29(5):6-8.
    15.Doungporn Yiamsawas,Wiyong Kangwansupamonkon,Orawon Chailapakui,etc.Synthesis and swelling properties of poly[acrylamide-co-(crotonic acid)]superabsorbents[J].Reactive and Functional Polymers,2007,67:865-882.
    16.Zhenbin Chen,Mingzhu Liu,Xiaohua Qi,etc.Conductance method study on the swelling kinetics of the superabsorbent[J]Electrochimica Acta,2007,52(5):1839-1846.
    17.何天白,胡汉杰.功能高分子与新技术[M].北京:化学工业出版社,2001,1:112-113.
    18.Holden B.A,Sweeney D.F,et al.Epithelial Erosions Caused by Thin High Water Content Lens[J].Clin Exp Optom,1986,69:103-107.
    19.Omidian H,Hashemi S A,Sammes P G,et al.Model for the swelling of superabsorbent polymers[J].Polymer,1998,39(26):6697-6704.
    20.庄银凤,朱仲棋,陈留伟,等.聚乙烯醇一戊二醛凝胶的脱水行为[J].化学研究,1999,(1):17-20.
    21.Gales,J.R.Equilibrium Swelling and Syneresis Properties of Xanthan Gum-Cr (11Ⅰ)Gels.paper SPE 17382.Advanced Technology Series,1994,2:190-198.
    22.黎新明,崔英德,尹国强,等.共聚物水凝胶角膜接触镜材料的初期脱水行为[J].化工学报,2005.56(4):732-737.
    23.Yan Liu,Malcolm B Huglin.Observations by DSC on bound water structure in some physically erosslinked hydrogels[J].Polymer International,1995,37:63-67.
    24.Mathew C Chandy,Rajasekharan Pillai V N.Water sorption and water binding properties of crosslinked polyacrylamides:Effect of macromolecular structure and crosslinking[J].Polymer International,1995,37:39-45.
    25.Fat I.A new procedure for measuring a water transport characteristic of dehydrating hydrogels-How this characteristic controls dehydration of the lens in the eye[J].ICLC,1990,17:144-150.
    1.夏北成.环境污染物生物降解[M].北京:化学工业出版社,2002.
    2.钟世云,许乾慰,王公善.聚合物降解与稳定化(第一版)[M].北京:化学工业出版社,2002.
    3.P.Lanthong,R.Nuisin and S.Kiatkamjornwong.Graft copolymerization,charactedzation,and degradation of cassava stareh-g-acrylamide/itaconic acid superabsorbents[J].Carbohydrate Polymers,2006,66(2):229-245.
    4.George Nakhla,Jan Kochany,Andrew Lugowski.Evaluation of PCBs biodegradability in Suldges by various microbial cultures[J].Envdonmental Progress,New York,2002,21(2):85-93.
    5.Sigbritt Karlsson,Ann-christine Albertsson.Biodegradable Polymer and Environmental Interaction[J].Polymer engineering and science,1998,38(8):1251-1253.
    6.张小红,崔英德,潘湛昌.聚AA/海藻酸钠高吸水性树脂的制备及生物降解性能[J].化工学报,2005,56(6):1134-1137.
    7.周群英.环境工程微生物学(第二版)[M].高等教育出版,2000.
    8.孙立新,蒋展鹏,师绍琪.ATP法测定有机物好氧生物降解性的研究[J].环境科学,1996,17(1):1-4.
    9.Anne Calmon,etc.An automated test for measuring polymer biodegradation[J].Chemosphere2000,41:645-651.
    10.由英才.淀粉/甲基丙烯酸甲酯接枝共聚物及生物降解研究[J].高分子材料科学与工程,1994,(1):33-37.
    11.张惠珍,刘白玲.聚乙烯醇的分子量及纯解度对其生物降解性的影响[J].中国科学院研究生院学报,2006.23(5):607-613.
    12.逯敏飞,程永清,张芹,等.聚丙烯酸类聚合物的生物可降解性研究[J].材料科学与工程学报,2006,24(6):894-896.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700