浸铝层及NiTi形状记忆合金等离子电解氧化工艺与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了Q235钢、工业纯钛和NiTi形状记忆合金(SMA)表面等离子体电解氧化(PEO)的工艺与机理,分析了获得陶瓷层的微观组织结构、相组成与性能,主要包括以下内容:
     采用热浸镀铝(HDA)和PEO相结合的方法,在Q235钢基体表面获得一层陶瓷层。用扫描电镜(SEM)观察了复合膜层的断面及表面形貌,用X-ray衍射仪(XRD)分析了陶瓷层的相组成,特别是使用透射电镜(TEM)对陶瓷层进行了观察和选区电子衍射;综合分析了陶瓷层的形成过程随PEO时间和电流密度的变化规律,在此基础上研究了陶瓷层向内外生长的比例关系,提出了膜的形成及表面现象与对应的电压区间的关系模型;研究了陶瓷层的硬度、耐磨性能、孔隙率和耐蚀性能;对Q235钢表面热浸镀铝层PEO的反应机理进行了分析。结果表明:(1)复合膜层由三层构成,由内向外依次为Fe-Al合金层、纯热浸镀铝层和PEO陶瓷层,各层之间达到了冶金结合,陶瓷层表面存在较多的孔洞和裂纹。随着PEO时间的延长,陶瓷层表面颗粒变大,重熔、凝固程度增加,孔洞增大。(2)陶瓷层主要由晶态Al_2O_3相组成,并含有一定量的非晶态相。晶态Al_2O_3相包括κ-Al_2O_3、θ-Al_2O_3和β-Al_2O_3,其中β-Al_2O_3相含量最少。随着PEO时间延长,非晶态相逐步向晶态相转变。κ- Al_2O_3的晶体尺寸分布范围较宽,小者不足100 nm,大者超过了500 nm,甚至超过了TEM衍射区尺寸,可获得纯单晶特征的衍射花样。(3)陶瓷层的总厚度、向外生长厚度和成膜速率均随着PEO时间的延长有一极大值,其出现的时间随着电流密度的增大而缩短。当电流密度为1.5A/dm~2,PEO时间为12 min时,陶瓷层总厚度达到最大值,约为47.5μm。向内生长厚度均随着PEO时间的延长而增加。不断增加电流密度,陶瓷层逐步由向内生长为主转变为向外生长为主。(4)陶瓷层硬度达到了HV 1 300;当摩擦延长米为70 m时,其耐磨性能比淬火-回火45钢提高了2.3倍。耐NaCl溶液及海水的腐蚀能力远优于Q235钢基体。
     通过PEO处理,在工业纯钛表面获得一层陶瓷层。观察了陶瓷层的表面及断面形貌,分析了陶瓷层的相组成,研究了不同添加剂对陶瓷层耐蚀性能、表面形貌以及组成成分的影响,分析了工业纯Ti进行PEO处理的工艺性。结果表明:(1)工业纯Ti在含有硅酸钠、铝酸钠和磷酸钠的混合电解液中获得的陶瓷层表面较为平整,分布着若干蜂窝状、相互交错的微孔,不可见裂纹。陶瓷层与基体结合紧密。(2)在混合电解液中获得的陶瓷层主要由锐钛矿(anatase)型TiO_2相组成。(3)电解液中的元素参与了陶瓷膜层的生成过程。陶瓷层中除含有大量Ti和O元素外,还含有微量的Al、Si、P等元素以及电解液添加剂的元素如B、Ce等。(4)稀土元素Ce的添加,使陶瓷层中Al、Si、O、P的含量明显增多,陶瓷层耐10% H_2SO4溶液腐蚀的性能显著提高。
     采取表面去镍腐蚀前处理工艺与PEO相结合的方法,在NiTi SMA表面获得一层陶瓷层。对比研究了未进行去镍腐蚀、分别经硝酸溶液、H_2O:HNO_3:H_2SO_4=5:4:1(V)溶液和王水选择性腐蚀处理后NiTi SMA试样的表面形貌及其进行PEO处理的工艺性。分析了前处理工艺对陶瓷层表面形貌、成分以及相组成的影响。结果表明:(1) NiTi SMA直接进行PEO处理,工艺性很差,表面去镍腐蚀前处理工艺能够显著改善NiTi SMA的PEO工艺性。在常温王水中选择性腐蚀10 min后获得的试样,进行PEO处理的工艺性最好,电流—时间曲线与工业纯Ti在同一PEO条件下最为接近。(2)适合于NiTi SMA进行PEO处理的稳定电解液成分为:磷酸钠5 g/L,铝酸钠5 g/L,硅酸钠5 g/L,二氧化钛1 g/L,双氧水5 mL/L。(3) NiTi SMA表面陶瓷层的主要成分为Ti、Al、O、P、Si等元素,相组成主要是锐钛矿型TiO_2相。延长在王水中的去镍选择性腐蚀时间,陶瓷层中锐钛矿型TiO_2相增多。(4)经王水腐蚀10 min的NiTi SMA试样,其腐蚀均匀性最好,出现了类似海绵状的腐蚀结构。腐蚀后的NiTi SMA进行PEO处理,获得的陶瓷层质感很好,表面存在较多蜂窝状微孔,能够增强羟磷灰石等生物活性剂的附着能力。
Using the methods of plasma electrolytic oxidation (PEO), the structures,the phasecompositons and the properties of the ceramic coatings on Q235 steel, industrial pure Tiand NiTi shape memory alloy (SMA) were studied in this thesis. The main contents areas follows:
     Firstly, a hybrid method of hot-dipping aluminum (HDA) and PEO was employed tofabricate composite ceramic coatings on the surface of Q235 steel substrate. Thecross-sectional microstructure and surface morphologies were investigated with scanningelectron microscopy (SEM). The X-ray diffraction (XRD) was used to analyze the phasecompositon of the ceramic coatings. Particularly, the transmission electron microscopy(TEM) was used for selected area electron diffraction and to observe the structure of theceramic coatings. The evolutions of PEO behaviors changing with PEO time and currentdensity of the HDA coatings on Q235 steel substrate were analyzed. And on this basis,the ratio of the ingrown and outgrown coatings was investigated, the model of therelationship between the film formation, the surface phenomena of the coatings and thecorresponded voltage region was given. The cross-sectional microhardness, the wearresistance, the porosity and the corrosion resistance of the HDA-PEO treated specimenswere studied. At last, the film formation mechanism during the PEO process of the HDAcoatings on Q235 steel substrate was analyzed. The results indicate that: (1) Thecomposite coatings obtained by this hybrid method consists of three layers from inside tooutside, i.e. Fe-Al alloy layer next to the substrate, aluminum layer between the Fe-Allayer and the ceramic coatings which is as the top exterior layer. Metallurgical bondingwas observed between every of the two layers. There are many micro-pores andmicro-cracks in the PEO coatings. The grain size is biger and biger, the re-melting andsolidification of the grains is severe more and more and the size of the pore in theceramic coatings increases gradually with the increasing of the PEO time prolonged. (2)The phase composition of the ceramic coatings is mainly composed of crystal Al_2O_3oxides and a certain quantity of amorphous phase. The crystal Al_2O_3phase includesκ- Al_2O_3,θ- Al_2O_3andβ- Al_2O_3. Compared with the others, theβ- Al_2O_3content is the least.The amorphous phase convertes to the crystal phase gradually with the PEO timeprolonged. The grain size of theκ- Al_2O_3crystal is quite non-uniform. The smallest oneis less than 100 nm and the largest one is more than 500 nm. One of the largest grains isover the TEM diffraction zone and the single crystal diffraction patterns can be obtained.(3) The total thickness, outgrown thickness and growth rate have maximum values withthe PEO time prolonged. The time when the maximum value appears decreases with thecurrent density increasing. In our experiement conditions, the maximum value of the totalthickness is about 47.5μm and the corresponding current density and the PEO time are1.5A/dm~2and 12min respectively. The ingrown thickness of the ceramic coatingsincreases with the PEO time prolonged at any current density. The ingrown dominantturns to outgrown dominant little by little with the current density increasing. (4) Thehardness of the ceramic coatings is about HV1300. When the wearing sliding distance is70m, the wear resistance of the PEO samples is about 2.3 times higher than that of theheat treated 45 steel. The corrosion resistance of the PEO coatings is much better thanthat of the Q235 steel when immersed in the NaCl solution or in the sea water.
     Secondly, the ceramic coatings was deposited on the surface of the pure industrialtitanium by PEO method. The surface and cross-sectional morphologies of the ceramiccoatings were observed with SEM. The phase composition of the ceramic coatings wasanalyzed with XRD.The influence of several different additions on the corrosionresistance, the surface morphology, the component and the phase compositon of theceramic coatings was investigated. The PEO manufacturability of the pure industrialtitanium was studied. The results show that: (1) The surface of the ceramic coatingsobtained in the mixed electrolyte containing Na2SiO3, NaAlO2and NaH2PO4is even.There are many honeycomb-like and over lap micro-pores and invisible cracks in it. Thebongding of the ceramic coatings and the substrate is strong. (2) The phase compositionof the ceramic coatings obtained in the mixed electrolyte is mainly composed of anatase.(3) The element in the electrolyte takes part in the film formation. Besides large amountof Ti and O elements, there are little amount of Al, Si, P elements and the elements fromthe additons in the electrolyte such as B, Ce, et al. in the ceramic coatings. (4) The addition of Ce makes the contents of the Al, Si, O and P elements increase significantlyin the ceramic coatings, and the corrosion resistance of the ceramic coatings improveremarkablely.
     Thirdly, the ceramic coatings was obtained on the NiTi SMA substrate with PEOafter the pretreatment of selective delloying to remove the Ni from the surface of NiTiSMA. The PEO surface morphologies and the PEO manufacturability were studied of thesamples which were not pretreated and pretreated by immersed in the solutions of HNO3,H_2O:HNO_3:H_2SO_4=5:4:1 (V) and aqua regia respectively. The influence of thepretreatment technology on the surface morphologies, the ingredient and the phasecompositions of the ceramic coatings were analyzed. The results indicate that: (1) ThePEO manufacturability of the samples not pretreated by selective delloying was very bad.The selective delloying pretreatment technology can improve the PEO manufacturabilityof NiTi SMA prominently.When the dealloying time is 10 min in aqua regia at roomtempreture, the PEO manufacturability of the NiTi SMA is best and the curve ofcurrent-time is most close to that of the pure industrial titanium at the same experimentalconditions. (2) The ingredient of the electrolyte which is suitable for PEO of the NiTiSMA is as follows: NaH_2PO_45g/l, NaAlO_25g/l, Na_2SiO_3, TiO_21g/l and H_2O_25ml/l. (3)The main elements of the ceramic coatings on NiTi SMA are Ti, Al, O, P and Si. Thephase compositon is mainly composed of anatase. And the quantity of the anataseincreases with the selective delloying time prolonged immersed in aqua regia solutions.(4) The corrosion uniformity of the NiTi SMA is best when the delloying time is 10 minimmersed in aqua regia solutions and the spongy surface morphology can be seen withthe SEM. The texture of the PEO ceramic coatings on the NiTi SMA after delloying isdesired. There are many micro-pores in the honeycomb-like coatings which is beneficialto the adherence of the hydroxylapatite.
引文
[1] Xue Wenbin, Deng Zhiwei, Lai Yongchun, et al.. Size change of LY12 aluminum alloy inprocess of micro-arc oxidation[J]. TNMSC, 1997, 7(3): 140-142.
    [2] Wang Kai, Young Joo Kim, Yasunori Hayashi, et al.. Ceramic coatings on 6061 Al alloys byplasma electrolytic oxidation under different AC voltages[J]. Ceram. Soc. Jpn., 2009, 10:562-566.
    [3] Stojadinovic S, Vasilic R, Belca I, et al.. Characterization of the plasma electrolytic oxidation ofaluminium in sodium tungstate[J].Corros. Sci, 2010, 52: 3258-3265.
    [4] Yang Yue, Wu Hua. Effect of current density on corrosion resistance of micro-arc oxide coatingson magnesium alloy[J]. TNMSC, 2010, 20: s688 -s692.
    [5] Xue W B ,Wang C ,Chen R Y, et al.. Structure and properties characterization of ceramiccoatings produced on Ti - 6Al - 4V alloy by micro-arc oxidation in aluminate solution[J]. MaterLett., 2002, 52(6): 435-441.
    [6] Yerokhin A L, Shatrov A, Samsonov V, et al.. Oxide ceramic coatings on aluminium alloysproduced by a pulsed bipolar plasma electrolytic oxidation process[J]. Surf. Coat. Technol, 2005,199: 150-157.
    [7] Arrabal R, Matykina E, Viejo F, et al.. Corrosion resistance of WE43 and AZ91D magnesiumalloys with phosphate PEO coatings[J]. Corros. Sci, 2008, 50: 1744- 1752.
    [8] Lin Xiuzhou, Zhu Minhao, Zheng Jian-feng, et al.. Fretting wear of micro-arc oxidation coatingprepared on Ti6Al4V alloy[J]. TNMSC, 2010, 20: 537-546.
    [9] Kasalica B, Petkovic M, Belca I, et al.. Electronic transitions during plasma electrolyticoxidation of aluminum[J]. Surf. Coat. Technol, 2009, 203: 3000-3004.
    [10]高广睿,李争显,杜继红等.钛合金表面等离子体电解氧化膜层磨损性能研究[J].稀有金属快报, 2007, 26(9): 27-30.
    [11]刘耀辉,李颂.等离子体电解氧化技术国内外研究进展[J].材料保护, 2005, 38(6): 36-39.
    [12]张文华,胡正前,马晋.俄罗斯等离子体电解氧化技术研究进展[J].轻合金加工技术,2004,32: 25-29.
    [13]王德云,东青,陈传忠等.等离子体电解氧化技术的研究进展[J].硅酸盐学报, 2005, 33(9):1133-1138.
    [14]侯亚丽,刘忠德.微弧氧化技术的研究现状[J].电镀与精饰, 2005, 27(3): 24-28.
    [15] Gu W C, Shen D J, Wang Y L, et al.. Deposition of duplex Al2O3/aluminum coatings on steelusing a combined technique of arc spraying and plasma electrolytic oxidation[J]. Appl. Surf. Sci.,2006, 252: 2927-2932.
    [16] Pokhmurskii Vasyl, Nykyforchyn Hrygorij, Student Mykhajlo, et al.. Plasma ElectrolyticOxidation of Arc-Sprayed Aluminum Coatings[J]. J. Therm. Spray Technol., 2007, 16: 998-1004.
    [17] Shen Dejiu, Wang Yulin, Gu Weichao et al.. Microstructures and Phase Composition of ceramiccoatings on steel fabricated by hot dipping and micro-arc oxidation [J]. TNMSC, 2004, 14:170-173.
    [18] Wu Zhengqiang, Xia Yuan, Li guang, et al.. Micro mechanical properties of ceramic coatingfabricated by plasma electrolytic oxidation on hot-dip aluminized steel[J]. Acta Metall., 2008, 44:119-124.
    [19] David B, Miha B, Peter F, et al.. Review of materials in medical applications [J].Materials andGeoenvironment, 2007, 54(4): 471-499.
    [20]杨大智,刘晓鹏,齐民. NiTi形状记忆合金在生物医学领域的应用[C].中国仪器仪表学会材料学会第四届理事会第二次会议暨功能材料专题学术研讨会.中国仪器仪表学会.北京,2003: 27-31.
    [21] Widu F, Drescher D, Junker R, et al.. Corrosion and biocompatibility of orthodontic wires[J].Journal of Materials Science: Materials in Medicine, 1999,10: 275-281.
    [22] Chu C L, Chung C Y, Lin P H, et al.. Fabrication of porous NiTi shape memory alloy for hardtissue implants by combustion synthesis[J]. Mater. Sci. Technol. A, 2004, 366: 114-119.
    [23] Cui Zhongbo, Chen Minfang. Progress in research on surface modification of biomedicalnickel-titanium alloys[J]. Materials Review, 2007, 21: 79-81.
    [24] Young Taeg Sul, Carina B, Johansson A, et al.. The electrochemical oxide growth behaviour ontitanium in acid and alkaline electrolytes[J]. Medical Engineering & Physics, 2001, 23: 329-346.
    [25] Chenga F T, Shia P, Pang G K H, et al.. Microstructural characterization of oxide film formed onNiTi by anodization in acetic acid[J]. J. Alloys Compd., 2007, 438: 238-242.
    [26] Wong M H, Cheng F T, Man H C. Characteristics, apatite-forming ability and corrosionresistance of NiTi surface modified by AC anodization[J]. Appl. Surf. Sci., 2007, 253:7527-7534.
    [27] Chenga F T, Shia P, Man H C. Nature of oxide layer formed on NiTi by anodic oxidation inmethanol[J]. Mater. Lett, 2005, 59: 1516–1520.
    [28] Yang Chiaoling, Chen Fengling, Chen Sinnwen. Anodization of the dental arch wires[J]. Mater.Chem. Phys., 2006, 100: 268-274.
    [29] Liu Fu, Xu Jilin, Wang Fuping, Zhao Liancheng, Shimizu Tadao.Biomimetic deposition ofapatite coatings on micro-arc oxidation treated biomedical NiTi alloy[J]. Surf. Coat. Technol,2010, 204: 3294–3299.
    [30] Li Kejie, Li Quan’an.Research and application progress of micro-Arc oxidation on the alloys[J].Rare Metal Materials and Engineering, 2007, 36: 199-203.
    [31] Guo Baogang, Liang Jun,Chen Jianmin, etal.. Effects of oxidation time on microstructure andperformance of Micro-Arc oxidation coatings formed on Ti-6Al-4V alloy[J]. TNMSC, 2005, 15:981-986.
    [32] Xu J L, Liu F, Wang F P, et al.. The corrosion resistance behavior of Al2O3coating prepared onNiTi alloy by micro-arc oxidation[J]. J. Alloys Compd., 2009, 472: 276–280.
    [33] Xu J L, Liu F, Wang F P, et al.. Formation of Al2O3coatings on NiTi alloy by micro-arc oxidationmethod[J]. Appl. Phys. B, 2009, 9: 663–666.
    [34]刘福,徐吉林,王福平等.医用NiTi合金的表面改性研究进展[J].稀有金属材料与工程,2008, 38(4): 748-751.
    [35] Dignam M J, in J W. Diggle (ed.). Oxide and oxide films. Vol. 1. Marcal Dekker. New York,1972.
    [36] Vijh A K, in J W. Diggle (ed.). Oxide and oxide films, 1970, 177: 1545-1547 .
    [37] Magnussen Nancy Denise. Characterization of anodic oxide films[D]. U.S. Texas A&MUniversity, PhD Thesis, 1994: 5-10.
    [38]顾伟超.铝质材料等离子体电解氧化陶瓷层的特性和应用研究[D].北京:中国科学院研究生院博士学位论文, 2007: 6.
    [39] Rama Krishna L., Sudha Purnima A. and G. Sundararajan. A comparative study of tribologicalbehavior of microarc oxidation and hard-anodized coatings[J]. Wear, 2006, 261(10): 1095-1101 .
    [40]薛文斌,邓志威,来永春等.有色金属表面微弧氧化技术评述[J].金属热处理, 2000, (1):1-3.
    [41] Sluginov N P. Electric discharges in water[J]. Russ. Phys. Chen. Soc., 1980, 12(12):193.
    [42] Gunterschulzet A, Betz H. Neue untersuchungen ther die elektrolytische ventilwirkung[J]. Z.physic., 1932, (78): 196-210.
    [43] Gunterschulzet A, Betz H. Elektronenstromung in isolatoren bei extremen feldstarken[J]. Z.physic., 1934, (91): 70-96.
    [44]张文华,胡正前,马晋.俄罗斯微弧氧化技术研究进展[J].轻合金加工技术, 2004, 32(1):25-29.
    [45]赵玉峰,杨世彦,韩明武.等离子体微弧氧化技术及其展望[J].材料导报, 2006, 20(6):102-104.
    [46]王力霞,李延刚,李淑华.微等离子体氧化技术的研究进展[J].有色金属, 2009, 61(3):48-52.
    [47]ГордиенкоПС,идр.Микродуковоеоксидированиетитанаиегосплавов[M].Владивосток:Дальнаука, 1997: 30-56.
    [48]ГнеденковСВ,идр.ХимическийсоставантифрикционныхпокрытийполученныхметодоммикродуковогооксидированиянасплаветитанаВТ16[J].Защитаметаллов, 2001, 37 (2):192-196.
    [49]ГнеденковСВ,идр.Защитныеизносостойкиежаростойкиемикроплазменныепокрытиянаалюминии[J].Защитаметаллов,1999, 35 (5): 527-530.
    [50]РамазановаЖМ,идр.ПолучениеизносостойкихфункциональныхоксидныхпокрытийнасплавахАлюминияметодоммикродуговогооксидирования[J] .ФиХОМ, 2002, (2): 67-69.
    [51]МамаевАИ,идр.Параметрыимпульсныхмикроплазменныхпроцессовнаалюминиииегосплавах[J] .Защитаметаллов, 2000, 36 (6): 659–662.
    [52]СлоноваАИ,идр.Оролисостовасиликатногоэлектролитаванодно-катодныхмикродуговыхпроцессах[J] .Защитаметаллов, 1997, 33 (2): 208-212.
    [53]МамаевАИ,идр.Получениеанодно-оксидныхдекоративныхпокрытийнасплавахалюминияметодоммикродуговогооксидирования[J].ФиХОМ, 1999, (4): 41-44.
    [54]王德云,东青,陈传忠,雷廷权.微弧氧化技术的研究进展[J].硅酸盐学报, 2005, 33(9):1133-1138.
    [55]陈小红,曾敏,曹彪.微弧氧化电源的研究现状[J].热加工工艺技术与材料研究, 2008,3: 87-89.
    [56]薛文斌,邓志威,来永春等.铝合金微弧氧化陶瓷膜的形成过程及其特性[J].电镀与精饰,1996, 18(5): 3-5.
    [57]薛文斌,邓志威,来永春等.铝合金微弧氧化陶瓷膜的形貌及其相组成分析[J].表面技术,1997, 26(3): 21-22.
    [58]薛文斌,邓志威,来永春等.铝合金微弧氧化电流效率的测定[J].电镀与精饰, 1998,20(3):1-3.
    [59]薛文斌,邓志威,来永春等.铝合金微弧氧化过程中能量转换的实验研究[J].表面技术,1997, 26(3): 21-23.
    [60]薛文斌,邓志威,陈如意等.微弧氧化表面处理对铝合金拉伸性能的影响[J].金属热处理学报, 1999, 20(4): 1-4.
    [61]来永春,陈如意,邓志威等.微弧氧化技术在纺织工业中的应用[J].腐蚀科学与防护技术,1998, 10(1): 49-52.
    [62]蒋百灵,李均明,时惠英等.微弧氧化技术在镁合金防护处理中的应用[J].汽车工艺与材料, 2003, 5: 24-27.
    [63]卢立红,沈德久,王玉林.微弧氧化陶瓷膜层的性能及其在发动机活塞中的应用[J].材料保护, 2001, 34(1): 17-18.
    [64]来永春,陈如意.微弧氧化镀覆金属表面的方法及装置:中国专利, 1311354A[P], 2001-09-05.
    [65]李均明,蒋百灵,孙俊图等.铝、镁、合金管材及异型微弧氧化处理装置:中国专利,2755106Y[P], 2006-02-01.
    [66]高玉周,张会臣,王亮等.一种微等离子体氧化处理装置:中国专利, 201024219Y [P],2008-02-20.
    [67]刘耀辉,李颂,刘海峰.镁、铝合金在铝酸盐体系中微弧氧化表面处理电解液:中国专利,1737210A[P], 2006-02-22.
    [68]安茂忠,郭洪飞.一种镁合金表面微弧氧化的方法:中国专利, 1772968A[P], 2006-05-17.
    [69]张荣发,单大勇,韩恩厚.一种耐蚀性镁合金微弧氧化电解液及其微弧氧化方法:中国专利, 1796613A[P], 2006-07-05.
    [70]贲洪奇,姜兆华,李延平等.用于微弧氧化的高频大功率多波形电源:中国专利,1523745A[P], 2004-08-25.
    [71]狄士春.具有放电间隙吸收电路的高频大功率微弧氧化脉冲电源:中国专利, 1604443A[P],2005-04-06.
    [72]曾敏,曹彪,陈和平.量级逆变式微弧氧化电源及其输出调节控制方法:中国专利,101311325A[P], 2008-11-26.
    [73]张永君.一种微弧氧化过程电参数的控制方法:中国专利, 101275262A[P], 2008-10-01.
    [74]张永君.电压阶跃微弧氧化方法:中国专利, 101275263A[P], 2008-10-01.
    [75] Xue W, Wang C, Li Y, et al.. Effect of micro-arc discharge surface treatment on the tensileproperties of Al Cu Mg alloy[J]. Mater Lett, 2002, 56: 737 -743.
    [76] Krysmann W, Kurze P, Dittrich H K. Process characteristics and parameters of anodic oxidation byspark discharge (ANOF)[J]. Cryst. Res. Technol., 1984, 19(7): 973-979.
    [77] Kurze P, Krymann W. Application fields of ANOF layers and composites[J]. Cryst. Res. Technol.,1986, 12(21): 1603-1609.
    [78] Yang Guangliang, LüXianyi, Bai Yizhen, et al.. The effects of current density on the phasecomposition and microstructure properties of micro-arc oxidation coating [J]. J. Alloys Compd.,2002, 345(1-2): 196-200.
    [79] Long B H, Wu H H, Long B Y, et al.. Characteristics of electric parameters in aluminium alloyMAO coating process[J]. J. Phys. D:Appl. Phys., 2005, 38(18): 3491-3496.
    [80] Yerokhin A L, Shatrov A, Samsonov V, et al.. Oxide ceramic coatings on aluminium alloysproduced by a pulsed bipolar plasma electrolytic oxidation process[J]. Surf. Coat. Technol., 2005,199(2-3): 150-157.
    [81] Sun Xuetong, Jiang Zhaohua, Yao Zhongping, et al.. The effects of anodic and cathodic processeson the characteristics of ceramic coatings formed on titanium alloy through the MAO coatingtechnology[J]. Appl. Surf. Sci., 2005, 252(2): 441-447.
    [82] Xin Shigang, Song Lixin, Zhao Ronggen, et al.. Influence of cathodic current on composition,structure and properties of Al2O3coatings on aluminum alloy prepared by micro-arc oxidationprocess[J]. Thin Solid Films, 2006, 515(1): 326-332.
    [83] Guan Yongjun and Xia Yuan. Correlation between discharging property and coatingsmicrostructure during plasma electrolytic oxidation[J]. Transactions of Nonferrous MetalsSociety of China, 2006, 16(5): 1097-1102.
    [84] Han Inho, Choi Jaihyuk, Zhao Baohong, et al.. Changes in anodized titanium surfacemorphology by virtue of different unipolar DC pulse waveform[J]. Surf. Coat. Technol., 2007,201(9-11): 5535-5536.
    [85] Smit M A, Hunter J A, Sharman J D B, et al.. Effect of organic additives on the performance oftitanium-based conversion coatings[J]. Corros. Sci., 2003, 45: 1903-1920.
    [86] H Duan ongping, Yan Chuanwei and Wang Fuhui. Effect of electrolyte additives on performanceof plasma electrolytic oxidation films formed on magnesium alloy AZ91D[J]. Electrochem. Acta.2007, 52(11): 3785-3793.
    [87] Yerokhin A L, Nie X, Leyland A, et al.. Plasma electrolysis for surface engineering[J]. Surf. Coat.Technol., 1999, 122(2-3): 73-93.
    [88] Wang L and Nie X. Silicon effects on formation of EPO oxide coatings on aluminum alloys[J].Thin Solid Films, 2006, 494(1-2): 211-218.
    [89] Xue Wenbin, Wu Xiaoling, Li Xijinet, al.. Anti-corrosion film on 2024/SiC aluminum matrixcomposite fabricated by microarc oxidation in silicate electrolyte[J]. J. Alloys. Compd., 2006,425(1-2): 302-306.
    [90] Li Xijin, Wu Xiaoling, Xue Wenbin, et al.. Structures and properties of ceramic films on TiAlintermetallic compound fabricated by microarc oxidation [J]. Surf. Coat. Technol., 2007,201(9-11): 5556-5559.
    [91]孙志华,刘明,国大鹏等.微弧氧化技术的发展现状和存在问题分析[J].装备环境工程,2009, 6(6): 46-49.
    [92] Vijh A K. Sparking voltages and side reactions during anodization of valve metals in terms ofelectronTunneling[J]. Corros. Sci, 1971, 11(6): 411-417.
    [93] Yahalo J, Proc Shmp. Oxide-electrolyte interfaces[M]. USA:The Journal Electrochem Inc, 1973:5-10.
    [94] VAN T B, Brown S D, Wirtz G P. Mechanism of anodic spark deposition[J]. Am. Ceram. Soc. Bull,1977, 56(6): 563-566.
    [95] konopisov S I. Theory of electrical breakdown during formation of barrier anodic films[J].Electrochem Soc., 1977, 135(11): 2685-2700.
    [96] Albella J M, Montern I, Martin-Duart J M. Electron injection and avalanche during the anodicoxidation of tantalum[J]. Electrochem Sci., 1984, 131(5): 1101—1104.
    [97] Nikolaev A V, Peshchevitskii B I. A new phenomenon electrolysis[J]. Lzv Sib Otd Akad NaukSSSR, Ser Khim, 1977, 34(5): 32-35.
    [98] Rudnev V S, Gordienko P S, Kurnosova A G, et al.. Special features of formation and properties ofcoatings produced by microarc treatment on aluminum alloys[J]. Phys. Chem. Miner., 1990, 24(3):261-265.
    [99] Apelfeld A V, Bespalova O V, Borisov A M, et al.. Application of the particle backscatteringmethods for the study of new oxide protective coatings at the surface of Al and Mg alloys[J].Nucl. Instr.and Meth. B., 2000, 161: 553-557.
    [100]Yerokhin A L, Snizhko L O, Gurevina N L, et al.. Discharge characterization in plasmaelectrolytic oxidation of aluminium[J]. J. Phys. D: Appl. Phys., 2003, 36(17): 2110-2120.
    [101]徐晋勇,王斌,高原.铝及铝合金等离子体微弧氧化技术的研究[J].机械, 2006, 33 (9) :124
    [102]李哲奎,顾广瑞,吴汉华等.电压对纯钛微弧氧化膜生长特性的影响[J].延边大学学报(自然科学版) , 2006, 32(4): 244-247.
    [103]付翀,郑晶,李尧.电参数对铝合金微弧氧化陶瓷层结构特性的影响[J].西安工程大学学报,2008, 22 (4): 490-492.
    [104]吕维玲,陈体军,马颖等. AZ91D镁合金恒定小电流密度微弧氧化工艺[J].中国有色金属学报, 2008, 18 (9): 1590 - 1595.
    [105]李颂,刘耀辉,庞磊.电源频率对铸铝合金微弧氧化陶瓷层的影响[J].材料科学与工艺,2008, 16(2): 287-289.
    [106]王亚明,雷廷权,蒋百灵等.交流窄脉冲占空比调制对钛合金微弧氧化陶瓷涂层的影响[J].稀有金属材料与工程. 2005, 34(2): 329-333.
    [107]Hussein R O, Nie X and Northwood D O. Influence of process parameters on electrolytic plasmadischarging behaviour and aluminum oxide coating microstructure[J]. Surf. Coat. Technol. 2010,
    (205): 1659-1667.
    [108] Gu Weichao, Shen Dejiu,Wang Yulin, et al.. Deposition of duplex Al2O3/aluminum coatings onsteel using a combined technique of arc spraying and plasma electrolytic oxidation[J]. Appl. Sur.Sci., 2006, 252(8): 2927-2932.
    [109]Nie X, Meletis E I, Jiang J C, et al.. Abrasive wear/corrosion properties and TEM analysis ofAl2O3coatings fabricated using plasma electrolysis[J]. Surf. Coat. Technol., 2002, 149(2-3):245-251.
    [110] Oh Yongjun, Mun JungIl and Kim Junghwan. Effects of alloying elements on microstructureand protective properties of Al2O3coatings formed on aluminum alloy substrates by plasmaelectrolysis[J]. Surf. Coat. Technol. 2009, (204): 141-148.
    [111]Wirtz G P, Brown S D and Kriven W M. Ceramic coatings by anodic spark deposition[J]. Mater.Manuf. Processes .1991, 6(1): 85-115.
    [112] Leonard L, Gruss, and William McNeill. Anodic spark reaction products in aluminate, tungstateand silicate solutions[J]. Electrochem. Technol. 1963, 1(9-10): 283-287.
    [113] Wei Tongbo, Yan Fengyuan and Tian Jun. Characterization and wear- and corrosion-resistanceof microarc oxidation ceramic coatings on aluminum alloy[J]. J. Alloys Compd., 2005, 389(1-2):169-176.
    [114] Xue Wenbin, Wang Chao, Deng Zhiwei, et al.. Evaluation of the mechanical properties ofmicroarc oxidation coatings and 2024 aluminium alloys subatrate[J]. J. Phys.: Condens. Matter.,2002, 14(44): 10947-10952.
    [115]沈德久,王玉林,卢立红等.铝合金表面微弧氧化自润滑陶瓷覆层[J].材料保护, 2000, 33(5):51-52.
    [116]高殿魁,姜桂荣,沈德久等.微弧氧化减摩陶瓷层的生成及其影响因素[J].中国有色金属学报, 2001, 11(2): 199-202.
    [117]袁洋,罗状子.铝合金表面微弧氧化耐磨润滑涂层[J].材料保护,2002,35(5): 4-6.
    [118]熊仁章,盛磊,郭允光.铝合金微弧氧化陶瓷层的性能研究[J].材料保护, 2000, 33 (7):13-14.
    [119]王玉林,沈德久,杨万和.铝材微弧氧化陶瓷膜的电绝缘性[J].轻合金加工技术, 2001,29(10): 34-35.
    [120]沈德久,廖波,王玉林.影响铝微弧氧化陶瓷层电绝缘性的工艺因素探讨[J].材料开发与应用, 2002, 12(4): 22-24.
    [121]Denisenko V A, Pokrovskii V A, Osipova N I, et al.. Mass spectrometric investigation of TiO2films obtained by microarc oxidation[J], Prot. Met, 1989, 25(6): 765-766.
    [122]Kandinskii M P, Gordienko P S, Ziatdinov A M. X-ray electron study of titanium coatingsprepared in phosphate electrolyte by the microarc oxidation method[J], Zhurnal NeorganicheskoiKhimii, 1989, 34(4): 823-826.
    [123]屠振密,朱永明,李宁等.钛及钛合金表面处理技术的应用及发展[J].表面技术, 2009, 38(6):76-78.
    [124] Wang Yaming, Jiang Bailing, Lei Tingquan, et al.. Dependence of growth features of microarcoxidation coatings of titanium alloy on control modes of alternate pulse[J]. Mater. Lett., 2004,58: 1907-1911.
    [125]王亚明,蒋百灵等. Na2SiO3系溶液中Ti6Al4V微弧氧化陶瓷膜的结构与力学性能[J].稀有金属材料与工程, 2004, 33(5): 502-506.
    [126]薛文斌,邓志威等. Ti-6Al-4V在NaAlO2溶液中微弧氧化陶瓷膜的组织结构研究[J].材料科学与工艺, 2000, (9): 41-45.
    [127]武立志,解念锁. Ti6Al4V钛合金微弧氧化工艺研究[J].陕西理工学院学报(自然科学版),2011, 27(2): 1-4.
    [128] Wang Yaming, Lei Tingquan, Jiang Bailing, et al.. Growth microstructure and mechanicalproperties of microarc oxidation coatings on titanium alloy in phosphate containing solution[J].Appl. Surf. Sci., 2004, 233: 258-267.
    [129]Wheeler J M, Collier C A, Paillard J M, et al.. Evaluation of micromechanical behaviour ofplasma elyctrolytic oxidation (PEO) coatings on Ti-6Al-4V[J]. S Surf. Coat. Technol., 2010,
    (204): 3399-3409.
    [130]Yerokhin A L, Nie X, Leylad A, et al.. Characterization of oxide films produced by plasmaelectrolytic oxidation of a Ti-6Al-4V alloy[J]. Surf. Coat. Technol., 2000, 130: 195–206.
    [131]Coathup M J, Blackburn J, Goodship A E, et al.. Role of hydroxyapatite coating in resisting wearparticle migration and osteolysis around acetabular components[J]. Bio-Med. Mater. Eng., 2005,26 (190): 4161.
    [132] Yang Xizhen, Yu Sirong, Li Wen. Preparation of bioceramic films containing hydroxyapatiteson Ti-6Al-4V alloy surface by the micro-arc oxidation technique[J]. Mater. Res. Bull., 2009,
    (44): 947-949.
    [133]杨喜臻,于思荣,杨龙.生物医学钛合金微弧氧化涂层的表面特征[J].长春大学学报, 2007,17(3): 30-41.
    [134]憨勇,徐可为.微弧氧化生成含钙磷氧化钛生物薄膜的结构[J].无机材料学报, 2001, 16(5):952- 956.
    [135]陈建治,张富强,石玉龙,王磊,闫凤英.纯钛表面微弧氧化法制备含羟基磷灰石氧化膜的实验研究[J].生物医学工程学杂志, 2008, 25(1): 127-130.
    [136]周慧,刘正堂,李争显等.钛合金表面微弧氧化膜及抗氧化性能的研究[J].稀有金属材料与工程, 2005, 34(11): 1835-1838.
    [137] Han Yong, Hong Seonghyeon, Xu Kewei. Synthesis of nanocrystalline titania films by micro-arcoxidation[J]. Mater. Lett, 2002, 56: 744-747.
    [138]郭宝刚,梁军,刘惠文等. Ti-6Al-4V微弧氧化陶瓷膜微观结构与相组成研究[J].稀有金属材料与工程. 2005, 34(12): 1897-1900.
    [139]吴晓宏,姜兆华,辛世刚等.钛合金微等离子体氧化表面陶瓷膜耐腐蚀性研究[J].高技术通讯,2002,7: 80-82.
    [140]赵阳,钱翰城, Samir H.Awad等.钛合金微等离子体氧化技术研究动态[J].表面技术, 2005,34(3): 9-12.
    [141]Dittrich K H, krysmann W, Kurze P, et al.. Structure and properties of ANOF layers [J]. Cryst.Res. Technol., 1984, 19: 93-99.
    [142]Xue Wenbin, Deng Zhi Wei, Lai Yongchun, et al.. The properties and the processes of themicro-arc oxidation ceramic coatings on aluminum alloys[J]. Plat. Surf. Finish., 1996, 18: 3-5.
    [143]朱日章,杨德钧,沈卓申等.金属腐蚀学[M]. 1985年5月第一版.冶金工业出版社,1993:1
    [144]旷亚非,候朝辉,刘建平.阳极氧化过程中电击穿理论的进展[J].电镀与涂饰, 2000,19(3): 38-41.
    [145]Han Y, Hong S H, Xu K. Structure and in vitro bioactivity of titania-based films by micro-arcoxidation[J]. Surf. Coat. Tech., 2005 , 168 (2-3): 249.
    [146]Jonah Erlebacher, Michael J Aziz, Alain Karma, et al.. Evolution of Nanoporosity inDealloying[J]. Nature. 2001, 410: 450~451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700