应用家蝇乙酰胆碱酯酶进行农药残留快速检测的技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
确定了酶标动力学法测定乙酰胆碱酯酶活性的最佳反应体系为:pH为7.4(0.02mol/L)的磷酸缓冲液,0.4mmol/L的DTNB和2mmol/L的ATChI。酶终点法测定AChE的最佳反应体系为:0.15mmol/L的DTNB乙醇溶液,6mmol/L的ATChI,2头.ml~(-1)的酶液,反应时间10min。
     采用药膜法比较了Org、JS、NJ等3个不同家蝇种群分别对甲胺磷、二嗪农、久效磷、灭多威、呋喃丹、甲基对硫磷等6种杀虫剂的敏感性,结果表明Org品种对除二嗪农以外的5种杀虫剂均比JS敏感,而NJ种群最不敏感;同时采用酶动力学法比较了这3种不同家蝇种群头部乙酰胆碱酯酶(AChE)对甲胺磷和灭多威的敏感性,结果发现Org品种的头部AChE对灭多威和甲胺磷最为敏感,其次是JS,最不敏感的是NJ种群。这说明家蝇对有机磷和氨基甲酸酯类杀虫剂的敏感性与其头部AChE对这两种药剂的敏感性具有相关性,因此,通过选育对这两类药剂更加敏感的家蝇品系可以提高其AChE对药剂的敏感性。由于Org种群相对其它种群更加敏感,故以该种群的家蝇为亲本能相对快速选育出更加敏感的家蝇品系,从而用作提取敏感AChE的酶源。
     以Org家蝇种群为亲本,进行单对选育4代后发现敏感单对家蝇后代的毒力与其原始亲本种群(Org)相比,其LC_(50)虽然有所下降,但其置信区间重叠;测定甲胺磷和灭多威对选育的家蝇品系及原始品系乙酰胆碱酯酶的抑制中浓度(IC_(50))发现单对选育并没有使家蝇头部乙酰胆碱酯酶对药剂的敏感性有显著提高,说明Org家蝇种群已经对甲胺磷和灭多威这两种药剂非常敏感,通过单对选育很难使其敏感性发生显著变化。
     家蝇羽化后,其头部AChE对药剂的敏感性随羽化后天数的不同而变化,且对不同药剂敏感性变化趋势不同。但家蝇羽化后第3d其头部的AChE对甲胺磷和灭多威两种药剂敏感性畏高,其IC_(50)分别为3.001±0.031 μg/ml和0.319±0.003 μg/ml。在家蝇羽化第3d,不同部位AChE的活性及对不同药剂的敏感性差异较大,但以头部AChE活性最高,且对甲胺磷和灭多威均最为敏感。因此以羽化3d家蝇头部AChE作为酶源最佳。
     不同药剂对乙酰胆碱酯酶的抑制率受抑制时间和温度的影响程度不同。灭多威对乙酰胆碱酯酶的抑制率受时间的影响不大,在抑制30min后,抑制率才开始明显下降;
    
    应用家蝇乙酞胆碱酷酶进行农药残留快速检测技术研究
    而甲胺磷对乙酞胆碱醋酶的抑制率则随着抑制时间延长而增加。灭多威对乙酞胆碱醋
    酶的抑制率随温度的上升而显著降低,甲胺磷对酶的抑制率在25℃一35℃时,随温度
    的增加而增加,在35℃时达到最大值,而后开始下降。由于在农药残留测定时要求快
    速且检测限低,常用高毒农药又以有机磷类为主,因此选用的抑制时间为巧min,温
    度为35℃。
     在相同测定条件下,加入相同浓度不同体积的农药对AChE的抑制程度也有一定
    的影响,在体积较小时影响不大,但当体积相差较大时,如o.lml和4ml,两者对AChE
    的抑制率相差在10%以上。考虑到实际检测时样本提取液的体积,建议加药量为3ml。
     速测仪和酶终点法1测定市售酶粉(BuchE)与自制粗酶液(AChE)对杀虫剂的
    敏感性和检出限的结果并不一致。研究发现,速测仪测定市售酶粉对甲胺磷和灭多威
    的敏感性大于自制粗酶液;甲胺磷对自制粗酶液检出限小于其对市售酶粉,灭多威对
    自制粗酶液的检出限仅为市售酶粉的1 .06倍。而酶终点法测得甲胺磷对市售酶粉的检
    出限低于自制粗酶液;灭多威对市售酶粉的敏感性低于自制粗酶液,检出限高于自制
    粗酶液。
     采用3种方法测定了家蝇头部乙酞胆碱醋酶对水溶液和青菜中杀虫剂残留的检出
    限。从结果来看,酶动力学法最为理想,测得甲胺磷和灭多威在水溶液的检出限分别
    为0.502件g/ml和0.040林g/ml,在青菜中分别为7.452抖g/ml和0.151协g/ml。其中青菜
    中甲胺磷的检出限是水溶液中的9.29倍,灭多威是水溶液中的378倍。
     将家蝇乙酞胆碱醋酶制成冻干粉在4℃下保存130d后,测得酶活性为1625士
    0.031(O D.mg一1·min一l),比初提取的粗酶液活性下降了12.9%,与保存第ld的酶活性
    相比,下降了8.6%。
To detection the activity of acetylcholinesterase of housefly (Musca domestica), two methods were used, when the kinetic method was used, the optimum condition was: 0.02mol/L phosphate buffer with pH value of 7.4, 0.4 mmol/L 5,5' -dithiobis-(2-nitrobenzoic acid)(DTNB), 2mmol/L Achl. And when the terminal condition was: 0.02mol/L phosphate buffer with pH value of 7.4, 0.15mmol/LDTNB ehyl alchol solution, 6mmol/L AChI, 2 head/ml enzyme solution and react for 1 Omin.
    The sensitivity of three Musca domestica populations (Org, JS and NJ) to four organophosphrous and two carbamate insecticides were determined by glass vial bioassay method. The results showed that among the three populations, the laboratory population Org was most sensitive to all the insecticides tested except diazion, the NJ population was most insensitive. The sensitivity of AChE to methamidophos and methomyl were also tested, the results indicated that the AChE of Org was also more sensitive to the two insecticides than those of other two populations. These results demonstrated that the sensitivity of Musca domestica to organophosphates and carbamates determined by traditional bioassay method were closely correlated with the sensitivity of their AChE. Therefore, the sensitivity of AChE could be improved by breeding more sensitive housefly in laboratory. The preparation of susceptible housefly maybe speed up by selecting the parents from Org population.
    The susceptible population was selected 4 generations in this study. Comparing to the origin parent housefly, the LC50 values of the offspring to methamidophos and methomyl decreased, but the confidence limits overlapped. The IC50 of methamidophos and methomyl to AChE in the selected strains and original parent houseflies were also conducted. The results showed that the sensitivity of AChE weren' t improved significantly by single pair selection method, which is consistent to the bioassay results, that suggested that the Org population was very sensitive to methamidophos and methomyl, and it was difficult to get more sensitive offsprings by the traditional selection of single pair selection method.
    The sensitivities of AChE in different old housefly were also studied, the results
    
    
    
    showed that the sensitivity of AChE to methamidophos and methomyl was most sensitive in the third day after emergence. The IC50 of methamidophos and methomyl to the AChE was 3.001 +0.03 lug/ml and 0.319+0.003ug/ml respectively. We also found that the specific activity of AChE in the head part was higher than those in other parts of the housefly. So AChE in the head part of 3-days old of housefly was used for pesticides residue determination.
    The inhibition rate of pesticides to AChE were determined under different temperature and reaction time. The results showed that the inhibition rate of methomyl to AChE was changed evidently with the inhibition time increased and it began to decrease after inhibition for 30s. While the inhibition rate of methamidophos increased all the time. The inhibition rate of methomyl decreased as the temperature going up, but the inhibition rate of methamidophos increased at the range of 25C to 35C, and reached the highest at 35C. Because the rapid and lower limit were required for detection the pesticide residue, and the organophosphate were maily used toxic pesticides, so the inhibition time and temperature were defined as 15 min and 35C respectively.
    The study revealed that the inhibition rate increased as the volume of pesticides increased, and when the volume was 0.4ml, the inhibition rate was ten percent more than that of 0.1 ml.
    The sensitivity and detection limit of commercial enzyme powdery and extracted crude liquid enzyme were compared by the rapid detection instrument and terminal method. Commercial enzyme powdery were more sensitive to methamidophos and methomyl than crude liquid enzyme, comparing with the commercial enzyme powdery, the detection limit of crude liquid to methamidophos was higher, to Methomyl, which was only 1.06 fold when the rapid detection instrument
引文
1. Abad J M, Pariente F, Hemandez L, Abruna H D and Lorenze E. Determination of organophosphorus and earbamate pesticides using a piezoeleltric. Biosensoe. 1998, 70: 2848-2858.
    2. Aldridge, W N and Reiner, A. Enzyme inhibitors as substrates. Nortn-Holland Publishing Co, London. 1972.
    3. Anis N A. A fiber-optic immunosensor for detecting parathion.Anal Lett. 1992, 25: 627-635.
    4. B.Chmann T T, Leca, B, Villatte F, Marry-.J, Foumier D, Schmid, R D. Improved multianalyte detection of organophosphates and carbamates with disposable multiresidue biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural networks. Biosensors and Bioelectronics. 2000, 15: 193-201.
    5. Boublik Y, Saint-Aguet P, Lougarre A, Amaud. M et al. Acetylcholinesterase engineering for detection of insecticide residues.Protein Engineering.2002, 15: 43-50.
    6. Bradford M M. A rapid and sensitive method for the quantitation of proteindye binding. J Anal Biochem. 1976,72: 248-254.
    7. Brandon D L, Binder R G., Bates A H. Agric-Food-Chem., 1994, 42 (7):1588-1594.
    8. Bushway B J, Fan T S. Pesticide analysis using immunoassay. J of AOAC International. 2001, 84 (1): 123.
    9. Cagnini A, Palchetti I, Lionti I, Mascini M, Turner A P F. Disposable ruthenized screen-printed biosensors for pesticide monitoring. Sensors and Actuators B. 1995, 24-25: 85-89.
    10. Devonshire A L, Moores G D. A carboxy lesterase with broad substrade specificity cause organophosphorcus, carbamate and pyrethroid resistance in peACh patato aphids (Myzus Persicae).Pestic Biochem physiol. 1982, 18: 235-246.
    11. Devonshire A L. Studies of acetylcholinesterase from houseflies (Musca domestina L.) resistant and susceptible to organophosphous insecticides. Biochem. 1975,149: 463-469.
    12. Dogherni S M, Gad-Alla S A, Eisves S M A, Almaz M M and Salama E J. Organochlorine and organophosphorus pesticides residues in food from Egyptian Local Markets. J AOAC Int. 1996, 79: 949-952.
    13. E. Hanak, E. Boutrif, P. Fabre, M. Pineiro,.Food safely management indeveloping countries. Proceeding of international workshop. 2002:11-13.
    14. EC(European Communities).Commission Directive 1999/50/EC of 25 may 1999 amending Directive 91/321/EEC on infant formulae and follow-on formulae.Official Journal of the European Communities,NOL 139,02/06/1999,P0029.
    15. Ellman GL, Courtey D, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase. activity. Biochem Pharmac. 1961, 7: 88-95.
    16. Elliion J, Sauve F and Selwyn J. Multiresidue method for the determination of residue of 251 pesticides in fruits and vegetables by gas liquid chromatography mass spectrometry and liquid
    
    chromatography with fluorescence detector. J.AOAC Int. 2000, 83: 698-713.
    17. Eregorich C D, Vallejo RP, Getting R R, et al. Development ofa radioimmuno assay for parathion. J Agric Food Chem. 1981, 29: 559-563.
    18. Estrada-Mondaca S, Foumier D. Stabilisation of recombinant Drosophica acetycholinesterase. Protein Expression and Purification. 1998, 12: 166.
    19. Evemin S A. Immunoanalysis of agrochemicals emerging technologies/American Chemical Society Meeting.American Chemical Society. 1995: 223-234.
    20. Evtugyn G A, Budnikov H C and Nikolskaya E B. Influence of surface-active compounds on the response and sensitivity of cholinesterase biosensors for inhibitor determination. Analyst. 1996, 121: 1911-1915.
    21. Evtugyn, C. A., Ivanov, A..N., Gogol, E. V., Marty, J.-L., Budnikov, H. C. Amperometric flow-injection biosensor for the determination of cholinesterase invhibitors. Analytica Chimica Acta. 1999,38: 13-21.
    22. Fournier E A. Modification of acetylchalinesterase as a mechanism of resistance to insecticides. Biochem Physiol. 1994, 108: 19-31.
    23. Gaberlein S, Knoll M, Spener F, Zaborosch, C. Disposable potentiometric enzyme sensor for direct determination of organophosphorus insecticides. Analyst. 2000, 125: 2274-2279.
    24. Ghindilis A L, Morzunova H C, Barmin A V, Kurochkin I N. potentiometric biosensors for cholinesterase inhibitor analysis based on mediatorless bioelctrocatalysis. Biosensors and Bioelectronics. 1996, 11: 837-880.
    25. Gonaway J E. New trends in analytical technology and methods for pesticide residue analysis. J Assoc of Anal Chem. 1991, 74 (5): 715-717.
    26. Goorghiou G P, Saito T. Pest resistance to pesticides. Plenum press, New York and London. 1983: 769-792.
    27. Gunther G A, Bilitewski U. Characterisation of inhibitors of acetylholinesterase by an automated amperometric flow-injection system. Analytica Chimica Acta. 1995, 300:117-125.
    28. Gunther G A. Renvau S. Residue Reviews. Editor Gunther G A, 1970, 34: 1-26.
    29. Harel M, Kryger G., Rosenberry T L, Mallender T L, Fletcher R J, Guss J M, Silman I, Sussman J L. Three-dimensional structure of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Science. 2000, 9: 1063-1072.
    30. Hart, A L, Collier, W A, Janssen, D. The response of screenprinted enzyme dectrodes containing cholinesterases to organophosphates in solution and from commercial formulations. Biosensors and Bioelectronics. 1997 (12): 645-654.
    31. Heim J, Schmidt-Dannert C, Atomi H, Schmid R D. Functional expression of a mammalian acetycholineterase in pichia pastoris: comparison to acetycholinesterase, expressed and reconstituted from Escherichia Coli. B iochimica Biophysica Acta. 1998, 1396:306-319.
    32. Hellen brand K, Krupka R M. The pH dependence of an insect (Musca domestica)
    
    acetylcholinesterase. J Comp Biochem Physiol. 1974,47B:271-278.
    33. Hunter K W, Lenz D E. Detection of a radio immunoassay for parathion. Life Sci. 1982, 30: 355-361.
    34. Itak J A,Selisker M Y, Olson E G, Fleeker J R. Validation of a paramagnetic particle based ELISA for the quantitative determination of carbaryl in water. Bull Environ Contam Toxicol. 1993, 51 (2): 260-267.
    35.James E C.农药残留分析技术与方法的新动向.农药译丛.1993,3:50-54.
    36. Jeanty G, Marty J -L. Detection of paraoxon by continuous flow system based enzyme sensor. Biosensors and Bioelectronics. 1997(13): 213-218.
    37. Kindervater R, Kunecke W, Schmid R D. Exchangeable immobilized enzyme reactor for enzyme inhibition tests in flow-injection analysis using a magnetic device. Determination of pesticides in drinking water. Analytica Chimiea Acta. 1990, 234:113-117.
    38. Krotzky A J, Eeeh B. Immunoassays for residue analysis ofagrochemicals proposed guide lines for procision, stsndardization and quality control.. Pure and Appl Chem. 1995, 76: 2065-2088.
    39. Kumaran S, Tran-Minh C. Determination of organophosphorous and carbamate insecticides by flow injection analysis. Analytical Biochemistry. 1992, 200:187-194.
    40. Kumart B, Madan V K, Kumar R. and Kathpal T S. Monitoring of seasonal vegetables for pesticide residues. Environmental Monitoring and Assessment. 2002, 74: 263-270.
    41. MAChike S et al..Analysis of pesticide residue in agriculture products by magnetic particle ELISA. Japan-America Pesticide Residue Work Tokyo. 1996, 9:152-153.
    42. Martinez C R, Gonzales R E, Moran A M J, Mendez H.J. Sensitive method for the determination of organophosphorus pesticides in fruits and surface waters by higperformance liquid chromatography with ultraviolet detection. Journal of chromatography. 1992, 607: 37-45.
    43. Mendoza C. Enzymatic detection of ten organophorus pesticide and carbaryl on thin-layerchromatograns. Analyst. 1968, 93: 34-38.
    44. Montesinos T, Perez-Munguia S, Marty J L, Mitsubayashi K. Screen-printed electrodes with genetically modified cholinesterate for detection of pesticides in water-miscible organic solvent. Journal of Advanced Science. 2000, 12: 217-222.
    45. Moores G D, Devonshire A L, Denholm I. Amicrotire olate assay for characterizing insecticides acetycholinesterase genotypes of insecticide-resistant insects.Bull Entomol Res. 1998, 78: 537-546.
    46. Mor T S, Sternfeld M, Soreq H, Arntzen C J, Mason H S. Expression of recombinant human acetylcholinesterase in transgenic tomato plant. Biotechnology and Bioengineering. 2001, 75: 259-266.
    47. MRI(Midwest Research Institue, USA). Ticket detect pesticides. From Chemical. 1985, 148(8): 69.
    48. Mukherjee I and Gopal M. Inseticide residues in bayfood, animal feed and vegetables. Bull. Environ Contam Toxicol. 1996, 56: 381-388.
    49. Mulchandani A, Mulchandani P, Chen W. Amperometric thick-film strip electrodes for monitoring
    
    organophosphate nerve agents based on immobilized organophosphorus hydrolase. Analytical Chemistry. 1999a, 71: 2246-2249.
    50. Mulchandani P, Chen W, Mulchandani A. Flow injection amperometric enzyme biosensor for direct determination of organophosphate nerve agents. Environment Science and Technology. 2001, 35: 2562-2565.
    51. Mulchandani P, Mulchandani A, Kaneva I, Chen W. Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme elctrode. Biosensors and Bioelectronics, 1999b, 14: 77-85.
    52. Ngeh-Ngwainbi J, Foley D H,.Kuan S S..Parathion antibodies on piezoelectric crystals. J Am Chem Soc. 1995, 108: 5444-5447.
    53. O' Brien R D. Insecticides Action and Metabolism. Academic Press, New York,1967.
    54. ONEB (Office of the National Environment Board). Thailand's hazardous substance report. Bangkok: Ministry of Science, Technology and Energy. 1991.
    55. Palchetti I, Cagnini A, Carlo M D, Coppi C, Mascini M, Turner A P F. Dtermination of pesticides in real samples using a disposable biosensor. Analytica Chimica Acta. 1997, 337:315-321.
    56. Pesticide residue rapid test development by USDA. Pesticide and Toxic Chenical News. 1991, 1996 (9):152-153.
    57. Pylypiw H W. Rapid gas chromatographic method for the multiresidue screening of fruits and vegetables for organochlorine and organophosphate pesticides. Journal of AOAC International. 1993, 76: 1369-1373.
    58. Reiner, E and Aldridge, W N. Effects of pH on inhibition and spontaneous reactivation of acetylcholinesterase treated with esters of phosphorus acids and of carbamicacids. Biochem J. 1967, 105: 171.
    59. Rodolico S, Giovinaeeo R, Mosconi M. Comparison between ELISAS and traditional analytical methods to determine pesticide pollution in water. Bull Environ Contam Toxical. 1997, 58 (4): 644-650.
    60. Rogers K R. Enzyme and microbial biosensors. Humana Press. 1998.
    61. Shen J L, Plapp F W Jr. Cyromazine Resistance in the housefly (Diptera: Muscidae): genetics and cross-resistance to diflubenzuron. J.Econ.Entomol., 1990, 83: 1688~1697.
    62. Shi M A, Yuan J Z, Wu J, Zhuang P J and Tang Z H. Studies on the Kinetics of acetycholinesterase in the resistant and susceptible strains of housefly (Musca Domestica).. Entomologia Sinica. 2001, 8 (1):30-38.
    63. Skladal P, Mascini P. Sensitive detection of pesticides using amperometric sensors based on cobalt phthalocyanine-modified composite electrodes and immobilized cholinesterase. Biosensors and Bioelectronics. 1992, 7: 335-343.
    64. Thapinta A and Paul F H. Pesticide use and residual occurrence in Thailand. Environmental Monitoring and assessment. 2000, 60:103-114.
    
    
    65. Till T.BAChmann, Rolf D. Schmid. A disposable multieletrode biosensor for rapid simultaneous detection of the insecticides paraoxon and carbofuran high resolution.Analytica Chimica, 1999, 401: 95-103.
    66. Tran V A, Naguyen T,Le V T, Kennedy I R, Skerrit J H, Highley E. Rapid bioassay pesticides residue (RBPR) test for monitoring pesticide residue in vegetables in Ho Chi Mirth City. Vietnan agricultural produce free of pesticide residues,proceedings of an international workshop. 1998: 17-19.
    67. Tripathi R K, Brien R D. Purification of acetycholinesterase from housefly brain by affinity chromatography. Biochimica et Biophysica ACTA. 1977, 480: 382-389.
    68. Vallejo R P, Bogus E R, Mumrna R O. Effects ofhapten structure and bridging groups on antisera specificity in parathion imrnunoassay developrnent. J Agirc Food Chem. 1982, 30 (3): 572-580.
    69. Winteringham, F P W and Fowler, K S. Substrate and dilution effects on the inhibition of acetylcholinesterase by carbamate. Biochem J. 1966,98: 501-502.
    70. Winterlin W. Detection of chrolinesterate-inhibiting pesticide following separation on thin-layer chromatograms.Analyst. 1968, 16 (5): 808-812.
    71. Xu G and Bull D. Acetycholinesterase from the horn fly (Dipeera: Muscidae) distribution and purification. Journal of Economic Entomology. 1994, 87(1): 20-25.
    72.包宏.HPLC法测定西红柿中克线磷.色谱,1994,12(3):213.
    73.蔡顺香,任祖淦,邱孝煊,黄东风.台湾蔬菜农药残留的预防措施及其启示.福建农业科技,1999,4:25-26.
    74.蔡顺香.台湾蔬菜农药残留的预防措施及启示.福建农业科技,1999(4):25.
    75.陈胜,刘立群,周辉棠,等.农药速测卡的研制与应用.检验检疫科学,2000,10(2):1-3.
    76.董超,史延茂,张丽萍,等.采用植物酯酶测定农药残留的研究.农药,2001,40(9)19-20.
    77.董国伟,王沫,刘贤进,余向阳.兔抗甲胺磷多克隆抗体的制备.华中农业大学学报.,2001:340-343.
    78.德方.农药残留分析与检测.上海科学技术出版社,1982:76-85.
    79.高希武.Gorun等改进的Ellman胆碱酯酶活性测定方法介绍.昆虫知识,1987,24(4):245-246.
    80.高晓辉,朱光艳,陶传江.蔬菜上农药残毒快速检测.农业部农药检定所(内部资料).
    81.高晓辉.蔬菜上农药残留快速检测势在必行.农药科学与管理,2000,21(1):16-20.
    82.高晓辉.蔬菜上农药残毒快速检测技术.农业科学与管理,2000,21(4):19-31.
    83.郭成.农药毒理学及其应用.武汉:湖北科学技术出版社,1987:79-81.
    84.韩承辉,谷巍,王乃岩,王正萍.快速测定水的有机磷农药方法研究.环境化学,2000,19(2):187-189.
    85.韩熹莱.农药概论.北京农业大学出版社,1995:84-99.
    86.候学文,何衍彪,徐汉虹.胆碱酯酶抑制法检测辛硫磷农药残留.河北师范大学学报(自然科学版),200327(2):181-184.
    
    
    87.胡秀卿,朱国念,徐步进.克百威残留放射免疫分析方法研究.核农学报,2002,16(5):320-324.
    88.黄聪.键合固定相气相色谱法分离测定蔬菜中有机磷农药的残留量.分析科学学报,1999,15(4):321~324.
    89.黄伟雄,邓峰,江月碧,等.广东省预防蔬菜农残中毒工作研究.中国食品卫生杂志,2001,13(1):15.
    90.黄卫平.食品中有机磷农药分析方法进展.中国卫生检验杂志.2000,10(1):127-129.
    91.黄文风,蔡琪,林而立,等.酶催化动力学法快速检测蔬菜中的农药残留毒性.现代科学仪器,2000(2):29-32.
    92.纪淑娟,赵丽丽,冯辉.一种快速检测农产品有机磷农药残留的方法.农药,2000,39(10):17-18.
    93.冷欣夫,唐振华.杀虫剂分子毒理学及昆虫抗药性.北京:中国农业出版社,1996:31-56.
    94.李飞.棉蚜的杀虫剂神经靶标分子生物学研究.南京农业大学博士论文.2003.
    95.李军,陈颖,葛毅强.我国出口蔬菜及动物源性食品安全标准制定的探讨.食品标准化专栏.2003(1):20-21.
    96.李伟安,王兆基.快速气相色谱法测定蔬菜中甲胺磷和水胺硫磷残留量.分析化学,1995,23 (12):1371-1375.
    97.李颖桥,张荣金,叶非.生物传感器在农药残留分析中的应用.农药科学与管理,2003,24(8):11-13.
    98.李月明,孙耕芹,龚坤元.乙酰胆碱酯酶敏感性变化和家蝇抗药性的关系.昆虫学报,1987(3):239-245.
    99.李正明.再论我国蔬菜出口现状及策略.国际贸易探索,2003,19(1):77-80.
    100.李治祥,黄士忠,翟延路.快速测定蔬菜水果中农药残毒的酶抑制技术.中国环境科学.1991,11(4):311-313.
    101.李治祥,黄土忠,张俊亭.农药残毒速测箱的研制与应用.环境科学学报,1990(1):101-105.
    102.梁同庭.蔬菜中农药残毒配套检测技术.北京:北京农业大学出版社.1990,27-28.
    103.刘长武,翟广书,买光熙,等.蔬菜水果中27种有机磷农药残留快速扫描检测方法研究.农业环境科学学报,2003,22(3):360~363.
    104.刘长武,张俊亭,王一茹,等.应用酶联免疫分析水果中的对硫磷.环境科学学报,1993,13(1):87-89.
    105.刘曙照,冯大和,钱传范,Sergei A,Eremini J.固相抗体直接竞争ELISA法测定小白菜和苹果中甲萘威残留.农药学学报,2001,3(4):69-73.
    106.刘曙照,钱传范.九十年代农药残留分析新技术.农药,1998,17(6):11-13.
    107.陆平,邱国福,王晓玲,李红.气-质联用仪法对蔬菜中农药残留量的分析.农药,2002,43 (9):9-11.
    108.陆贻通,周培,李振江.生物酶技术在农药残留快速检测中的应用进展.上海环境科学,2001
    
    (20):467-470.
    109.陆自强,汪世新,陈丽芳.蔬菜农药残留速测方法中的问题探讨.中国蔬菜,2002,(2):41-43.
    110.皮国新,胡耐根,郭亚文.农业残毒检测的现状及展望.江西农业科技,1997,4:38-39.
    111.钱传范,消协忠,单国民.免疫检测技术在农药分析中的应用.农药科学与管理,1991,(4):27-32.
    112.邱勋强,兰剑锋.蔬菜农药残留量快速检测方法概述.江西农业科技,2002(6):31-32.
    113.曲虹云,张军民.当前国际上先进的农药残留分析技术.黑龙江农业科学,2000(5):37-39.
    114.宋茹,纪淑娟.蔬菜水果中有机磷农药残留测定现状及展望.农药,2002,41(10):11-13.
    115.涂忆江.我国农药残留快速检测技术的研究和应用现状.农药科学与管理.2003,24(4):14-16.
    116.汪世新,陆自强,陈丽芳,陈天.速测灵对蔬菜有机磷农药残留检测的研究.江苏农业研究,2001,22(4):29-31.
    117.汪世新.陆自强,陈丽芳.蔬菜农药残留速测方法中若干的问题探讨.农业环境与发展,2002,(2):43-44.
    118.王厚行.乙酰胆碱传感器的研制.传感器,1991,11(2):18-21.
    119.王晶,张田,陈义珍,李季.三种农药残留量速测方法的对比性实验研究.中国食品卫生杂志.2001,13(6):18-20.
    120.王军,朱鲁生,林爱军,李文海.农药残留速测技术研究进展.环境污染治理与设备,2001,2(1):17-24.
    121.王晶,张田,陈义珍,李季.三种农药残留速测方法的对比实验研究.中国食品卫生杂志,2001,13(6):18-20.
    122.王艳.高志贤,戴树桂.农药残留免疫分析方法及其研究进展.农药环境科学学报,2003,22(1):125-127.
    123.肖建军,李保国,徐斐.酶法恒温有机磷农药快速测定仪.仪器仪表学报,2001,22(4)增刊:335-337.
    124.徐锦洪,康莉,陈日光,等.农药速测卡测定蔬菜中有机磷农药残留量.中国食品卫生杂志,1996,8(3):14-16.
    125.杨大进,方从蓉,张莹.蔬菜中有机磷和氨基甲酸酯农药多残留的测定.中国食品卫生杂志,1997,9(5):9-11.
    126.杨大进.农药残留生物快速检验方法.中国食品卫生杂志,1998,10(2):38-40.
    127.杨俭美,李令嫒.北京地区家蝇抗药性与酶活性的关系.北京农学院学报,1994,9(1):1-5.
    128.杨洁冰,王晶,王柏琴,等.食品安全性.北京:中国农业出版社,1999.
    129.杨依军,王勇,杨秀蓉,等.免疫分析法在农药残留分析中的应用.华北农学报,2001,16(4):119-124.
    130.叶纪明,何艺兵,陶传江.中国农药残留国家标准情况介绍.农药科学与管理,2000,21(4):20-23.
    
    
    131.余孝颖.有机磷农药对不同生物来源的胆碱酯酶选择性研究.环境科学,1996,重7(4):41-43.
    132.袁东星,等.蔬菜中有机磷农药残留的发光细菌快速测定.环境化学,1997,16(1):77-81.
    133.张文吉,韩熹莱,李学锋,袁正安.辛硫磷和溴氰菊酯混剂对家蝇抗性发展的影响.昆虫学报,1995,38(1):25-29.
    134.张雪燕,邓吉生,翟留香.蔬菜中农药残留量的生物化学检.西南农业学报,1996,9(2):62-66.
    135.张莹,杨大进,方从蓉.农药残留快速检测方法—农药速测卡的应用与验证.中国食品卫生杂志,1998,10(2):12-14.
    136.张友军,张文吉.乙酰胆碱酯酶分子生物学研究.昆虫知识,1997,34(4):242-246.
    137.赵建庄,范志金,安健,等.薄层层析-酶抑制法测定有机磷和氨基甲酸酯类杀虫剂.四川师范大学报(自然科学版),2001,24(5):496-498.
    138.赵建庄,柴丽娜,李元珍.农药残留速测技术研究的现状及展望.北京农学院学报,2001,16(2):76-80.
    139.赵建庄,康国瑞.快速测定果蔬农药残留量的方法研究.农业环境保护,2002,21(1):70-71.
    140.赵颍,高稀武 胡熳华,等.棉蚜不同抗性品系羧酸酯酶比较.植物保护学报,1997,24(4):351-355.
    141.赵云峰,陈建民,王绪卿.食物中农药残留分析方法的研究进展.国外医学卫生学分册,1995,25 (3):173-177.
    142.郑允.生化检验杀虫剂残毒之简介.台湾农业实验所,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700