小菜蛾对多杀菌素的抗性及相关适合度变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小菜蛾分布广,在热带和亚热带地区世代重叠严重,繁殖力高,对杀虫剂易产生抗性,已成为十字花科蔬菜上的一种主要害虫。多杀菌素是近年来新开发的大环内酯类杀虫剂,对鳞翅目、双翅目和缨翅目害虫有极好的灭杀效果。经过几年大田应用,已有美国夏威夷、中国浙江温州等地区的小菜蛾表现出对多杀菌素较高的抗性。本文选用温州地区抗性虫源进行了室内筛选,得到了遗传背景一致的敏感SS和抗性RR品系,在低温、适温和高温下比较了SS和RR品系的发育、存活和生殖情况,以探讨其对多杀菌素的抗性是否伴有适合度的变化,以及适合度变化与温度的关系。
     比较测定了SS和RR品系的卵冷藏在6℃下0-28天、蛹冷藏在6℃下0-28天和-5℃下0-21天后在适温下发育的多项生物学指标。结果表明,(1)不经低温时,RR与SS之间差异不显著或幅度很小;(2)卵经6℃处理后,RR与SS品系相比,卵孵化率和幼虫化蛹率显著下降、发育历期显著延长;(3)蛹经历6℃处理后,RR品系子代卵孵化率较SS的显著低;(4)蛹经-5℃处理后,RR与SS品系相比,蛹的发育历期显著延长、子代卵孵化率显著下降。
     在低温自然变温条件下、适温和高温模拟自然变温条件下,比较观察了SS和RR品系的发育、存活和生殖情况。(1)在低温下,SS品系初始卵数752粒,孵化639粒,发育到蛹15头;RR品系初始卵数823粒,孵化470粒,最终仅有1头发育至蛹。RR品系的孵化率(57%)、幼虫化蛹率(0.2%)比SS品系的孵化率(85%)、幼虫化蛹率(2.4%)均显著要低。(2)在适温下,虽然SS与RR品系之间在一些特性上存在显著差异,但总的说来差异不大,经生命生殖力表综合分析,SS和RR品系所表现的内禀增长率分别为0.2138(?)/(?)/天和0.2112(?)/(?)/天,基本一致;(3)在高温下,RR品系的幼虫化蛹率(12.4%)比SS品系的(21.2%)显著要低;蛹重(平均3.77mg)也比SS品系的(平均4.25mg)显著要低,其它多项指标差异未达显著水平,经生命生殖力表综合分析,RR品系的内禀增长率为0.0793(?)/(?)/天,SS品系的为0.1153(?)/(?)/天。显然,RR品系的内禀增长率比SS品系的要低。
     综合以上两部分试验结果可见,小菜蛾对多杀菌素的抗性在耐低温能力方面有显著的适合度代价,在耐高温(>32℃)能力上也有一定的适合度代价,而在适温条件下则未表现出显著的适合度代价。依据这些结果推论,在冬季有持续6℃以下低温、及夏季有持续32℃以上高温的地区,气温的自然变化有利于敏感基因的维持,延缓抗性的发展;而在气温较高而又没有极端低温和高温的地区,则有利于小菜蛾对多杀菌素抗性的发展。在这些地区应尽早实施减少施药量、轮换用药、生态调控和生物防治等综合措施,延缓和治理小菜蛾对多杀菌素的抗性。
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), has become a major pest on vegetable crucifers due to its overlapping generations, high reproductive rate and high ability to develop resistance to insecticides, especially hi tropical and subtropical regions. Spinosad is a recently developed macrolide that has high efficacy hi killing Lepidoptera, Diptera, and Thysanoptera. However, field populations of the diamondback moth resistant to Spinosad were found in Hawaii, USA, and Wenzhou, China only after two to three years of large-scale application of this insecticide, hi this study, homozygotes of the diamondback moth with similar genetic background, susceptible (SS) or highly resistant (RR) to Spinosad, were obtained by crossing and selection using a susceptible strain originally collected from Wuhan, China hi 1989 and a field resistant strain originally collected from Wenzhou, China in 2001. Development, survival and reproduction were compared between the SS and RR strains at low, m
    
    oderate, and high temperatures. Our objective was to investigate whether resistance to Spinosad is associated with fitness changes, and whether fitness changes are temperature-dependent.
    Eggs or pupae of SS and RR strains were kept at 6℃ for 0-28 days, or pupae of the two strains were kept -5℃ for 0-21 days. These low-temperature treated eggs or pupae were then moved to 25℃ to observe their subsequent development, survival or reproduction at this moderate temperature. The results showed that: (1) there was no or little difference between the two strains when they were not exposed to the low temperatures; (2) when eggs were kept at 6℃ for various periods of time, the subsequent percent hatch of eggs and percent pupation of larvae of RR strain were significantly lower, and development time of eggs of RR strain was significantly longer, compared to those of SS strain; (3) when pupae were kept at 6癈 for various periods of time, percent hatch of eggs in progeny of RR strain was significantly lower than that of SS strain; and (4) when pupae were kept at -5℃ for various periods of tune, the subsequent development time of pupae of RR strain was significantly longer and percent hatch of eggs in prog
    
    eny of RR strain was significantly lower, compared to those of the SS strain.
    The development, survival and reproduction were also compared between RR and SS
    
    
    
    strains at natural fluctuating low temperature regimes as well as at simulated natural fluctuating moderate and high temperature regimes. The results showed that: (1) at low temperature, in the 752 eggs of the SS strain initially inoculated 639 of them hatched and 15 of them developed to the pupal stage, while in the 823 eggs of the RR strain initially inoculated only 470 hatched and 1 of them developed to the pupal stage. Percent hatch of eggs (57%) and percent pupation of larvae (0.2%) of the RR strain were significantly lower than those (85% egg hatch, 2.4% pupation) of SS strain; (2) at moderate temperature, the two strains showed limited differences though statistically significant differences existed for some traits. Analysis using life and fertility tables showed that the intrinsic rate of increase was 0.2138 $/$/day for SS and 0.2112 day for RR, very similar between the two strains; and (3) at high temperature, percent pupation of larvae (12.4%) of RR strain was significantly lower than that of SS (2
    1.2%), and mean pupae weight (3.77 mg) of RR was significantly lower than that of SS (4.25 mg). There were no significant differences in other traits. Life and fertility table analysis showed that the intrinsic rate of increase of RR (0.0793 day) was lower than that of SS (0.1153 day).
    It is concluded from these results that resistance to spinosad of the diamondback moth is associated with significant fitness costs in low temperature tolerance as well as some fitness costs in heat (>32) tolerance, but little or no fitness costs at moderate temperatures. In regions with a cold-winter (temperature frequently goes below<6) and a hot summ
引文
1.白素芬,陈学新,程家安,符文俊,何俊华.2003.菜蛾盘绒茧蜂多分DNA病毒的特性及其对小菜蛾幼虫的生理效应.昆虫学报,46(4):401-408
    2.陈之浩,程罗根.2000.小菜蛾抗药性研究的现状及展望.昆虫知识,37(2):103-107.
    3.陈之浩,刘传秀,李凤良,韩招久.1993.杀虫双和杀螟丹选育对小菜蛾抗药性的形成及其抗性机制.昆虫学报,36(4):409-418
    4.程景侠,赵彤言,朱礼华,董言德,陆宝麟.1998.淡色库蚊三氟氯氰菊酯抗性株的选育及交互抗性研究.寄生虫与医学昆虫学报,5(2):106-111
    5.程罗根,李凤良,陈之浩.1999.小菜蛾对杀螟丹抗性遗传的研究.昆虫学报,42(1):12-18
    6.程罗根,李凤良,王荫长,陈之浩.1998.小菜蛾对杀螟丹抗药性的生化遗传研究.南京农业大学学报,21(3):36-40
    7.范贤林,孟香清,芮昌辉.2000.抗Bt杀虫蛋白棉铃虫种群的相对适合度.农药学学报,2(3):35-38
    8.郭凤英,赵志模.2001.抗药性叶螨的种群参数和相对适合度.蛛形学报,10(1):41-43
    9.何婕,张雪燕.2000.小菜蛾对阿维菌素的抗性形成规律.西南农业学报,13(2):67-70
    10.胡振东,李显春,李国清,王荫长.1998.对氰戊菊酯抗性水平不同的棉铃虫越冬蛹的适合度.南京农业大学学报,21(1):51-54
    11.黄剑,吴文君.2002.小菜蛾抗药性研究进展.贵州大学学报(自然科学版),20(1):97-104
    12.李凤良,程罗根,韩招久,李忠英,陈之浩.1998.小菜蛾对杀虫双的抗性遗传研究.植物保护学报,25(4):345-350
    13.李广宏,梁东瑞,孟小林,朱应,蔡汪洋,张良武.1995.收集小菜蛾卵的新方法.昆虫知识,32(3):172-173
    14.李妲,汪清民,黄润秋.2003.多杀菌素的研究进展.农药学学报,5(2):1-12
    15.李建洪,伍建宏.1998.小菜蛾对苏云金芽胞杆菌的抗药性研究.华中农业大学学报,17(3):214-217
    16.李腾武,高希武,郑炳宗,梁沛.2000.小菜蛾对阿维菌素的抗性遗传方式和相对适合度研究.昆虫学报,43(3):255-263
    
    
    17.李腾武,高希武,郑炳宗.1999.小菜蛾对阿维菌素的抗性遗传分析及交互抗性研究.植物保护,25(6):12-14
    18.李元喜,刘树生,唐振华.2002.寄主抗药性对菜蛾绒茧蜂抗药性发展的影响.昆虫学报,45(5):597-602
    19.梁谊,陈宗麒.2000.小菜蛾抗药性研究现状.云南农业大学学报,15(4):367-375
    20.刘树生,陈益.1990.《昆虫生态学实验指导》.浙江大学植保系昆虫教研室,16-21
    21.刘泽文,韩召军,王荫长.2001.褐飞虱抗有机磷品系的交互抗性及适合度研究.南京农业大学学报,24(4):37-40
    22.陆绍红,陈睿,汪玲玲,王金福.1997.淡色库蚊有机磷抗性品系在生物学特性方面的不相适应性研究.浙江省医学科学院学报,32:18-21
    23.岁余平,黄彰欣,吴佳教.1995.小菜蛾抗药性衰退的研究.植物保护,21(2):26-27
    24.孟香清,黄昌辉,赵建周,范贤林,魏岑.1998.抗三氟氯氰菊酯棉铃虫种群相对适合度研究.植物保护,24(6):12-14
    25.慕卫,吴孔明,梁革梅,张文吉.2001.高效氯氟氰菊酯不同抗性基因型甜菜夜蛾相对适合度研究.农药学学报,3(4):49-52
    26.任晓霞,韩召军,王荫长.2001.棉铃虫对久效磷抗性和敏感性品系的生物适合度.南京农业大学学报,24(2):41-44
    27.施祖华,刘树生,Gebremeskel F.B.2002.小菜蛾蛹期寄生蜂.颈双缘姬蜂地理种群间对温度反应的比较研究.浙江大学学报(农业与生命科学版),28(5):480-484
    28.施祖华,刘树生.2003.小菜蛾主要寄生性天敌——菜蛾绒茧蜂与菜蛾啮小蜂间的相互作用.应用生态学报,14(6):949-954
    29.苏祥瑶,林昌善.1986.粘虫种群动态模拟的研究.生态学报,6(1):65-73
    30.唐振华,韩罗珍,张朝远.1990.抗马拉硫磷淡色库蚊不同基因型的自然内禀增长率及其对抗性演化的影响.昆虫学报,33(4):385-392
    31.唐振华.1993.昆虫抗药性及其治理.北京:农业出版社,382-446
    32.唐振华.2000.我国昆虫抗药性研究的现状及展望.昆虫知识,37(2):97-103
    33.王金福,陆绍红,陈睿,汪铃铃.1997.淡色库蚊三种有机磷抗性品系的相对适合度分析.寄生虫与医学昆虫学报,4(3):145-150
    34.王靖,袁家珪,孙耘芹,El-Said Fawag Abdalla.1997.小菜蛾抗性个体不敏感乙酰胆碱酯酶的鉴定.昆虫学报,40(2):128-134
    
    
    35.吴孔明,刘芹轩.1994.棉蚜抗杀灭菊酯品系的某些生物学特性.昆虫学报,37(2):137-144
    36.吴青君,张文吉,张友军,徐宝云,朱国仁.2000.敏感和抗阿维菌素小菜蛾的生物适合度.农药学学报,2(1):36-40.
    37.吴青君,张文吉,张友军,徐宝云,朱国仁.2002.小菜蛾对阿维菌素的抗性选育及交互抗性研究.植物保护学报,29(3):239-243
    38.吴青君,朱国仁,赵建周,张兴,高希武.1998.小菜蛾对定虫隆抗性种群的选育及交互抗性研究.昆虫学报,41(增):34-41
    39.吴益东,沈晋良,谭福杰,尤子平.1996.棉铃虫对氰戊菊酯抗性品系和敏感品系的相对适合度.昆虫学报,39(3):233-237
    40.西北农业大学主编,1997.《农业昆虫学》,北京:农业出版社,323
    41.谢卫东.1997.用“卡桥”法防治小菜蛾.中国蔬菜,2:41
    42.闫艳春,乔传令,钱传范.1997.小菜蛾抗药性研究进展.昆虫知识,34(5):310-314
    43.姚洪渭,叶恭银,程家安.2002.害虫抗药性适合度与内分泌调控研究进展.昆虫知识,39(3):181-187
    44.姚洪渭.2001.5.《白背飞虱抗药性机理的研究—药剂敏感性变化的生物学与生理生化基础》.博士学位论文,浙江大学,
    45.于金凤,慕立义,王开运.1996.4种棉蚜抗药性种群的生命力及繁殖力.植物保护学报,23(1):73-78
    46.于金凤,王金信,刘峰,慕卫,张新,罗万春,杨洪春.1999a.棉铃虫抗性品系与敏感品系的生育特征研究.山东农业大学学报,30(4):413-416
    47.于金凤,王金信,刘峰,张新,慕卫,慕立义.1999b.硫丹对抗性棉铃虫某些生物学特性的影响.农药科学与管理,20(2):18-19
    48.赵建周,吴世昌,顾言真,朱国仁,剧正理.1996.小菜蛾抗药性治理对策研究.中国农业科学,29(1):8-14
    49.赵建周,朱国仁,徐宝云,剧正理,朱树勋,邹丰.1993.武汉地区小菜蛾对溴氰菊酯的抗性回复及交互抗性.植物保护,6:13-15
    50.赵全良,吴伟坚,梁广文,张维球.1992.小菜蛾防治适期的研究.华南农业大学学报,13(4):86-90
    51.朱树勋,司升云.1996.小菜蛾抗性消失动态研究.中国蔬菜,1:20-22
    
    
    52. Alyokhin A. V. and Ferro D. N. 1999. Relative fitness of Colorado potato beetle (Coleoptera: Chrysomelidae) resistant and susceptible to the Bacillus thuringiensis Cry3A toxin. Journal of Economic Entomology. 92 (3): 510-515
    53. Amin A. M. and White G. B. 1984. Relative fitness of organophosphate-resistant and susceptible strains of Culex quinquefasciatus Say (Diptera: Culicidae). Bulletin of Entomological Research. 74: 591-598
    54. Argentine J. A., Clark J. M., and Ferro D. N. 1989. Relative fitness of insecticide-resistant colorado potato beetle swains (Coleoptera: chrysomelidae). Environmental Entomology. 18 (4): 705-710
    55. Arpaia S., De Marzo L. D., Di Leo G. M., Santoro M. E., Mennella G., and Van Loon J. J. A. 2000. Feeding behaviour and reproductive biology of Colorado potato beetle adults fed transgenic potatoes expressing the Bacillus thuringiensis Cry3B endotoxin. Entomologia Experimentalis et Applicata. 95:31-37
    56. Baker J. E., Perez-Mendoza J., Beeman R. W., and Throne J. E. 1998. Fitness of a malathion-resistant strain of the parasitoid Anisopteromalus calandrae (Hymenoptera: Pteromalidae). Journal of Economic Entomology. 91 (1): 50-55
    57. Boivin T., d'Hières C. C., Bouvier J. C., Beslay D., and Sauphanor B. 2001. Pleiotropy of insecticide resistance in the codling moth, Cydia pomonella. Entomologia Experimentalis et Applicata. 99: 381-386
    58. Brewer M. J. and Trumble J. T. 1991. Inheritance and fitness consequences of resistance to fenvalerate in Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Economic Entomology. 84 (6): 1638-1644
    59. Campanhola C., McCutchen B. F., Baehrecke E. H., and Plapp, Jr. F. W. 1991. Biological constraints associated with resistance to pyrethroids in the tobacco budworm (Lepidoptera: Noctuidae). Journal of Economic Entomology. 84 (5): 1404-1411
    60. Carrière Y., Ellers-kirk C., Patin A. L., Sims M. A., Meyer S., Liu Y. B., Dennehy T. J., and Tabashnik B. E. 2001. Overwintering Cost Associated with Resistance to Transgenic Cotton in the Pink Bollworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology. 91(4): 935-941
    61. Costa S. D., Barbercheck M. E., and Kennedy G. G. 2001. Mortality of Colorado potato beetle
    
    (Leptinotarsa decemlineata) after sublethal stress with the CryⅢA δ-endotoxin of Bacillus thuringiensis and subsequent exposure to Beauveria bassiana. Journal of Invertebrate Pathology. 77:173-179
    62. El-khatib Z. I. and Georghiou G. P. 1985. Comparative fitness of temephos-resistant,-susceptible, and hybrid phenotypes of the southern house mosquito. Journal of Economic Entomology. 78:1023-1029
    63. Ester A., de Putter., and van Bilsen J. G. P. M. 2003. Filmcoating the seed of cabbage (Brassica oleracea L. convar. Capitata L.) and cauliflower (Brassica oleracea L. var. Botrytis L.) with imidacloprid and spinosad to control insect pests. Crop Protection. 22:761-768
    64. Exeter Software. 1999. BIOMstat for Windows-Statistical software for biologists, version 3.3. User guide. Exeter Software, New York.
    65. Ferrari J. A. and Georghiou G. P. 1981. Effects on insecticidal selection and treatment on reproductive potential of resistant, susceptible, and heterozygous strains of the southern house mosquito. Journal of Economic Entomology. 74:323-327
    66. Ffrench-Constant R. H., Steichen J. C., and Ode P. J. 1993. Cyclodiene insecticide resistance in Drosophila melanogaster (Meigen) is associated with a temperature-sensitive phenotype. Pesticide Biochemistry and Physiology. 46:73-77
    67. Fitzgerald J. D., Solomon M. G. 2000. Differences in biological characteristics in organophosphorus-resistant strains of the phytoseiid mite Typhlodromus pyri. Experimental & Applied Acarology. 24 (9): 735-746.
    68. Flexner J. L., Theiling K. M., Croft B. A., and Westgard P. H. 1989. Fitness and immigration: factors affecting reversion of organotin resistance in the twospotted spider mite (Acari: Tetranychidae). Journal of Economic Entomology. 82(4): 996-1002
    69. Foster S P, Denholm I and Devonshire A L. 2000. The ups and downs of insecticide resistance in peach-potato aphids (Myzus persicae) in the UK. Crop Protection, 19:873-879
    70. Foster S P, Harrington R, Dewar A M, et al. 2002. Temporal and spatial dynamics of insecticide resistance in Myzus persicae (Hemiptera: Aphididae). Pest Management Science, 58:895-907
    71. Foster S. P., Harrington R., Devonshire A. I., Denholm I., Clark S. J., and Mugglestone M. A. 1997. Evidence for a possible fitness trade-off between insecticide resistance and the low
    
    temperature movement that is essential for survival of UK populations of Myzus persicae(Hemiptera: Aphididae). Bulletin of Entomological Research. 87:573-579
    72. Foster S. P., Harrington R., Devonshire A. L., Denholm I., Devine G. J., and Kenward M. G. 1996. Comparative survival of insecticide-susceptible and resistant peach-potato aphids, Myzus persicae (Sulzer)(Hemiptera: Aphididae), in low temperate field trials. Bulletin of Entomological Research. 86:17-27
    73. Foster S. P., Woodcock C. M., Williamson M. S., Devonshire A. L., Denholm I., and Thompson R. 1999. Reduced alarm response by peach-potato aphids, Myzus persicae(Hemiptera: Aphididae), with knock-down resistance to insecticides (kdr) may impose a fitness cost through increased vulnerability to natural enemies. Bulletin of Entomological Research. 89:133-138
    74. Glenn D. C., Hoffman A. A., and McDonald G. 1994. Resistance of pyrethroids in Helicoverpa armigera (Lepidoptera: Noctuidae) from corn: adult resistance, larval resistance, and fitness effect. Journal of Economic Entomology. 87(5): 1165-1171
    75. Groeters F. R., Tabashnik B. E., Finson N., and Jonson M. W. 1993. Resistance to Bacillus thuringiensis affects mating success of the diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology. 86(4): 1035-1039
    76. Groeters F. R., Tabashnik B. E., Finson N., and Johnson M. W. 1994. Fitness costs of resistance to Bacillus thuringiensis in the diamondback moth (Plutella xylostella). Evolution, 48(1): 197-201
    77. Halliday W. R. 1990. Comparative fitness of malathion-resistant and susceptible Indiameal moth (Lepidoptera: Pyralidae). Journal of Entomological Science. 25(2):239-245
    78. Halpern M. E. and Moron R. A. 1987. Reproductive and developmental defects in a malathion-resistant laboratory-selected population of Drosophila melanogaster. Pesticide Biochemistry and physiology. 28:44-56
    79. Han Z. J., Wang Y. C., Zhang Q. S., Li X. C., Li G. Q. 1999. Dynamics of pyrethroid resistance in a field population of Helicoverpa armigera (Hübner) in China. Pesticide Science. 55(4): 462-466
    80. Haubruge E. and Arnaud L. 2001. Fitness consequences of malathion-specific resistance in red flour beetle (Coleoptera: Tenebrionidae) and selection for resistance in the absence of
    
    malathion. Journal of Economic Entornology. 94(2): 552-557
    81. Inoue K. 1991. Genetic analysis of acaricide resistance in citrus red mite, Panonychus citri (McG.). Japan Agricultural Research Quarterly. 25(1): 33-39
    82. LeOra Software. 1997. POLO-PC: Probit and Logit analysis. LeOra Software, Berkeley, CA.
    83. Liu S. S., Chen F. Z., and Zalucki M. P. 2002. Development and survival of the diamondback moth (Lepidoptera: Plutellidae) at constant and alternating temperatures. Environmental Entomology. 31(2): 221-231
    84. Liu Y. B., Tabashnik B. E., Dennehy T. J., Patin A. L. and Bartlett A. C. 1999. Development time and resistance to Bt crops. Nature. Vol 400:519
    85. Longstaff B. C. 1991. An experimental study of the fitness of susceptible and resitant strains of Sitophilus oryzae (L.) (Coleoptera: Curculionidae) exposed to insecticide. Journal of Stored Production Research. 27(1): 75-82
    86. Mau R F L and Gusukuma-Minuto L. Diamondback moth resistance to spinosad in Hawaii: confirmation, review of causal factors and establishment of a mitigation plan, pp. 75-80. In Proceedings of 5th International Seminar on Technology of Cole Crops Production. 17-18 May 2001. University de Celaya, Celaya, Guanajuato, Mexico.
    87. McKenzie J A. 1990, Selection at the dieldrin resistance locus in overwintering populations of Lucilia cuprina (Wiedemann). Aust J Zool, 38(5): 493-501.
    88. McKenzie J. A. 1994. Selection at the diazinon resistance locus in overwintering populations of Lucilia cuprina (the Australian sheep blowfly). Heredity. 73:57-64
    89. Méndez W. A., Valle J., Ibarra J. E., Cisneros J., Penagos D. I., and Williams T. 2002. Spinosad and nucleopolyhedrovirus mixtures for control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize. Biological Control. 25:195-206
    90. Mohan M. and Gujar G. T. 2001. Toxicity of Bacillus thuringiensis strains and commercial formulations to the diamondback moth, Plutella xylostella (L.). Crop Protection. 20:311-316
    91. Moulton J. K., Pepper D. A., and Dennehy T. J. 2000. Beet armyworm (Spodoptera exigua) resistance to spinosad. Pest Management Science. 56:842-848
    92. Moulton J. K., Pepper D. A., Dennehy T. J. 1999. Studies of resistance of beet armyworm(Spodoptera exigua) to spinosad in field populations from the southern USA and Southeast Asia. Proceeding of Beltwide Cotton Conferences. Atlanta, GA, 884-888
    
    
    93. Muggleton J. 1986. Selection for malathion resistance in Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae): fitness values of resistant and susceptible phenotypes and their inclusion in a general model describing the spread of resistance. Bulletin on Entomological Research. 76:469-480
    94. Oppert B., Hammel R., Throne J. E., and Kramer K. J. 2000. Fitness costs of resistance to Bacillus: thuringiensis in the indianmeal moth, Plodia interpunctella. Entomologia Experimentalis et Applicata. 96:281-287
    95. Roe R. M., Bailey W. D., Young H. P., Wyss C. F., Dugger P., and Richter D. 2000. Characterization of spinosad (Tracer R) resistance in a laboratory strain of the tobacco budworm and development of novel diagnostics for resistance monitoring in the field. Proceedings Beltwide Cotton Conferences, San Antonio. USA, 4-8 January, 2000: V2, 926-929.
    96. Roush R. T. and Plapp, Jr. F. W. 1982. Effects of insecticide resistance on biotic potential of the house fly (Diptera: Muscidae). Journal of Economic Entomology. 75: 708-713
    97. Salgado V. L. 1998. Studies on the mode of action of spinosad: insect symptoms and physiological correlates. Pesticide biochemistry and physiology 60, 91-102
    98. Salgado V. L., Sheets J. J., Watson G. B., and Schmidt A. L. 1998. Studies on the mode of action of spinosad: the internal effective concentration and the concentration dependence of neural excitation. Pesticide biochemistry and physiology 60, 103-110
    99. Scott J. A., Plapp F. W., and Bay D. E. 1997. Pyrethroid resistance associated with decreased biotic fitness in horn flies (Diptera: Muscidae). Southwestern Entomologist. 22(4): 405-410
    100. Scott J. G. 1998. Toxicity of spinosad to susceptible and resistant strains of house flies, Musca doraestica. Pesticide Science. 54:131-133
    101. Shirai Y., Tanaka H., Miyasono M., Kuno E. 1998. Low intrinsic rate of natural increase in BT-resistant population of diamondback moth, Plutella xylostella. Japanese Journal of Applied Entomology and Zoology. 42(2): 59-64
    102. StatSoft, Inc. 2003. STATISTICA (data analysis software system), version 6.
    103. Tabashnik B E, Cushing N L, Finson N, et al. 1990: Field development of resistance to Bacillus thuringiensis in diamondback moth ( Lepidoptera: Plutellidae). Journal of Economic Entomology, 83:1671-1676.
    
    
    104. Tabashnik B E, Schwartz J M, Finson N, Johnson M. W. 1992. Inheritance of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 85(4): 1046-1055.
    105. Talekar N S and Shelton A M. 1993. Biology, ecology, and management of the diamondback moth. Annual Review of Entomology, 1993, 38:275-301
    106. Tang J D, Gilboa S, Roush R T and Shelton A. M. 1997. Inheritance, stability, and lack-of-fitness costs of field-selected resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae) from Florida. Journal of Economic Entomology, 90(3): 732-741.
    107. Thompson G. D., Dutton R. and Sparks T. C. 2000. Spinosad-a case study: an example from a natural products discovery programme. Pest Manag Sci 56:696-702
    108. Trisyono A. and Whalon M. E. 1997. Fitness costs of resistance to Bacillus thuringiensis in colorado potato beetle (Coleoptera: chrysomilidae). Journal of Economic Entomology. 90(2): 267-271
    109. Voice CA and Chapman R. B. 2000. Imported insecticide resistance in diamondback moth. New Zealand Plant Protection. 53: 83-86
    110. White N. D. G. and Bell R. J. 1989. Relative fitness of a malathion-resistant strain of Cryptolestes ferrugineus (Coleoptera: Cucujidae) when development and oviposifion occur in malathion-treated and untreated wheat kernels. Journal of Stored Production Research. 26(1): 23-37
    111. Wyss C. F., Young H. P., Shukla J. and Roe R. M. 2003. Biology and genetics of a laboratory strain of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae), highly resistant to spinosad. Crop Protection. 22:307-314
    112. Yamada K, Tanaka T, Fahmy A R, and Miyata T. 1993. Laboratory evaluation of the biological fitness of chlorfluazuron resistant and susceptible strains from the same origin of the diamondback moth Plutella xylostella. Applied Entomology and Zoology, 28(3): 396-399
    113. Yoon T. J., Ryoo M. I., and Cho K. 2001. Effect of Wolbachia infection on fitness of resistance to dicofol in Tetranychus urticae (Acarina: Tetranychidae). Korean Journal of Applied Entomology. 40(4): 321-326.
    114. Young H. P., Bailey W. D., and Roe R. M. 2003. Spinosad selection of a laboratory strain of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae), and characterization of
    
    resistance. Crop Protection. 22:265-273
    115. Yu S. J. and Nguyen S. N. 1996. Insecticide susceptibility and detoxication enzyme activities in permethrin-selected diamondback moths. Pesticide Biochemistry Physiology. 56(1): 69-77
    116. Zhao J. Z., Collins H. L., Tang J. D., Cao J., Earle E. D., Roush R. T., Herrero S., Escriche B., Ferré J., and Shelton A. M. 2000. Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of Cry1C. Applied and Environmental Microbiology. 66(9): 3784-3789
    117. Zhao J.-Z, Li Y. -X., Collins H. L., Gusukuma-Minuto L., Mau R. F. L., Thompson G. D., and Shelton A. M. 2002. Monitoring and Characterization of Diamondback Moth (Lepidoptera: Plutellidae) Resistance to Spinosad. Journal of Economic Entomology. 95(2): 430-436

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700