GDNF基因修饰的人工神经对大鼠坐骨神经缺损的修复作用及机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
周围神经缺损是临床常见的病症, 其可由机械性、热性、化学性、先天性或病理性等因素所引起, 如果未能得到及时修复或修复不佳,将导致运动、感觉功能的丧失和疼痛性神经炎的发生,给病患者带来疼痛和残疾。针对周围神经缺损的治疗,目前的外科手段主要是采取自体神经移植,这一方法长期以来被认为是一种“黄金标准”方法,但由于供体的来源的限制、供区的永久性失神经支配以及供受区神经的匹配等问题使其应用范围受到严重限制。随着材料科学及生物学技术的进展,组织工程化人工神经成为自体神经组织很有希望的替代品。其核心成分主要包括支架材料和支持细胞。尽管相关的研究显示许多令人鼓舞的进展和希望,但目前的人工神经移植体尚不能达到与自体神经移植相似的效果。
    为此本课题引入基因转染技术,对种植的雪旺氏细胞进行胶质细胞源性神经营养因子(GDNF)基因修饰以增加其合成及分泌神经营养因子的水平,然后应用所获取的GDNF基因修饰的雪旺氏细胞结合生物可降解材料(聚乳酸-聚羟基乙酸共聚物)及细胞外基质凝胶构建基因修饰的人工神经复合体,用于修复大鼠坐骨神经缺损。以探讨一种自体神经移植的替代方法及策略。
    本课题的研究主要包括以下三个部分,所取得的主要结果及结论如下:
    
    第一部分 组织工程人工神经诱导管的制作及其性能研究
    
    1) 本研究首先应用组织工程技术,以构成比不同的聚乳酸-聚羟基乙酸共聚物
    [poly(DL-lactide-co-glycolide) PLGA] [(85:15)或(50:50)]为原料成功制备了人工神经诱导管。以0.2MPBS(PH7.4)为人工降解液,观测PLGA(85:15)和PLGA(50:50)管12周体外降解期间吸水率、失重率及生物降解率变化,通过扫描电镜观察其微结构变化;并采用肌肉包埋方法,观测PLGA(85:15)和PLGA(50:50)管8周体内降解期间生物降解率变化。结果显示:
    ① 体内外降解条件下,PLGA(50:50)管吸水率、失重率及生物降解率显著高于PLGA(85:15)管;
    ② 两种材料样品体内生物降解率显著高于体外降解率;
    ③ 扫描电镜观察显示,随降解时间延长,材料样品表现为特征性的虫蚀样破坏并
    
    进行性加重,以PLGA(50:50)管尤为明显。
    这些结果提示:共聚物的构成比以及降解环境是影响聚乳酸-聚羟基乙酸共聚物生物降解性能的重要因素。
    2) 在此基础上,我们进一步采用肌肉包埋、雪旺氏细胞直接接种以及坐骨神经缺损桥接预实验的方法观察两种构成比不同的PLGA管[(85:15)或(50:50)]的生物相容性及其神经再生诱导作用。结果显示:
    ① 肌肉包埋条件下,PLGA早期诱发以淋巴细胞及成纤维细胞为主的轻度的非特异性炎性反应,持续到10-12周时基本消退;
    ② 采用细胞直接接种的方法,观察到雪旺氏细胞在PLGA膜上能良好的生长并发生增殖;
    ③ 体内神经桥接情况下,硅胶管促发有明显的纤维组织增生,并形成包囊包裹于管周,而两种PLGA管组未见类似现象;
    ④ 与经典的硅胶管组相似,PLGA(85:15)管能够顺利完成坐骨神经缺损桥接作用,再生神经电生理及组织学评价显示两组无明显差异。而PLGA(50:50)管体内神经桥接4周时即出现破裂,不能为坐骨神经缺损提供良好的桥接支持作用。
    以上这些结果提示,与硅胶管及PLGA(50:50)相比,PLGA(85:15)是一种异物反应小、生物相容性佳,生物降解速率合适的周围神经组织工程材料。
    
    第二部分 pLXSN-GDNF的鉴定、包装及转染
    
    1)对获赠的携带胶质细胞源性神经营养因子的逆转录病毒载体质粒(pLXSN-GDNF)进行测序鉴定。结果证实pLXSN-GDNF结构正确,GDNF序列完整;
    2)采用脂质体包裹的方法,用pLXSN-GDNF重组逆转录病毒载体质粒转染包装细胞PA317,获得G418抗性细胞,RT-PCR证实其培养上清含有重组逆转录病毒,用NIH3T3细胞测定病毒滴度为104-105CFU/ml;
    3) 用含重组逆转录病毒的上清感染雪旺氏细胞,获得G418抗性细胞SCsGDNF,PCR鉴定提示GDNF目的片段整合到细胞基因组;RT-PCR的结果证实因病毒感染而整合于细胞基因组的外源性基因具转录功能,且GDNFmRNA的表达水平比未感染的雪旺氏细胞(SCs)显著提高(P<0.01)。Western Blot证实SCsGDNFGDNF蛋白含量显著高于SCs (P<0.01)。这些结果提示重组逆转录病毒(pLXSN-GDNF)的基因转染显著上调了雪旺氏细胞GDNF蛋白及GDNFmRNA表达水平。
    
    
    
    第三部分 GDNF基因修饰的人工神经复合体的体外构建及体内桥接
    坐骨神经缺损的动物实验
    
    1) 应用体外获取的GDNF基因修饰的雪旺氏细胞结合细胞外基质凝胶及PLGA管成功构建了GDNF基因修饰的人工神经复合体;
    2)采取Hoechst33342对种植细胞(SCs或SCsGDNF)进行预标记的方法,在人工神经复合体大鼠神经桥接实验中示踪细胞的分布及存活情况。结果显示异体移植的雪旺氏细胞(SCs或SCsGDNF)在受体组织内存活时间可达4周左右。
    3)通过GDNF基因修饰的人工神经复合体桥接大鼠坐骨神经缺损的实验,结果发现:
    ① 坐骨神经损伤后,GDNF蛋白及GDNFmRNA的表达水平,不仅在损伤神经干显著提高,而且在脊髓前角运动神经元及其周围胶质细胞也显著上调。这一结果提示运动神经元不仅通过靶源性神经营养因子的逆行性运输,而且可能
Peripheral nerve defects are a common clinical condition that can result from mechanical, thermal, chemical, congenital or pathological etologies. Failure to repair these damaged nerves can result in loss of muscle function, impaired sensations, or painful neuropathies. Current surgical strategies for repair of critical nerves involve autograft transfers of normal nerves from uninjured parts of the body. However, this "gold standard" treatment is frequently limited by tissue availability, risk of disease spread, secondary deformities, and differences in tissue structure and size. One possible alternative to autologous nerve replacement is the development of engineered artificial nerve grafts consisting mainly of a scaffold and support cells.
    Despite advances in the field of tissue engineering, results to date with artificial nerve grafts have failed to equal nerve regeneration achieved with autologous nerve grafts. In order to enhance nerve regeneration and find an alternative to autografts, we modified Schwann cells to increase GDNF expression using a gene transfer technique. We then combined GDNF expressing Schwann cells with extracellular matrix gel and a biodegradable guidance conduit made of poly(DL-lactide-co-glycolide) (PLGA) to construct an artificial nerve complex and used this construct to bridge sciatic nerve lesions in adult Wistar rats. Our studies were focused on three key aspects of graft construction and function and the main results are indicated below.
    
    Part I: Characterization of the stability and biocompatibility of PLGA conduits.
    
    1) Artificial nerve conduits were successfully fabricated using two different copolymer ratios of PLGA(85:15 and 50:50)(lactide:glycolide).
    2) Degradation of PLGA(85:15) and PLGA(50:50) conduits were examined in vitro for 12 weeks in phosphate buffered saline (PBS) at 37℃, pH 7.4 and in vivo for up to 8 weeks following implantation into the rat dorsal muscle.
    A) PLGA conduits constructed with a 50:50 copolymer ratio exhibited greater
    
    changes in weight, water absorption, and morphology and more extensive degradation in vitro than conduits constructed with an 85:15 polymer ratio.
    B) Rates of degradation for both types of conduits were more rapid in vivo than in vitro.
    3) Biocompatibility of PLGA grafts were assessed by implanting PLGA into dorsal muscle, culturing Schwann cells in PLGA film and assessing integrity of conduits bridging sciatic nerve lesions.
    A) PLGA caused only minor nonspecific inflammatory reactions characterized by infiltration of small numbers of lymphocytes and fibroblasts at early time points.
    B) Schwann cells grew and proliferated well on PLGA films.
    C) Similar to silicone tube implanted control groups, PLGA(85:15) conduits provided a stable support for axon regeneration for up to 12 weeks, while PLGA(50:50) collapsed 4 weeks after transplantation.
    Conclusions: Biocompatibility and degradation rate assessments indicate that PLGA(85:15) conduits are suitable for facilitating nerve repair and are significantly more stable than conduits made with equal co-polymer ratios.
    
    Part II: Characterization, package, and transfer of recombinant retroviral vector (pLXSN-GDNF)
    
    1) The pLXSN-GDNF construct, (a gift of Ruan Huaizheng ) was characterized by DNA sequencing and compared to gene bank data to confirm expression of proper sequences.
    2) PA317 cells were transfected with recombinant retroviral vector pLXSN-GDNF using liposomes. Recombinant retrovirus particles were then harvested from culture media of G418 resistant transfected cells and analyzed using RT-PCR. Virus titers in supernatants were 104-105 CFU/ml.
    3) Rat Schwann cells were then exposed to supernatants containing recombinant retrovirus particles. Transfected Schwann cells were identified by G418 resistance and PCR of genomic DNA. PCR and Western blot analysis showed that both GDNF RNA and protein were upregulated in transfected Schwann cells as compared to untransfected cells.
    Conclusions: Transfection with pLXSN-GDNF retr
引文
1. Evans G. Challengs to nerve regeneration. Seminars in Surgical Oncology. 2000; 19: 312-318.
    2. Heath CA,Rutkowski GE.The development of bioartificial nerve grafts for for peripheral-nerve regeneration .TIBTECH.1998;16:163-168
    3. Kim DH, Connolly SE, Kline DG, etal. Labeled Schwann cell transplants versus sural nerve grafts in nerve repair. J. Neurosurg.1994;80: 254-260.
    4. Schlosshauer B, Muller E,Schoder B, etal.Rat Schwann cells in bioresorbale nerve guide to promote and accelerate axonal regneneration. Brain Res. 2003:963-326.
    5. Mosahebi A, Fuller P, Wiberg M, etal. Effect of allogeneic Schwannn cell transplantation on peripheral nerve regeneration. Exp Neurol. 2002;173;213-223.
    6. Bronzino J.Biomedical engineering handbook, second edition, volumeⅡ,CRC press LLC Boca Raton USA,2000;135-1-135-11.
    7. Feng FY, Ogden MA, Myckatyn TM, etal. FK506 rescues peripheral nerve allografts in acute rejection. J Neurotrauma, 2001;18(2):217-229.
    8. Kissel T. Advanced drug delivery review.2002;50:99-134.
    9. Seal BL, Otero TC, Panitch A. Polymeric biomaterials for tissue and organ rgeneration. Materials Science and Engineering. 2001;34:147-230.
    10. Kim BS, Mooney DJ. Development of biocompatible synthetic extracelular matrices for tissue engineering. TIBTECH. 1998;16:224-230.
    11. Hudson TW, Evans GRD, Schmidt CE. Engineering strategies for peripheral nerve repair. Orthop Clin North Am. 2000;11(3):485-497.
    12. Gopferich A. Machanisms of polymer degradation and erosion. Biomaterials. 1996; 17: 103-114.
    13. Agrawal C, Huang D,Schmitz J,etal.Elevated temperature degradation of a 50:50 copolymer of PLA-PGA. Tissue Engineering. 1997;3:345-352.
    14. Zhang Y, Zale S, Sawyer L, etal. Effects of metal salts on poly (DL-lactide-co-glycolide) polymer hydrolysis. J Biomed Mater Res.1997;34:531-538.
    15. Mikos AG, Thorsen AJ, Czerwonka LA,etal. Preparation and characterization of poly(L-lactic acid) foams. Polymer 1994;35:1068-1077.
    16. 平其能 主编 现代药剂学。第一版,中国医药科技出版社,北京。1998:777-790。
    Grizzi I, Garreau H, Li S,etal. Hydrolytic degradation of devices based on
    
    17. poly(DL-lactic acid) size-dependence, Biomaterials 1995;16:305-311.
    18. Vert M, Mauduit S, Li S.Biodegradation of PLA/GA polymers :increasing complexity. Biomaterials.1994;15:1209-1213.
    19. Fu K, Pack DW,Klibanov AM,etal.Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) micospheres. Pharm Res. 2000; 17: 100-105.
    20. 汤苏阳,艾玉峰,董兆麟等。新型生物可降解材料聚β-羟基丁酸生物相容性和安全性研究。现代康复,2001;5(7):50-51。
    21. 商庆新,曹谊林,张涂生。生物工程领域的崭新前沿-组织工程。现代康复,2001;5(6):7-9.
    22. 陈滨,裴国献。组织工程学的临床应用研究。现代康复。2001;5(6);10-12。
    23. Merle M, Dellon AL, Campbell JN, etal. Complication from cilicon-polymer intubulation of nerves. Microsurgery. 1989; 10:130-133.
    24. Lundborg G, Rosen B, Abrahamson SD, etal. Tubular repair of the median nerve in the human forearm. Preliminary findings. J Hand Surg, 1994;19B:273-276.
    25. Tomac A, Lindqvist E, Lin LF, etal. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature, 1995; 373:335-339.
    26. Chen ZY, He ZY, He C, etal. Human glial cell line-derived neurotrophic factor: a structure-function analysis. Biochem Biophys Res Commun. 2000;268:692-696.
    27. Trupp M, Ryden M, Jornvall H, etal. Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Bio, 1995; 130:137-148.
    28. Yan Q, Matheson C, Lopez OT. In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature, 1995; 373:341-344.
    29. Henderson CE, Phillips HS, Pollock RA, etal. GDNF: A protent survival factor for motoneurons present in the motoneurons present in the peripheral nerve and muscle. Science, 1994;266:1062-1064.
    30. 马雪梅。黄秉仁,蔡良婉。 胶质细胞衍生的神经营养因子与神经退行性疾病。国外医学分子生物学分册。 1996;18(4):157-160。
    31. Li L, Wu W, Lin LF, etal. Rescue of adult mouse motoneurons form injury-induced cell death by glial cell line-derived neurotrophic factor.Pro Natl Acad Sci USA. 1995; 92: 9771-9775.
    Matheson CR, Wang J, Collin FD,etal. Long-term survival effects of GDNF onn
    
    32. neonatal rat facial motoneurons after axotomy,Neuroreport 1997;8:1739-1742
    33. Watabe K, Sakamoto T, Ohashi T,etal. Adenviral gene transfer of glial cell line-derived neurothophic factor to injured adult motoneurons. Hum Cell, 2001:14(1):7-15.
    34. Nguten QT, Parsadanian AS,, Snider WD, etal. Hyperinnervation of neuromuscular junctions caused by GDNf overexpression in muscle. Science 1998;279:1725-1729.
    35. Lu YY, Wang LJ, Muramatsus S, etal. Intramuscular injection of AAV-GDNF results in sustained expression of transgenic GDNF, and its delivery to spinal motoneurons by retrograde transport. Neurosci Res. 2003;45:33-40.
    36. Abboud SL, Woodruff KA, Choudhuey GG.Retroviral-mediated gene transfer CSF-1 into op/op correct defective in vitro osteoclastogenesis. J Cell Physiol. 1998; 176 (2): 323-331.
    37. 张维维。腺病毒载体及其在基因治疗上的应用。肿瘤分子生物学研究进展。军事医学科学出版社,北京,1996。
    38. Nathwani AC, Hanawa H, Vandergriff J,etal. Efficient gene transfer into human cord blood CD34+cells and CD34+CD38- suset using highly purifyied recombinant adeno-associated viral vector preparations that are free of helper virus and wild-type AAV. Gene Ther. 2000;7(3):183-195.
    39. Glorioso JC,DelucaNA, Fink DJ. Development and applicaton of herpes simplex virus vectors for human gene therapy Annu Rev Microbiol. 1995;49:675-710.
    40. Yang JP, Huang L. Direct gene transfer to mouse melanoma by intratumor injection free DNA. Gene Ther. 1996;3(6):542-548.
    41. McTaggart S, Al-Rubeai M. Retroviral vectors for human gene delivery. Biotechology Advances. 2002;20:1-31.
    42. Mulligan RC.The basic science of gene therapy . Science,1993;260:926.
    43. Miller AD, Human gene therapy comes of age. Nature. 1992;357:455.
    44. Lewis PF, Emerman M. Passage though mitosis is required for oncoretrovirus but not human immuneodeficiency virus. J Virol 1994;689:510-520.
    45. Miller AD.PA317 retrovirus packaging cells. Molecular Therapy. 2002;6(5):572-575.
    46. Gorden EM, Anderson WF. Gene therapy using retroviral vectors. Curr Opin Biotechnol, 1994;5:611-616.
    47. 叶听,吴昊。反义人myc基因的表达对食管癌细胞恶性生长的抑制。中国科学。1991;B辑(2):174。.
    48. Hall S. Nerve repair: a neurobiologist'view. J Hand Surg,2001;21(2):129-136.
    
    
    49. De Vires GH. Schwann cell proliferation, In: Dyck PJ. Thomas PK. Editors. Peripheral neuropathy. Philadalphia: WB, Saunders.co. 1993:290-298
    50. Griffin JW, Hoffman PM , Degeneration and regeneration in the peripheral nervous system. In: P. J. Dyck, Editor, Peripheral Neuropathy, Saunders, Philadelphia 1993; 361-376.
    51. Rodriguez FJ,, Verdu E, Ceballos D, etal. Nerve guides seeded with autologous Schwann cells improve nerve regeneration. Exp Neurol. 2000;161:571-584
    52. Mosahebi A, Fuller P, Wiberg M, etal. Effect of allogeneic Schwannn cell transplantation on peripheral nerve regeneration. Exp Neurol. 2002;173;213-223.
    53. Schlosshauer B, Muller E,Schoder B, etal.Rat Schwann cells in bioresorbale nerve guide to promote and accelerate axonal regneneration. Brain Res. 2003:963-326.
    54. Bunge RP. Expanding roles for the Schwann cell: Ensheathment, myelination, trophysm and regeneration. Curr Opin Neurobiol. 1993;3;805-809.
    55. Liu MH. Growth factors and extracellular matrix in peripheral nerve regeneration, studied with a nerve chamber. J Periph Nerv Syst. 1996;2:97-110.
    56. Zhang Y,Campbell G, Anderson PN, etal. Molecular basis of interactions between regenerating adult rat thalamic axons and Schwann cells in peripheral nerve grafts Ⅰ:neural cell adhesion molecule.J Comput Neurol.1995;361:193-209..
    57. Miller AD, Resman GJ. Improved retreviral vectors for gene transfer and expression. Biotechniques.1989;7:980-988.
    58. Miller AD, Miller DG, Garcia JV, etal. Use of retroviral vectors for gene transfer and expression. Methods in Enzymology. 1993; 217:581-599.
    59. Lundborg G. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J Hand Surg Am. 2000;25(3): 391-414
    60. Rodriguez FJ,, Verdu E, Ceballos D, etal. Nerve guides seeded with autologous Schwann cells improve nerve regeneration. Exp Neurol. 2000;161:571-584.
    61. Sorensen J, Haase G, Krarup C, etal. Gene transfer to Schwann cells after peripheral nerve injury:a delivery system for therapeutic agents. Ann Neurol. 1998;43:205-211.
    62. Loh NK, Woerly S, Bunt SM, etal. The regeneration of axons within tissue defects in the CNS is promoted by implanted hydrogel matrices that contain BDNF and CNTF producing fibroblasts,. Exp Neurol. 2001;170:72-84.
    Harvey AR, Plant GW. Schwann cells and fatal tectal tissue cografted to the midbrain
    
    63. of newborn rats: fate of Schwann cells and their influence on host retainal innervation of grafts. Exp Neurol. 1995;134:179-191.
    64. Evercooren BV, Ganamuller A, Clerin T, etal. Hoechst 33342 a suitable fluorecent marker for Schwann cells after transplantation in the mouse spinal cord. Neurosci Lett, 1991; 131: 242-244.
    65. Iwashita Y,Crang AJ, Blakemore WF, etal. Redistribution of bisbenzimide Hoechst33342 from transplanted cells to host cells. Neuro Report. 2000; 11(5):1013-1016.
    66. Hanemann C, Rosenbaum S, Kupfer S,etal. Improved culture methods to expand Schwann cells with altered growth behaviour from CMT1A patients. Glia 1998;22:89-98.
    67. Sprick V. Long-term tracing of vital neurons with Hoechst 33342 in transplantation studies. J Neurosci Methods. 1991;36:229-238.
    68. Evercooren ABV, Gansmuler A, Duhanmel E, etal Repair of a myelin lesion by Scnwann cells transplanted in the adult mouse spinal cord. J Neuroimmunology 1992; 40(2-3);235-242.
    69. 徐惠平,唐仲书,倪紫美等。 Schwann细胞促进共培养和共移植的胆碱能神经元存活和生长。 神经解剖学杂志;17(1):1-5。
    70. Porter DL, Antin JH. Thr graft-versus-leukemia effects of allogeneic cell therapy. Ann Rev Med. 1999;50:369-386.
    71. Morecki SD, Yacovlev E, Diab A, etal. Allogeneic cell therapy for a murine mammary carcinoma. Cancar Res.1998; 58:3891-3895.
    72. Gill RG, Wolf L. Immunobiology of cellular transplantation, Cell Transplant 1995;15:3886-3895.
    73. Lafferty KJ, Prowse SJ, Babcock S, etal. The allograft response, Surg Clin North Am .1986;66:1231-1253.
    74. Trumble TE, Shen FG. The physiology of transplantation. Hand Clin.2000;16: 105-122.
    75. Gill RG, Wolf L, Immunobiology of cellular transplantation. Cell Transplant. 1995;4:361-370.
    76. Jeng CB, Coggeshall RE. Long-term patterns of axon regeneration in the sciatic nerve and its tributaries. Brain Res. 1985;345:34-44.
    Rodrigeuez FJ, Gomez N, Perego G.etal. Highly permeable polylactide-caprolactone
    
    77. nerve guides enhance peripheral nerve regeneration through long gaps. Biomaterials. 1999; 20:1489-1500.
    78. Medison RD, Archibald SJ, Brushart TM. Reinnervation accuracy of neurons. J Neurosci. 1996;16:5698-5703.
    79. Lin LF, Doherty DH, Lile JD, etal. GDNF: a glial cell line derived neurotrophic factor for midbrain dopaminergic neurons,Science 1993;260:1130-1132.
    80. Giehl KM. Trophic dependencies of rodent corticospinal neurons. Rev Neurosci 2001;12(1):79-94.
    81. Mendell LM,.Neurotrophins and sensory neurons:role in development,maintenance and injury.A thematic summary. Philosophical Transactions of the Royal Society of London (Biological Science) 1996;351:463-467.
    82. Hall SM , The effect of inhibiting Schwann cell mitosis on the re-innervation of acellular autografts in the peripheral nervous system of the mouse. Neuropathol. Appl. Neurobiol. 1986;12:. 401-414.
    83. Hall SM , Regeneration in cellular and acellular autografts in the peripheral nervous system. Neuropathol. Appl. Neurobiol. 1986;12: 27-46.
    84. Griffin JW, Hoffman PM , Degeneration and regeneration in the peripheral nervous system. In: P. J. Dyck, Editor, Peripheral Neuropathy, Saunders, Philadelphia 1993; 361-376.
    85. Bunge RP , Tissue culture observations relevant to the study of axon-Schwann cell interactions during peripheral nerve development and repair. J. Exp. Biol. 1987;132: 21-34.
    86. Carroll SL, Miller ML, Frohnert PW, etal. Expression of neuregulins and their putative receptors, ErbB2 and ErbB3, is induced during Wallerian degeneration. J. Neurosci. 1997;17: 1642-1659.
    87. Daniloff JK, Levi G, Grumet M,etal. Altered expression of neuronal cell adhesion molecules induced by nerve injury and repair. J. Cell Biol. 1986;103: 929-945.
    88. Hall SM, Kent AP, Curtis R,etal. Electron microscopic immunocytochemistry of GAP-43 within proximal and chronically denervated distal stumps of transected peripheral nerve. J. Neurocytol. 1992;21:820-831
    89. Li H, Terenghi G, Hall SM. Effects of delayed re-innervation on the expression of c-erbB receptors by chronically denervated rat Schwann cells in vivo. Glia 1997;20:333-347.
    
    
    90. Plantinga LC, Verhaagen J,Edwards PM,etal. The expression of B-50/GAP-43 in Schwann cells is upregulated in degenerating peripheral nerve stumps following nerve injury. Brain Res.1993;602:69-76
    91. Schachner M, Sommer I , Lagenaur C. Expression of glial antigens C1 and M1 in the peripheral nervous system during development and regeneration. Brain Res. 1984;316: 165-178.
    92. Scherer SS, Xu YT, Roling D,etal. Expression of growth-associated protein-43 kD in Schwann cells is regulated by axon-Schwann cell interactions and cAMP. J. Neurosci. Res. 1994;38: 575-589.
    93. You S, Petrov T, Chung PH etal., The expression of the low affinity nerve growth factor receptor in long-term denervated Schwann cells. Glia.1997;20:87-100. .
    94. Frostick P, Yin Q, Kemp GJ, Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 1998;18: 397-405.
    95. Raivich R, Kreutzberg GW., Expression of growth factor receptors in injured nervous tissue. I. Axotomy leads to a shift in the cellular distribution of specific beta-nerve growth factor binding in the injured and regenerating PNS. J. Neurocytol. 1987;16:689-700.
    96. Windebank AJ, Poduslo DJF. Neuronal growth factors produced by adult peripheral nerve after injury. Brain Res. 1986;385:197-200.
    97. Meyer M, Matsuoka I, Wetmore C,etal. Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: Different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J. Cell Biol.1992;119: 45-54.
    98. Naveilhan P, ElShamy W, Ernfors MP. Differential regulation of mRNAs for GDNF and its receptors Ret and GDNFR alpha after sciatic nerve lesion in the mouse. Eur. J. Neurosci. 1997;9:1450-1460.
    99. Springer JE, Seeburger JL, He J, etal.. cDNA sequence and differential mRNA regulation of two forms of glial cell line-derived neurotrophic factor in Schwann cells and rat skeletal muscle. Exp Neurol 1995;131:47-52.
    100. Bohn MC. A commentary. On glial cell line-derived neurotrophic factor(GDNF) Biochem Pharmacol.1999;57:135-142.
    101. Garcsl A, Haesel G, Airaksinen MS, etal. GFRα-1 required for development of distinct subpopulations of motoneuron. J Neurosci. 2000;20(13):4992-5000.
    
    
    102. Yan Q, Wang J, Matheson CR, etal. Glial cell line-derived neurotrophic factor (GDNF) promotes the survival of axotomized retinal ganglion cells in adult rats: comparison to and combination with brain-derived neurotrophic factor (BDNF) . J Neurobiol. 199;38:382-390.
    103. Hudson TW,Evans G,Schmidt CE. Engineering strategies for peripheral nerve repair.Orthop Clin North AM.2000;11(3)485-497.
    104. Furnish EJ,Schmidt CE. Tissue engineering of the peripheral nerve system.In Patrick CIW.Mikos AG,McIntire LV(eds):Frontiers in Tissue Engineering New York.Elsevier Science.1998:514-535.
    105. Liu MH, Growth factors and extracellular matrix in peripheral nerve regeneration, studied with a nerve chamber. J. Periph. Nerv. Syst. 1996;2: 97-110.
    106. Williams LR, Longo FM, Powell HC, etal. Spatial-temporal progress of peripheral nerve regeneration within a silicone chamber: Parameters for a bioassay. J. Comp. Neurol. 1983;218: 160-170.
    107. Danielsen N, Kerns JM, Holmquist B, etal. Predegeneration enhances regeneration into acellular nerve grafts. Brain Res. 1995;681: 105-108.
    108. Gulati AK, Immunological fate of Schwann cell-populated acellular basal lamina nerve allografts. Transplantation 1995;59:1618-1622.
    109. Guenard V, Kleitman N, Morrissey TK, etal.. Syngenic Schwann cells derived from adult nerves seeded semiperimeable guidance channels enhance peripheral nerve regeneration. J Neurosci, 1992;2:3310-3320.
    110. Hermanns S,Wunderlich G, RosenBanum C,etal..Lack of immunes immediate or delayed implanted allogeneic and xenogenyeic Schwannn cell suepension. Glia. 1997;21:299-314.
    111. Naveilhan P, ElShamy W, Ernfors MP. Differential regulation of mRNAs for GDNF and its receptors Ret and GDNFR alpha after sciatic nerve lesion in the mouse. Eur. J. Neurosci. 1997;9:1450-1460.
    112. Fu SY, Gorden T. Contributing factors to poor functional recovery after delayed nerve repair : prolonged axotomy. J Neurosci. 1995;15;3876-3885.
    113. Fu SY, Gorden T. Contributing factors to poor functional recovery after delayed nerve repair : prolonged axotomy. J Neurosci. 1995;15;3886-3895.
    114. Robinson LR. Traumatic injury to peripheral nerves. Muscle Nerve. 2000; 23:863-873.
    115. Suzuki H. Apoptosis and neurotrphic factors. No To Hattatsu. 1999; 31(2):129-134.
    
    
    116. Hall S. Nerve repair: a neurobiologyists view. J Hand Surgery, 2001; 26(2):12-136.
    117. Terenghi G. Peripheral nerve regeneration and neuotrophic factors. J Anat .1999; 194:1-14.
    118. Bryen DJ,Holway AH, Wang KK, etal. Infulence of Glial Growth Factor and Schwann cells in bioresorbable guidance channel on peripheral nerve regeneration. Tissue Eng 2000;6(2):129-138.
    119. Yan Q, Matheson C, Lopez OT, etal. In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature 1995;373:341-344.
    120. Chen ZY,, Cao L, Lu LC, etal.Protective effect of exogenous glial cell line-derived neurotrophic factor on neurons after scitic nerve injury in rats. Acta Physiol Sin. 2000:52:295-300.
    121. Chen ZY,, Cao L, Lu LC, etal. Glial cell line-derived neurotrophic factor enhances axonal regeneration following scitic nerve transection in adult rats. Brain Res. 2001;902:272-276.
    122. Golgen JP, Demaro JA, Osborne PA.etl. Expression of neurtrin,GDNF. And GDNF family-receptor mRNA in the developing and mature mourse. Exp Neurol. 1999;158:504-5.
    123. Thi AD, Evrard C, Rouget P. Proliferation and differentiation properties of permanent Schann cell lines immortalized with a temperature-sensitive oncogene. J Exp Bio. 1998;201:851-858.
    124. Leitner ML, Malliver DC, Dsborne PA, etal. Analysis of retrograde transport of glial cell line-derived neurotrophic factor (GDNF) , neurturin, and persephin surggests that in vivo signallyng for the GDNF family is GFRalpha coerceptor-specific . J Neurosci. 1999;19:9322-9331.
    125. Kristensson K; Olsson Y. Uptake and retrograde axonal transport of peroxidase in hypoglossal neurons. Electron microscopical localization in the neuronal perikaryon. Acta-Neuropathol-(Berl). 1971; 19(1): 1-9.
    126. Kristensson K; Olsson Y; Sjostrand J. Axonal uptake and retrograde transport of exogenous proteins in the hypoglossal nerve. Brain-Res. 1971, 32(2): 399-406.
    127. Kristensson K; Olsson Y. Retrograde axonal transport of protein. Brain-Res. 1971, 29(2): 363-365.
    128. LaVail JH; LaVail MM. Retrograde axonal transport in the central nervous system. Science. 1972; 176(42): 1416-1417.
    
    
    129. Terenghi G,. Peripheral nerve regeneration and neurotrophic factors . J Anat 1999 194: 1-14.
    130. Morrissey TK, Kleitman n, Bunge RP. Isolation and functional characterization of Schwann cells derived from adult peripheral nerve. J Neurosci 1991;11(8):2433-42.
    131. Levi AD. Characterization of the technique involved in isolating Schwann cells from adult human peripheral nerve . J Neurosci Methods. 1996;69(1):21-26.
    132. Keilhoff G, Fansa H, Schneider W, etal. In vivo predegeneration of peripheral nerves: an effective technique to obtain activated Schwann cells for nerve conduits. J Neurosci Methods . 199; 89(1): 17-24.
    133. Casella GT, Bunge RP, Wood PM. Improved methods for harvesting human Schwann cells from mature peripheral nerve and expansion in vitro. Glia 1996;17(4):327-338.
    134. Komiyama T, Nakao Y, Toyama Y, etal. A novel technique to isolate adult Schwannn cells for an artificial nerve conduit. J Neuorsci 2003;122:195-200.
    135. Fansa H, Keilhoff G, Frerichs, etal.. Effect of pre-degeneration of peripheral nerves on plasticity of cultivated Schwann cells and their cell number in vitro. Handchir Mikrochir Plast Chir . 1999;31(6):367-372.
    136. Verdu E, Rodriguez FJ, Gudino-Cabrera G, etal. Expansion of Schwann cells from mouse predegenerated peripheral nerves J Neurosci Methods 2000;99(1-2):111-117.
    137. Springer JE, Seeburger JL, Gabrea JHA, etal. DNA sequence and differential mRNA regulation of two forms of glial cell line-derived neurotrophic factor in Schwann cells and rat skeletal muscle. Exp Neurol. 1995;131:47-52.
    138. Schaar DG, Sieber BA, Scherwood AC, etal. Multiple astrocyte transcripts encode nigral trophic factors in rat and human. Exp Neurol, 1994;130:387-393.
    139. 王身国,蔡晴,吕泽,等。组织工程中药物控释技术的应用研究。中国修复重建外科杂志。2001;15(5):280-285。
    140. Sakiyama-Elbert SE, Hubbell JH. Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Controlled Release,2000;65(3):389-402.
    141. Collier JH, Camp JP, Hudson TW, etal. Synthesis and characterization of polypyrrole-hyaluronic acid composite biomaterials for tissue engineering application. J Biomed Mater Res.2000;50(4):574-584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700