CCR3拮抗剂在实验性角膜新生血管发生过程中的作用和机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     正常角膜的透明性是维持良好视力的重要因素之一。当炎症、外伤、缺氧等因素破坏了促血管生成因子和抑制血管生成因子之间的平衡,促使血管从角膜缘长入角膜,是导致视力减退甚至盲目的一个主要原因。目前关于角膜新生血管(CRNV)的发病机制尚未完全阐明,生长因子、细胞因子、趋化因子等炎症介质发挥的作用一直是研究关注的重点。
     CC趋化因子受体3(CCR3)是一个G蛋白偶联受体,主要表达在嗜酸性粒细胞、嗜碱性粒细胞、Th2淋巴细胞、肥大细胞及巨噬细胞,其中嗜酸性粒细胞高表达。既往研究CCR3的主要功能是募集白细胞(主要是嗜酸性粒细胞和Th2细胞)至炎症部位,参与过敏性疾病(如哮喘)的发病机制。此外,CCR3也表达于血管内皮细胞,并参与血管生成。而且CCR3信号在脉络膜新生血管的发展中发挥了关键作用。并参与角膜缝线法诱导小鼠角膜新生血管的生长,但CCR3信号在角膜新生血管中的表达及具体作用机制仍不明确。
     碱烧伤诱导的CRNV是一种被普遍认可的角膜新生血管的动物模型。为了明确CCR3信号在角膜新生血管中的表达及作用机制,本课题从建立小鼠碱烧伤CRNV模型着手,应用Real-time PCR方法检测CCR3、Eotaxin mRNA在受损角膜组织中各个时间点上的表达。应用角膜铺片荧光染色法和流式细胞术观察局部应用CCR3小分子拮抗剂SB328437进行早期干预后,对碱烧伤诱导的CRNV形成的影响。采用Real-timePCR和Western blot法从基因水平及蛋白水平检测并比较SB328437早期干预后角膜组织内VEGF表达的变化,明确CCR3信号的作用机制。并应用培养的人视网膜血管内皮细胞株(HREC),通过细胞增殖实验和管腔形成实验,进一步证实CCR3信号在血管发生、发展中的作用,为临床治疗新生血管性眼病提供了一定的理论依据。
     研究方法
     1. BALB/c小鼠60只,以碱烧伤诱导CRNV模型,收集碱烧伤后0d、2d、4d、7d各时间点的角膜组织,以Real-time PCR检测碱烧伤诱导小鼠CRNV过程中角膜组织内各时间点CCR3、Eotaxin mRNA的表达。
     2. BALB/c小鼠60只,随机分为实验组和对照组。碱烧伤后立即予局部点眼干预:实验组使用1μmol/ml CCR3拮抗剂,对照组使用0.2%透明质酸钠,每天3次,每次3μl,共干预1周。在角膜组织碱烧伤2周后,大体拍照初步观察两组角膜新生血管形成情况后处死小鼠并摘除实验眼球,应用角膜铺片CD31荧光染色法检测新生血管区域占整个角膜的面积比例,应用流式细胞术检测角膜组织中CD31阳性细胞数目,观察CCR3拮抗剂对碱烧伤CRNV形成的影响。
     3. BALB/c小鼠60只,随机分为实验组和对照组:干预方法同前,碱烧伤后4d,收集各组角膜组织,应用Real-time PCR及Western blot法从基因水平和蛋白水平检测各组角膜组织中VEGF的表达。观测CCR3信号通路与角膜组织内VEGF表达的相关性。
     4. HREC细胞铺于96孔培养板中。随机分为五组,分别以0.1μmol/ml,0.2μmol/ml,0.5μmol/ml,1μmol/ml的CCR3-antagonist干预,等量的PBS缓冲液作为对照。干预24h后加入CCK8细胞增殖检测液,分光光度仪450nm波长下检测各孔OD值。通过OD值计算和分析CCR3-antagonist对HREC细胞株增殖的影响。
     5. HREC细胞铺于含Matrigel的96孔培养板中,随机分为1μmol/ml CCR3-antagonist干预组和PBS缓冲液对照组。在37℃,50ml/L CO2培养箱中培养24h后,观察管腔形成情况。测定CCR3拮抗剂对HREC血管网形成的影响。
     结果
     1.碱烧伤后CCR3、Eotaxin mRNA的表达有升高趋势,提示CCR3-Eotaxin信号参与碱烧伤诱导的角膜新生血管的发生发展过程。
     2.局部应用CCR3-antagonist能抑制碱烧伤诱导的CRNV。
     3. CCR3-antagonist能抑制HREC的增殖,并在一定浓度范围内呈剂量依赖性。而且CCR3-antagonist能够抑制HREC血管网的形成。
     结论
     CCR3信号通路参与角膜新生血管的发生过程,阻断其信号通路则抑制血管内皮细胞的增殖和抑制血管网的形成,从而抑制新生血管的发生、发展,为临床进一步通过干预CCR3信号通路治疗新生血管性眼病提供有力的理论依据。
Background and Aim
     The transparency of cornea is one of the important factors to maintain normal visualacuity. Pathological causes such as inflammation, corneal trauma, misuse of contact lensesand so on can break the balance of pro-angiogenic and anti-angiogenic molecules. Newvessels were then growing into the transparent cornea from corneal limbus, which lead tosevere impaired vision. Until now, the pathogenesis of corneal neovascularization (CRNV)has not been fully understood and the effects of growth factors, cytokines, chemokines andother inflammatory mediators on CRNV were focused.
     CC chemokine receptor3(CCR3) is a G protein coupled receptor that expressedmainly in eosinophils, basophils, a subset of Th2lymphocytes, mast cells and macrophage,with the highest levels in eosinophils. It is believed to function in recruiting leukocytes,mainly the Th2cells and eosinophils, to inflammatory sites. In allergic diseases such asasthma, it can also be found expression in vascular endothelial cells, and has been shownto be involved in angiogenesis. Recently studies demonstrate that CCR3signal play pivotalroles in choroidal neovascularization. It also mediates the formation of CRNV in mice, butthe specific mechanism and potential invention role of CCR3signal in CRNV is still notclear.
     Alkali-induced CRNV is a widely accepted corneal neovascularization animal models.In this study, alkali induced corneal neovascularization is used to explore the effect ofCCR3signal on the process of corneal neovascularization. Firstly, CCR3and eotaxinmRNA time kinetic expression after alkali injury was detected by Real-time PCR.Secondly, CCR3antagonist was locally administrated after alkali injury immediately andthe whole mount CD31staining and flow cytometry was used to examine the formation ofcorneal neovascular after injury. The mRNA and protein expression of VEGF in burnedcorneas was detected by Real-time PCR and Western blot. Thirdly, the effect of CCR3 antagonist on human retinal endothelial cells (HRECs) tube formation and proliferationwere detected in vitro.
     Materials and Methods
     1. Corneal neovascularization were induced by alkali injury of60BALB/c mice, thecorneal tissue at0,2,4,7days after alkali injury randomly collected. CCR3andeotaxin mRNA expression at the indicated time were detected by Real-time PCR.
     2.60BALB/c mice after alkali injury were randomly divided into2groups and eachgroup were administrated topically with concentration of1μmol/ml CCR3-antagonistor0.2%sodium hyaluronate (HA) respectively, three times a day for1week afteralkali injury immediately.2weeks after alkali injury the experimental corneas weremicroscopically observed with slit lamp for the progression of inflammation, cornealperforation and neovascularization. The mice were killed and corneas were enucleatedand CRNV were detected and compared by corneal whole mount CD31staining orflow cytometric analysis of intracorneal CD31positive cell.
     3.60BALB/c mice after alkali injury were randomly divided into experimental group (1μmol/ml CCR3-antagonist group) and control group (0.2%HA group). Theintracorneal expression of VEGF and other relative cytokines were detected andcompared between stimulated groups and vehicle groups by Real-time PCR andWestern blot.
     4. To observe the CCR3signal on HREC proliferation, cultured HRECs in96well weredivided into5groups. After24h incubation with different concentrations ofCCR3-antagonist (0.1μmol/ml,0.2μmol/ml,0.5μmol/ml,1μmol/mlCCR3-antagonist) and PBS buffer, CCK8were added into culture cluster and the ODvalue in wave length450nm were measured.
     5. To observe the CCR3signal on the tube formation of HREC, cultured HRECs in96well coated with Matrigel were divided into2groups (1μmol/ml CCR3-antagonistgroup and control group). After24h incubation, the tube formation were counted.
     Results
     1. The time kinetic expression of CCR3and eotaxin mRNA in the process of alkaliinduced corneal neovascularization suggest that CCR3signal was involved in thedevelopment of corneal neovascularization.
     2. CCR3-antagonist local administration can inhibit the development of CRNV.
     3. CCR3-antagonist inhibited the proliferation of HRECs in a certain range ofconcentration with a dose-dependent manner. CCR3antagonist influenced the tubeformation of HRECs.
     Conclusion
     Alkali-induced corneal neovascularization was inhibited by CCR3antagonist. CCR3pathway plays an important role in corneal neovascularization by regulating the endothelialcell proliferation and tube formation. CCR3-antagonist may be a new clinical treatment forcorneal neovascularization.
引文
1. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases [J]. Nature,2000,407(6801):249-257.
    2. Hackett SF, Ozaki H, Strauss RW, et al. Angiopoietin2expression in the retina:upregulation during physiologic and pathologic neovascularization [J]. J Cell Physiol,2000,184(3):275-284.
    3. Chang JH, Garg NK, Lunde E, et al. Corneal neovascularization: an anti-VEGFtherapy review [J]. Surv Ophthalmol,2012,57(5):415-429.
    4. Montezuma SR, Vavvas D, Miller JWR. Review of the ocular angiogenesis animalmodels [J]. Semin Ophthalmol,2009,24(2):52-61.
    5. Clements JL, Dana R. Inflammatory corneal neovascularization: etiopathogenesis [J].Semin Ophthalmol,2011,26(4-5):235-245.
    6. Malesiński R, Mrugacz M, Bakunowicz-azarczyk A. The role of chemokines inocular diseases. Part II. Participation of chemokines in ocular diseases [J]. Klin Oczna,2007,109(7-9):345-348.
    7. Salcedo R, Young HA, Ponce ML, et al. Eotaxin (CCL11) induces in vivo angiogenicresponses by human CCR3+endothelial cells [J]. J Immunol,2001,166(12):7571-7578.
    8. Takeda A, Baffi JZ, Kleinman ME, et al. CCR3is a target for age related maculardegeneration diagnosis and therapy [J]. Nature,2009,460(7252):225-230.
    9. Li Y, Huang D, Xia X, et al. CCR3and choroidal neovascularization [J]. PLoS One,2011,6(2): e17106.
    10. Liclican EL, Nguyen V, Sullivan AB, et al. Selective activation of the prostaglandin E2circuit in chronic injury-induced pathologic angiogenesis [J]. Invest Ophthalmol VisSci,2010,51(12):6311-6320.
    11. Zhou WJ, Liu GQ, Li LB, et al. Inhibitory effect of CCR3signal on alkali-inducedcorneal neovascularization [J]. Int J Ophtalmol,2012,5(3):251-257.
    1. Thompson RW, Price MO, Bowers PJ, et al. Long-term graft survival after penetratingkeratoplasty [J]. Ophthalmology,2003,110(7):1396-1402.
    2. Chang JH, Garg NK, Lunde E, et al. Corneal neovascularization: an anti-VEGFtherapy review [J]. Surv Ophthalmol,2012,57(5):415-429.
    3. Clements JL, Dana R. Inflammatory corneal neovascularization: etiopathogenesis [J].Semin Ophthalmol,2011,26(4-5):235-245.
    4. Gupta D, Illingworth C. Treatments for corneal neovascularization: a review [J].Corneal,2011,30(8):927-938.
    5.黄金荣,周文天.角膜新生血管抑制药物的研究进展[J].中国实用眼科杂志,2012,29(12):1215-1217.
    6.王海燕,魏瑞华,赵少贞.光动力疗法治疗角膜新生血管的研究现状[J].中华眼科杂志,2012,48(7):662-665.
    7. Willems LI, Ijzerman AP. Small molecule antagonists for chemokine CCR3receptors[J]. Med Res Rev,2010,30(5):778-817.
    8. Kurokawa M, Matsukura S, Kawaguchi M, et al. Expression and effects of IL-33andST2in allergic bronchial asthma: IL-33induces eotaxin production in lung fibroblasts[J]. Int Arch Allergy Immunol,2011,155(1):12-20.
    9. Tedeschi A, Asero R, Lorini M, et al. Serum eotaxin levels in patients with chronicspontaneous urticarial [J]. Eur Ann Allergy Clin Immunol,2012,44(5):188-192.
    10. Semik-Orzech A, Barczyk A, Wiaderkiewicz R, et al. Eotaxin, but not IL-8, isincreased in upper and lower airways of allergic rhinitis subjects after nasal allergenchallenge [J]. Allergy Asthma Proc,2011,32(3):230-238.
    11. Luster AD, Rothenberg ME. Role of the monocyte chemoattractant protein and eotaxinsubfamily of chemokines in allergic inflammation [J]. J Leukoc Biol,1997,62(5):620-633.
    12. Salcedo R, Young HA, Ponce ML, et al. Eotaxin (CCL11) induces in vivo angiogenicresponses by human CCR3+endothelial cells [J]. J Immunol,2001,166(12):7571-7578.
    13. Takeda A, Baffi JZ, Kleinman ME, et al. CCR3is a target for age related maculardegeneration diagnosis and therapy [J]. Nature,2009,460(7252):225-230.
    14. Liclican EL, Nguyen V, Sullivan AB, et al. Selective activation of the prostaglandin E2circuit in chronic injury-induced pathologic angiogenesis [J]. Invest Ophthalmol VisSci,2010,51(12):6311-6320.
    15. Li Y, Huang D, Xia X, et al. CCR3and choroidal neovascularization [J]. PLoS One,2011,6(2): e17106.
    16. Liu G, Lu P, Li L, et al. Critical role of SDF-1α-induced progenitor cell recruitmentand macrophage VEGF production in the experimental corneal neovascularization [J].Mol Vis,2011,17:2129-2138.
    17. Zimmermann N, Conkright JJ, Rothenberg ME. CC chemokine receptor-3undergoesprolonged ligand-induced internalization [J]. J Biol Chem,1999,274:12611-12618.
    18. Errahali YJ, Taka E, Abonyo BO, et al. CCL26-targeted siRNA treatment of alveolartype II cells decreases expression of CCR3-binding chemokines and reduceseosinophil migration: implications in asthma therapy [J]. J Interferon Cytokine Res,2009,29(4):227-239.
    19. Yan S, Gessner R, Dietel C, et al. Enhanced ovalbumin-induced airway inflammationin CD26-/-mice [J]. Eur J Immunol,2012,42(2):533-540.
    20. Sun Q, Yang X, Zhong B, et al. Upregulated protein arginine methyltransferase1byIL-4increases eotaxin-1expression in airway epithelial cells and participates inantigen-induced pulmonary inflammation in rats [J]. J Immunol,2012,188(7):3506-3512.
    21. Ben S, Li X, Xu F et al. Treatment with anti-CC chemokine receptor3monoclonalantibody or dexamethasone inhibits the migration and differentiation of bone marrowCD34+progenitor cells in an allergic mouse model [J]. Allergy,2008,63(9):1164-1176.
    22. Zhou X, Hu H, Balzar S, et al. MAPK regulation of IL-4/IL-13receptors contributesto the synergistic increase in CCL11/eotaxin-1in response to TGF-β1and IL-13inhuman airway fibroblasts [J]. J Immunol,2012,188(12):6046-6054.
    23. Li B, Dong C, Wang G, et al. Pulmomary epithelial CCR3promotes LPS-inducedlung inflammation by mediating release of IL-8[J]. J Cell Physiol,2011,226(9):2398-2405.
    24. Vieira-de-Abreu, Calheiros AS, Mesquita-Santos FP, et al. Cross-talk betweenmacrophage migration inhibitory factor and eotaxin in allergic eosinophil activationforms leukotriene C4-synthesizing lipid bodies [J]. Am J Respir Cell Mol Biol,2011,44(4):509-516.
    25. Matsumoto K, Tamari M, Saito H. Involvement of eosinophils in the onset of asthma[J]. J Allergy Clin Immunol,2008,121(1):26-27.
    26. Miyazaki D, Nakamura T, Ohbayashi M, et al. Ablation of type I hypersensitivity inexperimental allergic conjunctivitis by eotaxin-1/CCR3blockade [J]. Int Immunol,2009,21(2):187-201.
    27. Fukuda K, Kuo CH, Morohoshi K, et al. The murine CCR3receptor regulates botheosinophilia and hyperresponsiveness in IgE-mediated allergic conjunctivitis [J]. Br JOphthalmol,2012,96(8):1132-1136.
    28. Adachi T, Fukuda K, Kondo Y, et al. Inhibition by tranilast of the cytokine-inducedexpression of chemokines and the adhesion molecule VCAM-1in human cornealfibroblasts [J]. Invest Ophthalmol Vis Sci,2010,51(8):3954-3960.
    29. Tran HV, Eperon S, Guex-Crosier Y, et al. Persistence of increased eotaxin-1(CCL11)level in tears of patients wearing contact lenses: a long-term follow-up study [J]. KlinMonbl Augenheilkd,2011,228(4):326-329.
    30. Mo FM, Proia AD, Johnson WH, et al. Interferon gamma-inducible protein-10(IP-10)and eotaxin as biomarkers in age related macular degeneration [J]. Invest OphthalmolVis Sci,2010,51(8):4226-4236.
    31. Ahmad I, Balasubramanian S, Del Debbio CB, et al. Regulation of ocular angiogenesisby Notch signaling: implications in neovascular age related macular degeneration [J].Invest Ophthalmol Vis Sci,2011,52(6):2868-2878.
    32. Wang H, Wittchen ES, Jiang Y, et al. Upregulation of CCR3by age related stressespromotes choroidal endothelial cell migration via VEGF-dependent and-independentsignaling [J]. Invest Ophthalmol Vis Sci,2011,52(11):8271-8277.
    33. Zhou WJ, Liu GQ, Li LB, et al. Inhibitory effect of CCR3signal on alkali-inducedcorneal neovascularization [J]. Int J Ophtalmol,2012,5(3):251-257.
    1. Montezuma SR, Vavvas D, Miller JWR. Review of the ocular angiogenesis animalmodels [J]. Semin Ophthalmol,2009,24(2):52-61.
    2. Burger PC, Chandler DB, Klintworth GK. Corneal neovascularization as studied byscanning electron microscopy of vascular casts [J]. Lab Invest,1983,48(2):169-180.
    3. Zhou WJ, Liu GQ, Li LB, et al. Inhibitory effect of CCR3signal on alkali-inducedcorneal neovascularization [J]. Int J Ophtalmol,2012,5(3):251-257.
    4. Le Y, Zhou Y, Iribarren P, et al. Chemokines and chemokine receptors: their manifoldroles in homeostasis and disease [J]. Cell Mol Immunol,2004,1(2):95-104.
    5. Malesiński R, Mrugacz M, Bakunowicz-azarczyk A. The role of chemokines inocular diseases. Part II. Participation of chemokines in ocular diseases [J]. Klin Oczna,2007,109(7-9):345-348.
    6. Willems LI, Ijzerman AP. Small molecule antagonists for chemokine CCR3receptors[J].Med Res Rev,2010,30(5):778-817.
    7. White JR, Lee JM, Dede K, et al. Identification of potent, selective non-peptide CCchemokine receptor-3antagonist that inhibits eotaxin, eotaxin-2, and monocytechemotactic protein-4-induced eosinophil migration [J]. J Biol Chem,2000,275(47):36626-36631.
    8. Mori A, Ogawa K, Someya K, et al. Selective suppression of Th2-mediated airwayeosinophil infiltration by low-molecular weight CCR3antagonists [J]. Int Immunol,2007,19(8):913-921.
    9. Ben S, Li X, Xu F, et al. Treatment with anti-CC chemokine receptor3monoclonalantibody or dexamethasone inhibits the migration and differentiation of bone marrowCD34+progenitor cells in an allergic mouse model [J]. Allergy,2008,63(9):1164-1176.
    10. Li B, Dong C, Wang G, et al. Pulmonary epithelial CCR3promotes LPS-induced lunginflammation by mediating release of IL-8[J]. J Cell Physiol,2011,226(9):2398-2405.
    11. Abonyo BO, Alexander MS, Heiman AS. Autoregulation of CCL26synthesis andsecretion in A549cells: a possible mechanism by which alveolar epithelial cellsmodulate airway inflammation [J]. Am J Physiol Lung Cell Mol Physiol,2005,289(3):L478-488.
    12. Fukagawa K, Okada N, Fujishima H, et al. CC-chemokine receptor3: a possible targetin treatment of allergy-related corneal ulcer [J]. Invest Ophthalmol Vis Sci,2002,43(1):58-62.
    13. Masterson JC, McNamee EN, Jedlicka P, et al. CCR3blockade attenuates eosinophilicileitis and associated remodeling [J]. Am J Pathol,2011,179(5):2302-2314.
    14. Bonaros N, Sondermeijer H, Schuster M, et al. CCR3-and CXCR4-mediatedinteractions regulate migration of CD34+human bone marrow progenitors to ischemicmyocardium and subsequent tissue repair [J]. J Thorac Cardiovasc Surg,2008,136(4):1044-1053.
    15. Takeda A, Baffi JZ, Kleinman ME, et al. CCR3is a target for age related maculardegeneration diagnosis and therapy [J]. Nature,2009,460(7252):225-230.
    16. Li Y, Huang D, Xia X, et al. CCR3and choroidal neovascularization [J]. PLoS One,2011,6(2): e17106.
    17. Mizutani T, Ashikari M, Tokoro M, et al. Suppression of laser-induced choroidalneovascularization by a CCR3antagonist [J]. Invest Ophthalmol Vis Sci,201354(2):1564-1572.
    18. Wang H, Wittchen ES, Jiang Y, et al. Upregulation of CCR3by age related stressespromotes choroidal endothelial cell migration via VEGF-dependent and-independentsignaling [J]. Invest Ophthalmol Vis Sci,2011,52:8271-8277.
    19. Mcconnell MJ, Baffi JZ, Kaneko H, et a1. CCR3as a candidate target for presumedocular histoplasmosis syndrome diagnosis and therapy [J]. Invest Ophthalmol Vis Sci,2010, e3351.
    20. Salcedo R, Young HA, Ponce ML, et al. Eotaxin (CCL11) induces in vivo angiogenicresponses by human CCR3+endothelial cells [J]. J Immunol,2001,166(12):7571-7578.
    1. Beebe DC.Maintaining transparency: a review of the developmental physiology andpathophysiology of two avascular tissues [J]. Semin Cell Dev Biol,2008,19(2):125-133.
    2. Qazi Y, Maddula S, Ambati BK. Mediators of ocular angiogenesis [J]. J Genet,2009,88(4):495-515.
    3. Edelman JL, Castro MR, Wen Y. Correlation of VEGF expression by leukocytes withthe growth and regression of blood vessels in the rat cornea [J]. Invest Ophthalmol VisSci,1999,40(6):1112-1123.
    4. Zhou JZ, Wang SH, Xia XB. Role of intravitreal inflammatory cytokines andangiogenic factors in proliferative diabetic retinopathy [J]. Curr Eye Res,2012,37(5):416-420.
    5. Cheung CM, Vania M, Ang M, et al. Comparison of aqueous humor cytokine andchemokine levels in diabetic patients with and without retinopathy [J]. Mol Vis,2012,18:830-837.
    6. Jin J, Guan M, Sima J, et al. Decreased pigment epithelium-derived factor andincreased vascular endothelial growth factor levels in pterygia [J]. Cornea,2003,22(5):473-477.
    7. Lin M, Hu Y, Chen Y, et al. Impacts of hypoxia inducible factor-1knockout in theretinal pigment epithelium on choroidal neovascularization [J]. Invest Ophthalmol VisSci,2012,53(10):6197-6206.
    8. Li C, Li L, Cheng R, et al. Acidic/neutral amino acid residues substitution in NH2terminal of plasminogen kringle5exerts enhanced effects on cornealneovascularization [J]. Cornea,2013, Jan22, epub ahead of print.
    9.张文朋,刘高勤,李龙标,等.外源性小鼠干扰素诱导蛋白-10抑制实验性角膜新生血管的作用机制[J].中华实验眼科杂志,2012,30(4):302-305.
    10. Chen P, Yin H, Wang Y, et al. Inhibition of VEGF expression and cornealneovascularization by shRNA targeting HIF-1α in a mouse model of closed eyecontact lens wear [J]. Mol Vis,2012,18:864-873.
    11. Kaiser PK. Antivascular endothelial growth factor agents and their development:therapeutic implications in ocular diseases [J]. Am J Ophthamlol,2006,142(4):660-668.
    12. Shakiba Y, Mansouri K, Arshadi D, et al. Corneal neovascularization: molecularevents and therapeutic options [J]. Recent Pat Inflamm Allergy Drug Discov,2009,(3):221-231.
    13. Takeuchi A, Takeuchi M, Oikawa K, et al. Effects of dioxin on vascular endothelialgrowth factor (VEGF) production in the retina associated with choroidalneovascularization [J]. Invest Ophthalmol Vis Sci,2009,50(7):3410-3416.
    14. Wang H, Wittchen ES, Jiang Y, et al. Upregulation of CCR3by age-related stressespromotes choroidal endothelial cell migration via VEGF-dependent and-independentsignaling [J]. Invest Ophthalmol Vis Sci,2011,52(11):8271-8277.
    15. Ahmad I, Balasubramanian S, Del Debbio CB, et a1. Regulation of ocularangiogenesis by Notch signaling: implications in neovascular age related maculardegeneration [J]. Invest Ophthalmol Vis Sci,2011,52:2868-2878.
    16. Mizutani T, Ashikari M, Tokoro M, et al. Suppression of laser-induced choroidalneovascularization by a CCR3antagonist [J]. Invest Ophthalmol Vis Sci,2013,54(2):1564-1572.
    17. Takeda A, Baffi JZ, Kleinman ME, et al. CCR3is a target for age related maculardegeneration diagnosis and therapy [J]. Nature,2009,460(7252):225-230.
    18. Liclican EL, Nguyen V, Sullivan AB, et al. Selective activation of the prostaglandin E2circuit in chronic injury-induced pathologic angiogenesis [J]. Invest Ophthalmol VisSci,2010,51(12):6311-6320.
    19. Lu P, Li L, Mukaida N, et al. Alkali-induced corneal neovascularization is independentof CXCR2-mediated neutrophil infiltration [J]. Cornea,2007,26(2):199-206.
    20. Nishijima K, Ng YS, Zhong L, et al. Vascular endothelial growth factor-A is a survivalfactor for retinal neurons and a critical neuroprotectant during the adaptive response toischemic injury [J]. Am J Pathol,2007,171(1):53-67.
    21. Saint-Geniez M, Maharaj AS, Walshe TE, et al. Endogenous VEGF is required forvisual function: evidence for a survival role on muller cells and photoreceptors [J].PLoS One,2008,3: e3554.
    22. Sayanagi K, Sharma S, Kaiser PK. Photoreceptor status after anti-vascular endothelialgrowth factor therapy in exudative age related macular degeneration [J]. Br JOphthalmol,2009,93(5):622-626.
    23. Yodoi Y, Tsujikawa A, Nakanishi H, et al. Central retinal sensitivity after intravitrealinjection of bevacizumab for myopic choroidal neovascularization [J]. Am JOphthalmol,2009,147(5):816-824.
    1. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switchduring tumorigenesis [J]. Cell,1996,86(3):353-364.
    2. Ridley AJ, Schwartz MA, Burridge K, et al. Cell migration: integrating signals fromfront to back [J]. Science,2003,302(5651):1704-1709.
    3. Folkman J. What is the role of endothelial cells in angiogenesis?[J]. Lab Invest,1984,51(6):601-604.
    4. Salcedo R, Young HA, Ponce ML, et al. Eotaxin (CCL11) induces in vivo angiogenicresponses by human CCR3+endothelial cells [J]. J Immunol,2001,166(12):7571-7578.
    5. Takeda A, Baffi JZ, Kleinman ME, et al. CCR3is a target for age related maculardegeneration diagnosis and therapy [J]. Nature,2009,460(7252):225-230.
    6. Nacev BA, Liu JO. Synergistic inhibition of endothelial cell proliferation, tubeformation, and sprouting by cyclosporin A and itraconazole [J]. PLoS One,2011,6:e24793.
    7.钟一声,朱益华.新生血管性眼病[M].1版.北京:人民军医出版社,2006:244-248.
    8. Zhou WJ, Liu GQ, Li LB, et al. Inhibitory effect of CCR3signal on alkali-inducedcorneal neovascularization [J]. Int J Ophtalmol,2012,5(3):251-257.
    9. Apte RS. Regulation of angiogenesis by macrophages [J]. Adv Exp Med Biol,2010,664:15-19.
    10. Sunderk tter C, Goebeler M, Schulze-Osthoff K, et al. Macrophage-derivedangiogenesis factors [J]. Pharmacol Ther,1991,51(2):195-216.
    11. Ye Q, Chen B, Tong Z, et al. Thalidomide reduces IL-18, IL-8and TNF-alpha releasefrom alveolar macrophages in interstitial lung disease [J]. Eur Respir J,2006,28(4):824-831.
    12. Samaras V, Piperi C, Korkolopoulou P, et al. Application of the ELISPOT method forcomparative analysis of interleukin (IL)-6and IL-10secretion in peripheral blood ofpatients with astroglial tumors [J]. Mol Cell Biochem,2007,304(1-2):343-351.
    13. Kelly J, Ali Khan A, Yin J, et al. Senescence regulates macrophage activation andangiogenic fate at sites of tissue injury in mice [J]. J Clin Invest,2007,117(11):3421-3426.
    14. Yao L, Li ZR, Su WR, et al. Role of mesenchymal stem cells on cornea wound healinginduced by acute alkali burn [J]. PLoS One,2012,7(2): e30842.
    15. Saika S, Ikeda K, Yamanaka O. Therapeutic effects of adenoviral gene transfer of bonemorphogenic protein-7on a corneal alkali injury model in mice [J]. Lab Invest,2005,85(4):474-486.
    16. Han Y, Shao Y, Lin Z, et al. Netrin-1simultaneously suppresses corneal inflammationand neovascularization [J]. Invest Ophthalmol Vis Sci,2012,53(3):1285-1295.
    17. Wang Y, Wang W, Wang L, et al. Regulatory mechanisms of interleukin-8productioninduced by tumour necrosis factor-α in human hepatocellular carcinoma cells [J]. JCell Mol Med,2012,16(3):496-506.
    18. Ahmad I, Balasubramanian S, Del Debbio CB, et al. Regulation of ocular angiogenesisby Notch signaling: implications in neovascular age related macular degeneration [J].Invest Ophthalmol Vis Sci,2011,52(6):2868-2878.
    19. Wang H, Wittchen ES, Jiang Y, et al. Upregulation of CCR3by age-related stressespromotes choroidal endothelial cell migration via VEGF-dependent and-independentsignaling [J]. Invest Ophthalmol Vis Sci,2011,52:8271-8277.
    20. Kampen GT, Stafford S, Adachi T, et al. Eotaxin represents the principal eosinophilchemoattractant in a novel murine asthma model induced by house dust containingcockroach allergens [J]. Blood,2000,95(6):1911-1917.
    21. Ben S, Li X, Xu F, et al. Treatment with anti-CC chemokine receptor3monoclonalantibody or dexamethasone inhibits the migration and differentiation of bone marrowCD34+progenitor cells in an allergic mouse model [J]. Allergy,2008,63(9):1164-1176.
    22. Zhou X, Hu H, Balzar S, et al. MAPK regulation of IL-4/IL-13receptors contributesto the synergistic increase in CCL11/eotaxin-1in response to TGF-β1and IL-13inhuman airway fibroblasts [J]. J Immunol,2012,188(12):6046-6054.
    1. Rajappa M, Saxena P, Kaur J. Ocular angiogenesis: mechanisms and recent advancesin therapy [J]. Adv Clin Chem,2010,50:103-121.
    2. Malesiński R, Mrugacz M, Bakunowicz-azarczyk A. The role of chemokines inocular diseases. Part II. Participation of chemokines in ocular diseases [J]. Klin Oczna,2007,109(7-9):345-348.
    3. Zlotnik A, Yoshie O. The chemokine superfamily revisited [J]. Immunity,2012,36(5):705-716.
    4. Le Y, Zhou Y, Iribarren P, et al. Chemokines and chemokine receptors: their manifoldroles in homeostasis and disease [J]. Cell Mol Immunol,2004,1(2):95-104.
    5. Willems LI, Ijzerman AP. Small molecule antagonists for chemokine CCR3receptors[J]. Med Res Rev,2010,30(5):778-817.
    6. Ben S, Li X, Xu F, et al. Treatment with anti-CC chemokine receptor3monoclonalantibody or dexamethasone inhibits the migration and differentiation of bone marrowCD34+progenitor cells in an allergic mouse model [J]. Allergy,2008,63(9):1164-1176.
    7. Zhou X, Hu H, Balzar S, et al. MAPK regulation of IL-4/IL-13receptors contributesto the synergistic increase in CCL11/eotaxin-1in response to TGF-β1and IL-13inhuman airway fibroblasts [J]. J Immunol,2012,188(12):6046-6054.
    8. Vieira-de-Abreu, Calheiros AS, Mesquita-Santos FP, et al. Cross-talk betweenmacrophage migration inhibitory factor and eotaxin in allergic eosinophil activationforms leukotriene C4-synthesizing lipid bodies [J]. Am J Respir Cell Mol Biol,2011,44(4):509-516.
    9. Yan S, Gessner R, Dietel C, et al. Enhanced ovalbumin-induced airway inflammationin CD26-/-mice [J]. Eur J Immunol,2012,42(2):533-540.
    10. Li B, Dong C, Wang G, et al. Pulmonary epithelial CCR3promotes LPS-induced lunginflammation by mediating release of IL-8[J]. J Cell Physiol,2011,226(9):2398-2405.
    11. Matsumoto K, Tamari M, Saito H. Involvement of eosinophils in the onset of asthma[J]. J Allergy Clin Immunol,2008,121(1):26-27.
    12. Salcedo R, Young HA, Ponce ML, et al. Eotaxin (CCL11) induces in vivo angiogenicresponses by human CCR3+endothelial cells [J]. J Immunol,2001,166(12):7571-7578.
    13. Luster AD, Rothenberg ME. Role of the monocyte chemoattractant protein and eotaxinsubfamily of chemokines in allergic inflammation [J]. J Leukoc Biol,1997,62(5):620-633.
    14. Miyazaki D, Nakamura T, Ohbayashi M, et al. Ablation of type I hypersensitivity inexperimental allergic conjunctivitis by eotaxin-1/CCR3blockade [J]. Int Immunol,2009,21(2):187-201.
    15. Kumagai N, Fukuda K, Ishimura Y, et al. Synergistic induction of eotaxin expressionin human keratocytes by TNF-alpha and IL-4or IL-13[J]. Invest Ophthalmol Vis Sci,2000,41(6):1448-1453.
    16. Liclican EL, Nguyen V, Sullivan AB, et al. Selective activation of the prostaglandin E2circuit in chronic injury-induced pathologic angiogenesis [J]. Invest Ophthalmol VisSci,2010,51(12):6311-6320.
    17. Zhou WJ, Liu GQ, Li LB, et al. Inhibitory effect of CCR3signal on alkali-inducedcorneal neovascularization [J]. Int J Ophtalmol,2012,5(3):251-257.
    18. Wang H, Wittchen ES, Jiang Y, et al. Upregulation of CCR3by age-related stressespromotes choroidal endothelial cell migration via VEGF-dependent and-independentsignaling [J]. Invest Ophthalmol Vis Sci,2011,52(11):8271–8277.
    19. Suzuki Y, Nakazawa M, Suzuki K, et al. Expression profiles of cytokines andchemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion[J]. Jpn J Ophthalmol,2011,55(3):256-263.
    20. Sato T, Kusaka S, Shimojo H, et al. Simultaneous analyses of vitreous levels of27cytokines in eyes with retinopathy of prematurity [J]. Ophthalmology,2009,116(11):2165-2169.
    21. Schoenberger SD, Kim SJ, Sheng J, et al. Increased prostaglandin E2(PGE2) levels inproliferative diabetic retinopathy, and correlation with VEGF and inflammatorycytokines [J].Invest Ophthalmol Vis Sci,2012,53(9):5906-5911.
    22. Takeda A, Baffi JZ, Kleinman ME, et al. CCR3is a target for age related maculardegeneration diagnosis and therapy [J]. Nature,2009,460(7252):225-230.
    23. Mo FM, Proia AD, Johnson WH, et al. Interferon gamma-inducible protein-10(IP-10)and eotaxin as biomarkers in age related macular degeneration [J].Invest OphthalmolVis Sci,2010,51(8):4226-4236.
    24. Sharma NK, Prabhakar S, Gupta A, et al. New biomarker for neovascular age relatedmacular degeneration: eotaxin-2[J]. DNA Cell Biol,2012,31(11):1618-1627.
    25. Mizutani T, Ashikari M, Tokoro M, et a1. Suppression of laser induced choroidalneovascularization by a CCR3antagonist in mice [J]. Invest Ophthalmol Vis Sci,2013,54(2):1564-1572.
    26. Mcconnell MJ,Baffi JZ,Kaneko H,et a1. CCR3as a candidate target for presumedocular histoplasmosis syndrome diagnosis and therapy [J].Invest OphthalmoI Vis Sci,2010,51: e3351.
    27. Li Y, Huang D, Xia X, et al. CCR3and choroidal neovascularization [J]. PLoS One,2011,6(2): e17106.
    28. Liu MM, Agrón E, Chew E, et al. Copy number variations in candidate genes inneovascular age related macular degeneration [J]. Invest Ophthalmol Vis Sci,2011,52(6):3129-3135.
    29. Teruya-Feldstein J, Jaffe ES, Burd PR, et al. Differential chemokine expression intissues involved by Hodgkin’s disease: direct correlation of eotaxin expression andtissue eosinophilia [J]. Blood,1999,93(8):2463-2470.
    30. Rankin SM, Conroy DM, Williams TJ. Eotaxin and eosinophil recruitment:implications for human disease [J]. Mol Med Today,2000,6(1):20-27.
    31. Ouyang Z, Osuga Y, Hirota Y, et al. Interleukin-4induces expression of eotaxin inendometriotic stromal cells [J]. Fertil Steril,2010,94(1):58-62.
    32. Ahmad I, Balasubramanian S, Del Debbio CB, et a1. Regulation of ocularangiogenesis by Notch signaling: implications in neovascular age related maculardegeneration [J]. Invest Ophthalmol Vis Sci,2011,52(6):2868-2878.
    33. Kampen GT, Stafford S, Adachi T, et al. Eotaxin represents the principal eosinophilchemoattractant in a novel murine asthma model induced by house dust containingcockroach allergens [J]. Blood,2000,95(6):1911-1917.
    34. Bode JG, Ehlting C, H ussinger D. The macrophage response towards LPS and itscontrol through the p38(MAPK)-STAT3axis [J]. Cell Signal,2012,24(6):1185-1194.
    35. Mikami F, Lim JH, Ishinaga H, et al. The transforming growth factor-beta-Smad3/4signaling pathway acts as a positive regulator for TLR2induction by bacteria via adual mechanism involving functional cooperation with NF-kappaB and MAPKphosphatase1-dependent negative cross-talk with p38MAPK [J]. J Biol Chem,2006,281(31):22397-22408.
    36. Gupta D, Illingworth C. Treatments for corneal neovascularization: a review [J].Corneal,2011,30(8):927-938.
    37. Miller JW, Le Couter J, Strauss EC, et al. Vascular endothelial growth factor a inintraocular vascular disease [J]. Ophthalmology,2013,120(1):106-114.
    38. Sayanagi K, Sharma S, Kaiser PK. Photoreceptor status after anti-vascular endothelialgrowth factor therapy in exudative age related macular degeneration [J]. Br JOphthalmol,2009,93(5):622-626.
    39. Yodoi Y, Tsujikawa A, Nakanishi H, et al. Central retinal sensitivity after intravitrealinjection of bevacizumab for myopic choroidal neovascularization [J]. Am JOphthalmol,2009,147(5):816-824.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700