生物融合式康复机构理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
康复机构是康复机器人实现运动功能的基础,其性质直接决定了康复机器人对患者的康复效果,是康复工程研究的重点内容。生物融合式康复机构是一类由人体和机械共同组成的现代机构新类型,在康复运动过程中可以实现人体与机械间运动的交互与协调,更能满足康复机器人的设计要求。本课题对生物融合式康复机构及其应用进行了较为系统的研究。主要内容如下:
     基于康复运动系统中人体机构与机械机构间的相互作用关系,提出了生物融合式康复机构的概念,并介绍了该类新机构的特征、分类、自由度以及符号表示方法。基于螺旋理论并结合生物融合式康复机构的特征,分别给出并联和串联生物融合式康复机构的型综合方法和原则,依据上述方法进行生物融合式踝关节、膝关节康复机构的型综合。
     推导了平面单环S髋R膝|P(Pe)~⊥Re~∥R生物融合式膝关节康复机构在人体作用下,机构的平衡位置计算公式;绘制了不同条件下机械驱动与膝关节夹角的关系曲线,并讨论了人体关节力矩对膝关节夹角的影响;建立了机械机构的柔度模型,并计算了不同关节力矩下该机构的方向柔度。
     采用虚设机构运动影响系数法建立了并联I类球面S踝2-R_N (Re)R_NR_N/R_N(Re)R~bR~bR~bR_N生物融合式踝关节康复机构的康复力平衡方程;分析了康复运动过程中机构的输入、输出以及力位平衡问题并进行数值验证;讨论了该机构在踝关节背屈/趾屈运动过程中的解耦性,建立了机械驱动和关节作用力矩间的误差模型以及机械机构的柔度模型,并绘制了误差传递矩阵的条件数以及柔度矩阵特征值在工作空间的分布图。
     基于机构一阶影响系数建立了并联II类PS踝4- b~U⊥P(Pe)S生物融合式踝关节康复机构的康复力平衡方程;分析了康复运动过程中机构的输入、输出以及力位平衡问题并进行数值验证;依据踝关节康复过程中的人机工程学以及康复机构的工作空间、力学性能对结构参数进行优化设计;分析了人体机构与机械机构的定位误差对踝关节姿态的影响。
     以生物融合式康复机构的实用化为目标,研究了生物融合式康复机器人设计流程;基于两类生物融合式踝关节康复机构,综合考虑康复机器人设计要求,研制出两台新型踝关节康复机器人样机。
     本研究为生物融合式康复机构的应用与推广奠定了基础,对新型生物融合式康复机器人的研发具有重要的指导意义。
The rehabilitation mechanism is the foundation for a rehabilitation robot to realize its motion, and the quality of the rehabilitation mechanism decides the rehabilitation effect of patients with the rehabilitation robot. The research of rehabilitation mechanism is the key content in rehabilitation engineering. The bio-syncretic rehabilitation mechanism (BSRM) is a new type of modern mechanism composed of human body and machine, and it can meet the design requirements of rehabilitation robot more effectively because of the interaction and harmonization between human body and machine during the rehabilititon exercise.This paper presents the relative systematic research on BSRM and its application. The main contents of this paper are as follows:
     The concept of rehabilitation mechanism is proposed based on the relationship between human body mechanism and mechanical mechanism in the rehabilitation kinematics system,and the characteristics , degree of freedom, classification and symbol representation of this new kind of mechanism is introduced. The approaches to type synthesis of parallel BSRM and series BSRM are developed based on screw theory and the characteristic of BSRM, and some parallel BSRMs for ankle joint rehabilitation and series BSRMs for knee joint rehabilitation are got.
     Taking the planar monocycle S髋R膝|P(Pe)~⊥Re∥~R rehabilitation mechanism as an example, the calculation formula of its equilibrium position coupling with human force is deduced. The relationship curve about mechanical input and the angle of knee joint under different situation is drawn, and the effection of human joint moment on the equilibrium position is discussed. The flexibility model of the mechanical mechanism is built, and the direction flexibility is calculated with different joint moment.
     The force balance equation of the spherical S踝2-R_N (Re)R_NR_N/R_N(Re)b~Rb~Rb~RR_N BSRM for ankle rehabilitation is built based on the kinematic influence coefficient with nominal mechanism. The input, ouput and force–position balance analysis of rehabilitation exercise are discussed and proved accurate by a numerical example. The character of decoupling during dorsiflexion/ plantarflexion is discussed, and the error modle between mechanical actuation and joint moment is set up. The distribution of the condition number of error transfer matrix and the eigenvalue of flexibility matrix with initial force in the workspace are given.
     The rehabilitation force balance equation of PS踝4- b~U⊥P(Pe)S is built based on the first order kinematic influence coefficient, and the input, ouput and force-position balance analysis of rehabilitation exercise are discussed and proved accurate by a numerical example. A group of structural parameters are got according to the optimum design, which is based on the ergonomics, the workspace and mechanical property of the mechanism. The impact of the positioning error between human body mechanism and mechanical mechanism on the ankle orientation is dicussed.
     Aiming at the practicability of BSRM, the design flow of bio-syncretic rehabilitation robots is dicussed. Taking the design requirements of rehabilitation robot into account, two prototypes of bio-syncretic rehabilitation robots are developed based on two BSRMs for ankle rehabilitation.
     It lays a solid foundation for the application and popularization of BRSM, and has important guidance significance for the research and development of novel bio-syncretic rehabilitation robots.
引文
1戴红.康复医学.北京:人民卫生出版社, 1998: 3-10
    2金德闻,季林红,张济川.康复工程研究的新进展.中国康复医学杂志, 2001, 16(6): 328-330
    3张济川,金德闻.康复工程在现代康复医学中的作用和进展.中国康复理论与实践, 2004, 10(5): 257-260
    4 R. Mahoney. Robotic Products for Rehabilitation: Status and Strategy. International Conference on Rehabilitation Robotics, Bath, UK, 1997: 12-22
    5 H.I. Krebs, J. Palazzolo, L. Dipietro, et al. Rehabilitation Robotics: Performance-Based Progressive Robot-Assisted Therapy. Autonomous Robots, 2003, 15(1): 7-20
    6 P. Dario, E. Guglielmelli, B. Allotta, et al. Robotics for Medical Applications. Robotics & Automation Magazine, 1996, 3(3): 44-56
    7 T. Dohi. Medical Application of Robotics and Mechatronics. International Biomedical Engineering Days, Istanbul , Turkey, 1992: 46-47
    8 B. Preising, T.C. Hsia, B. Mittelstadt. A Literature Review: Robots in Medicine. Engineering in Medicine and Biology Magazine, 1991, 10(2): 13-22, 71
    9 J. Chang, W. Tung, W. Wu, et al. Effects of Robot-Aided Bilateral Force-Induced Isokinetic Arm Training Combined with Conventional Rehabilitation on Arm Motor Function in Patients with Chronic Stroke. Archives of Physical Medicine and Rehabilitation, 2007, 88(10): 1332-1338
    10 K.A. Danek. Lower Limb Motor Coordination and Rehabilitation Facilitated through Self-Assist. [Ph.D. Thesis of University of Michigan]. 2008: 10-20
    11 G. Rosati. The Place of Robotics in Post-Stroke Rehabilitation. Expert Review of Medical Devices, 2010, 7(6): 753-758
    12张付祥,付宜利,王树国.康复机器人研究进展.河北工业科技, 2005, 22(2): 100-105
    13杜志江,孙传杰,陈艳宁.康复机器人研究现状.中国康复医学杂志, 2003, 18(5): 293-294
    14 H. Krebs, L. Dipietro, S. Levy-Tzedek, et al. A Paradigm Shift for Rehabilitation Robotics. Engineering in Medicine and Biology Magazine, 2008, 27(4): 61-70
    15 M. Hillman. Rehabilitation Robotics from Past to Present–a Historical Perspective. Advances in Rehabilitation Robotics, 2004, 306: 25-44
    16 H.I. Krebs, N. Hogan, M.L. Aisen, et al. Robot-Aided Neurorehabilitation. IEEE Transactions on Rehabilitation Engineering, 1998, 6(1): 75-87
    17 H.I. Krebs, N. Hogana, B.T. Volpec, et al. Overview of Clinical Trials with Mit-Manus: A Robot-Aided Neuro-Rehabilitation Facility. Technology and Health Care, 1999, 7(6): 419-423
    18 H.I. Krebs, B.T. Volpe, M.L. Aisen, et al. Increasing Productivity and Quality of Care: Robot-Aided Neuro-Rehabilitation. Journal of Rehabilitation Research and Development, 2000, 37(6): 639-652
    19 H.I. Krebs, S. Mernoff, S.E. Fasoli, et al. A Comparison of Functional and Impairment-Based Robotic Training in Severe to Moderate Chronic Stroke: A Pilot Study. NeuroRehabilitation, 2008, 23(1): 81-87
    20 M.J. Johnson, H.F.M. Vanderloos, C.G. Burgar, et al. Driver’s Seat: Simulation Environment for Arm Therapy. International Conference on Rehabilitaion Robotics, Stanfort, US, 1999: 227-234
    21 M.J. Johnson, H.F.M Vanderloos, C.G. Burgar, et al. Design and Evaluation of Driver's Seat: A Car Steering Simulation Environment for Upper Limb Stroke Therapy. Robotica, 2003, 21(1): 13-23
    22 C.G. Burgar, P.S. Lum, P.C. Shor, et al. Development of Robots for Rehabilitation Therapy: The Palo Alto Va. Stanford experience. J Rehabil Res Dev, 2000, 37(6): 663-674
    23 P. Lum. Robot-Assisted Movement Training Compared with Conventional Therapy Techniques for the Rehabilitation of Upper-Limb Motor Function after Stroke. Archives of Physical Medicine and Rehabilitation, 2002, 83(7): 952-959
    24 Peter S. Lum, Charles G. Burgar, Machiel Van Der Loos, et al. Mime Robotic Device for Upper-Limb Neurorehabilitation in Subacute Stroke Subjects: A Follow-up Study. The Journal of Rehabilitation Research and Development, 2006, 43(5): 631
    25 P.S. Lum, C.G. Burgar, M. Vanderloos, et al. Mime Robotic Device for Upper-Limb Neurorehabilitation in Subacute Stroke Subjects: A Follow-up Study. Journal of Rehabilitation Research and Development, 2006, 43(5): 631-642
    26 R. Loureiro, C. Collin, W. Harwin. Robot Aided Therapy: Challenges Ahead for Upper Limb Stroke Rehabilitation. International Conference on Disability, Virtual Reality and Associated Technologies, Oxford, UK, 2004: 11-14
    27 R. Loureiro, F. Amirabdollahian, M. Topping, et al. Upper Limb Robot Mediated StrokeTherapy—Gentle/S Approach. Autonomous Robots, 2003, 15(1): 35-51
    28 S. Coote, B. Murphy, W. Harwin, et al. The Effect of the Gentle/S Robot-Mediated Therapy System on Arm Function after Stroke. Clinical Rehabilitation, 2008, 22(5): 113-124
    29 M. Mihelj, T. Nef, R. Riener. A Novel Paradigm for Patient-Cooperative Control of Upper-Limb Rehabilitation Robots. Advanced Robotics, 2007, 21(8): 843-867
    30 T. Nef, M. Mihelj, R. Riener. Armin: A Robot for Patient-Cooperative Arm Therapy. Medical and Biological Engineering and Computing, 2007, 45(9): 887-900
    31 T. Nef, M. Mihelj, G. Kiefer, et al. Armin-Exoskeleton for Arm Therapy in Stroke Patients. International Conference on Rehabilitation Robotics, Noordwijk , Netherlands, 2007: 68-74
    32 K. Koyanagi, Y. Imada, J. Furusho, et al. 3-D Rehabilitation Robot System for Upper Limbs and Its Force Display Techniques. International Conference on Artificial Reality and Tele-existence Japan, 2003: 215-221
    33 C. T. Freeman, A. M. Hughes, J. H. Burridge, et al. A Robotic Workstation for Stroke Rehabilitation of the Upper Extremity Using Fes. Medical Engineering & Physics, 2009, 31(3): 364-373
    34 G. Colombo, A. Hocoma. Physiological Treadmill Training with the 8-Dof Rehabilitation Robot Lokomat. Jahrestagung der deutschen Gesellschaft für biomedizinische Technik, 2005: 790-791
    35 M. Bernhardt, M. Frey, G. Colombo, et al. Hybrid Force-Position Control Yields Cooperative Behaviour of the Rehabilitation Robot Lokomat. International Conference on Rehabilitation Robotics, Chicago, USA, 2005: 536-539
    36 S. Jezernik, G. Colombo, T. Keller, et al. Robotic Orthosis Lokomat: A Rehabilitation and Research Tool. Neuromodulation: Technology at the Neural Interface, 2003, 6(2): 108-115
    37 J. Hidler, W. Wisman, N. Neckel. Kinematic Trajectories While Walking within the Lokomat Robotic Gait-Orthosis. Clinical Biomechanics, 2008, 23(10): 1251-1259
    38 S. Masiero, A. Celia, G. Rosati, et al. Robotic-Assisted Rehabilitation of the Upper Limb after Acute Stroke. Archives of Physical Medicine and Rehabilitation, 2007, 88(2): 142-149
    39 G. Rosati, P. Gallina, S. Masiero, et al. Design of a New 5 Dof Wire-Based Robot for Rehabilitation. International Conference on Rehabilitation Robotics, Chicago, USA, 2005: 430-433
    40 S. Hesse, D. Uhlenbrock. A Mechanized Gait Trainer for Restoration of Gait. Journal ofRehabilitation Research and Development, 2000, 37(6): 701-708
    41 S. Hesse, H. Schmidt, C. Werner, et al. Upper and Lower Extremity Robotic Devices for Rehabilitation and for Studying Motor Control. Current opinion in neurology, 2003, 16(6): 705
    42 H. Schmidt. Hapticwalker-a Novel Haptic Device for Walking Simulation. EuroHaptics, Munich, Germany, 2004: 60-67
    43 H. Schmidt, S. Hesse, R. Bernhardt, et al. Hapticwalker---a Novel Haptic Foot Device. ACM Transactions on Applied Perception, 2005, 2(2): 166-180
    44 H. Schmidt, D. Sorowka, S. Hesse, et al. Design of a Robotic Walking Simulator for Neurological Rehabilitation. International Conference on Intelligent Robots and Systems, Swiss 2002: 1487-1492
    45 M. Girone, G. Burdea, M. Bouzit, et al. Orthopedic Rehabilitation Using the“Rutgers Ankle”Interface. Medicine meets virtual reality 2000: envisioning healing: interactive technology and the patient-practitioner dialogue, 2000: 89-96
    46 J.E. Deutsch, J. Latonio, G. Burdea, et al. Rehabilitation of Musculoskeletal Injuries Using the Rutgers Ankle Haptic Interface: Three Case Reports. Eurohaptics, Birmingham, UK, 2001: 11-16
    47 M. Girone, G. Burdea, M. Bouzit, et al. A Stewart Platform-Based System for Ankle Telerehabilitation. Autonomous Robots, 2001, 10(2): 203-212
    48 J. A. Saglia, N. G. Tsagarakis, J. S. Dai, et al. A High-Performance Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation. The International Journal of Robotics Research, 2009, 28(9): 1216-1227
    49李趁前.手臂康复训练机器人系统控制研究. [哈尔滨工程大学工学硕士学位论文]. 2008: 23-34
    50张蕊,张佳帆,江灏.可穿戴式柔性外骨骼人机智能系统可靠性及应用伦理问题研究.机电产品开发与创新, 2008, 21(5): 19-21
    51赵豫玉.穿戴式下肢康复机器人的研究. [哈尔滨工程大学工学硕士学位论文]. 2009: 3-20
    52赵铁石,于海波,戴建生.一种基于3-RSS/S并联机构的踝关节康复机器人.燕山大学学报, 2005, 29(6): 471-475
    53张晶,王玉慧,王党.膝关节康复机器人腿部人机界面设计研究.中国康复医学杂志, 2008, 23(12): 1098-1101
    54张锦明.膝关节屈曲康复器的研制及临床应用.现代康复, 1999, 3(5): 591-591
    55于海波.并联式踝关节康复机器人系统设计. [燕山大学工学硕士学位论文]. 2006: 15-30
    56 P. Sui, L. Yao, Z. Lin, et al. Analysis and Synthesis of Ankle Motion and Rehabilitation Robots. International Conference on Robotics and Biomimetics, Guilin, China, 2009: 2533-2538
    57胡宇川,季林红.一种偏瘫上肢复合运动的康复训练机器人.机械设计与制造, 2004, (6): 47-49
    58张秀峰,季林红,王景新.辅助上肢运动康复机器人技术研究.清华大学学报:自然科学版, 2006, 46(11): 1864-1867
    59王理研,官奕,宋爱国.基于Internet的远程控制康复训练机械臂.测控技术, 2007, 26(6): 53-56
    60刘更谦,高金莲,杨四新,等.踝关节康复训练并联机构构型及其运动学分析.机电产品开发与创新, 2005, (5): 13-15
    61王瑞利,刘更谦,于庆增,等.基于虚拟现实踝关节康复系统的研究.机电产品开发与创新, 2007, 20(1): 16-17
    62岳宏,张小俊,曹英,等.一种踝关节康复机器人.中国专利,专利号: 200810052248.7,公开日: 2008, 10, 29
    63柴欣,高金莲,史巧硕,等. 3-Rss/S踝关节康复并联机器人的动力学建模及仿真.机电产品开发与创新, 2006, 19(3): 9-11
    64钱振美.卧式下肢康复机器人的研究. [哈尔滨工程大学工学硕士学位论文]. 2006: 15-20
    65夏昊昕,张立勋,王岚.下肢康复训练机器人.应用科技, 2004, 31(2): 3-4
    66张立勋,赵凌燕,胡明茂.下肢康复训练机器人的重心轨迹控制研究.应用科技, 2005, 32(4): 54-56
    67张立勋,孙洪颖,钱振美.卧式下肢康复机器人运动学分析及仿真.系统仿真学报, 2010, 22(8): 2001-2005
    68吕广明,孙立宁,彭龙刚.康复机器人技术发展现状及关键技术分析.哈尔滨工业大学学报, 2004, 36(9): 1224-1227
    69 J. Oblak, I. Cikajlo, Z. Matjacic. Universal Haptic Drive: A Robot for Arm and Wrist Rehabilitation. Neural Systems and Rehabilitation Engineering, 2010, 18(3): 293-302
    70张小俊,刘更谦,何春燕,等.基于虚拟现实的踝关节康复机器人的综述.机电产品开发与创新, 2006, 19(1): 29-31
    71殷跃红,范渊杰,郭朝,等.并联多自由度假肢外骨骼踝关节.中国专利,专利号:200810034002.7,公开日: 2008, 8, 6
    72高月明.膝关节康复器的研制.上海轻工业高等专科学校学报, 1995, 16(1): 39-43
    73戴闽,罗军.骨科运动康复.北京:人民卫生出版社, 2008: 18-30
    74 R. Kamnik, T. Bajd, J. Williamson, et al. Rehabilitation Robot Cell for Multimodal Standing-up Motion Augmentation. IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005: 2277-2282
    75隋立明,张立勋.气动技术在康复领域中的应用.液压气动与密封, 2006, 4: 33-35
    76 J.F. Zhang, C.J. Yang, Y. Chen, et al. Modeling and Control of a Curved Pneumatic Muscle Actuator for Wearable Elbow Exoskeleton. Mechatronics, 2008, 18(8): 448-457
    77 P. Jamwal, S. Xie, C. Kean. Kinematic Design Optimization of a Parallel Ankle Rehabilitation Robot Using Modified Genetic Algorithm. Robotics and Autonomous Systems, 2009, 57(10): 1018-1027
    78张立勋,刘攀,王克义,等.绳牵引康复机器人的工作空间分析与运动学研究.高技术通讯, 2009, 19(2): 157-161
    79 J. Wu, J. Huang, Y. Wang, et al. A Wearable Rehabilitation Robotic Hand Driven by Pm-Ts Actuators. Intelligent Robotics and Applications, 2010: 440-450
    80 S.J. Ball, I.E. Brown, S.H. Scott. Medarm: A Rehabilitation Robot with 5dof at the Shoulder Complex. International Conference on Advanced Intelligent Mechatronics, Zurich, Swiss, 2007: 1-6
    81 J.C. Perry, J. Rosen. Design of a 7 Degree-of-Freedom Upper-Limb Powered Exoskeleton. International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy, 2006: 805-810
    82 P.R. Culmer, A.E. Jackson, S. Makower, et al. A Control Strategy for Upper Limb Robotic Rehabilitation with a Dual Robot System. Mechatronics, 2010, 15(4): 575-585
    83胡海燕.柔顺膝关节康复器结构及控制技术研究. [南京理工大学工学硕士学位论文]. 2009: 3-15
    84 S. Dong, K. Lu, J. Sun, et al. A Prototype Rehabilitation Device with Variable Resistance and Joint Motion Control. Medical Engineering & Physics, 2006, 28(4): 348-355
    85 M.S. Ju, C.C.K. Lin, D.H. Lin, et al. A Rehabilitation Robot with Force-Position Hybrid Fuzzy Controller: Hybrid Fuzzy Control of Rehabilitation Robot. IEEE Transactions on Neural Systemsand Rehabilitation Engineering, 2005, 13(3): 349-358
    86 A. Yang, K.H. Low. Fuzzy Position/Force Control of a Robot Leg with a Flexible Gear System. International Conference on Rehabilitation Robotics, Washington D.C., USA, 2002: 2159-2164
    87徐国政,宋爱国,李会军.基于模糊逻辑的上肢康复机器人阻抗控制实验研究.机器人, 2010, 32(6): 792-798
    88郑荣强,王予彬,王惠芳.表面肌电在膝关节运动创伤康复中的应用.中国康复医学杂志, 2008, 23(1): 81-83
    89封锦华,张济川,刘永斌,等.论康复工程的人-机-环境系统工程方法论.中国康复, 1999, 14(3): 182-183
    90王欣宇.基于人机工程学的手臂康复训练机构的研究. [长春理工大学工学硕士学位论文]. 2009: 2-15
    91张蕊,张佳帆,张文蔚.可穿戴式柔性外骨骼人机智能系统安全性设计评价.机电工程, 2008, 25(12): 85-88
    92胡宇川,季林红.从医学角度探讨偏瘫上肢康复训练机器人的设计.中国临床康复, 2004, 8(34): 7754-7756
    93 H. Schmidt, S. Hesse, R. Bernhardt. Safety Concept for Robotic Gait Trainers. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, USA, 2004: 2703-2706
    94 M. Munih, D. Novak, J. Ziherl, et al. Robotic Rehabilitation Tasks and Measurements of Psychophysiological Responses. International Conference on Robotics and Automation, Anchorage, AK, USA, 2010: 4360-4365, 5626
    95 B.W. Pan, C. Lin, M.S. Ju. Development of a Robot for Ankle Rehabilitation of Stroke Patients. Journal of Biomechanics, 2007, 40(2): 648
    96胡声宇,王明禧,白石.运动解剖学.北京:人民体育出版社, 2000: 20-50
    97窦肇华.人体结构与功能.北京:人民卫生出版社, 2001: 69-73
    98甘泉.浅谈膝关节术后CPM的临床应用.科技信息, 2008, 20:313
    99 J.F. Veneman, R. Kruidhof, E.E.G. Hekman, et al. Design and Evaluation of the Lopes Exoskeleton Robot for Interactive Gait Rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(3): 379-386
    100 N. London, M. Brown, R. Newman. Continuous Passive Motionevaluation of a New PortableLow Cost Machine. Physiotherapy, 1999, 85(11): 616-618
    101 S. Miyaguchi, N. Matsunaga, S. Kawaji. Control Scheme of Two D.O.F. Cpm Device to Suppress the Extension of Ligament of the Elbow. Biomedical Signal Processing and Control, 2009, 4(4): 294-301
    102 J. Morris. The Value of Continuous Passive Motion in Rehabilitation Following Total Knee Replacement. Physiotherapy, 1995, 81(9): 557-562
    103张小花.持续被动康复器在全膝关节置换术后的应用.暨南大学学报:自然科学与医学版, 2003, 24(3): 122-124
    104黄真,丁华锋.机构的结构类型综合综述.燕山大学学报, 2003, 27(3): 189-192
    105 T.S. Zhao, J.S. Dai, Z. Huang. Geometric Synthesis of Spatial Parallel Manipulators with Fewer Than Six Degrees of Freedom. Journal of Mechanical Engineering Science, 2002, 216(12): 1175-1185
    106于靖军,赵铁石,毕树生,等.三维平动并联机构型综合研究.自然科学进展, 2003, 13(8): 843-850
    107张彦斌,刘宏昭,吴鑫.基于互易螺旋理论的无奇异完全各向同性移动并联机构型综合.机械工程学报, 2008, 44(10): 83-88
    108李秦川.对称少自由度并联机器人型综合理论及新机型综合. [燕山大学工学博士学位论文]. 2003: 15-30
    109李宁宁,赵铁石,边辉.双重驱动四自由度并联机构型综合.机械设计与研究, 2008, 24(1): 51-53
    110黄真,赵永生,赵铁石.高等空间机构学.北京:高等教育出版社, 2006: 5-60
    111 Xianwen Kong, CléMent M. Gosselin. Type Synthesis of 3-Dof Spherical Parallel Manipulators Based on Screw Theory. Journal of Mechanical Design, 2004, 126(1): 101
    112王栋梁,周之德.踝关节骨折的治疗与术后功能评估.骨与关节损伤杂志, 1998, 13(6): 323-325
    113刘畅.膝关节功能障碍30例康复治疗疗效观察.江西医药, 2008, 43(2): 3-3
    114洪时清,洪小灵,洪涛,等.膝关节康复器的研制及其临床应用.中医正骨, 2005, 17(7): 41-43
    115 J.S. Dai, T.S. Zhao, C. Nester. Sprained Ankle Physiotherapy Based Mechanism Synthesis and Stiffness Analysis of a Robotic Rehabilitation Device. Autonomous Robots, 2004, 16(2): 207-218
    116赵铁石,黄真.欠秩空间并联机器人输入选取的理论与应用.机械工程学报, 2000, 36(10): 81-85
    117郭世绂.骨科临床解剖学.济南:山东科学技术出版社, 2002: 3-25
    118姚太顺,孟宪杰.踝关节外科.北京:中国中医药出版社, 1998: 211-215
    119赵桂林.踝关节骨折术后的康复治疗.中外健康文摘:医药月刊, 2007, 4(2): 11-12
    120顾德明,缪进昌.运动解剖学图谱.北京:人民体育出版社, 1986: 25-30
    121毛宾尧.膝关节外科.北京:人民卫生出版社, 1987: 3-15
    122黄真.并联机器人机构学理论及控制.北京:机械工业出版社, 1997: 72-88
    123 T.S. Zhao, J.S. Dai. Constraint and Stiffness of Coordinative Manipulators with Passive Flexible-Joints. World Congress in Mechanism and Machine Science, Tianjin, China, 2004: 1852-1856
    124 C.E. Benedict, D. Tesar. Dynamic Response Analysis of Quasi-Rigid Mechanical Systems Using Kinematic Influence Coefficients. Journal of Mechanisms, 1971, 6(4): 383-403
    125佘明亮,李必文,佘雅.用Matlab解决齿轮计算中两类超越三角函数方程的求解问题.南华大学学报:自然科学版, 2006, 20(2): 44-46
    126孙培先.球面图学与空间角度计算.济南:石油大学出版社, 1991: 21-40
    127郭希娟,孔令富.平面3RRR并联机构的运动性能分析.机器人技术与应用, 2002, (4): 41-45
    128赵新华,张威.基于条件数的3-RTT并联机器人参数优化.中国机械工程, 2004, 15(21): 1903-1905
    129李剑锋,吴光中,费仁元,等. 3-RUU微动并联机构的尺寸型模型及性能图谱.机械工程学报, 2005, 41(5): 142-146
    130 J.S. Dai, T.S. Zhao. Stiffness Characteristics and Kinematics Analysis of Two Link Elastic Underactuated Manipulators. Journal of Robotic Systems, 2002, 19(4): 169-176
    131赵延治,赵铁石,师丽菊.弹性铰平面闭环六杆机构刚度特性研究.中国机械工程, 2008, 19(5): 509-513
    132赵延治,张洁,赵铁石.弹性铰平面并联三自由度机器人连续刚度映射研究.燕山大学学报, 2008, 32(4): 283-289
    133赵延治.大量程柔性铰并联六维力传感器基础理论与系统研制. [燕山大学工学博士学位论文]. 2009: 53-60
    134金振林,赵现朝.新型并联机床的柔度指标及其在工作空间内分布研究.中国机械工程, 2002, 13(3): 184-186
    135金振林,高峰.一种新型6自由度正交并联机器人机构的柔度分析.机械设计与研究, 2001, 17(2): 38-40
    136周玉林,高峰. 3-RRR 3自由度球面并联机构静刚度分析.机械工程学报, 2009, 45(4): 25-32
    137李丹.踝关节融合康复机器人系统的轨迹规划和运动控制. [燕山大学工学硕士学位论文]. 2008: 20-35
    138潘旺.足关节康复机器人系统设计与开发. [燕山大学工学硕士学位论文]. 2008: 35-42
    139周兵,杨汝清. 3自由度平动并联机构结构参数的优化.机械设计与研究, 2002, 18(5): 25-27
    140张立杰.两自由度并联机器人的性能分析及尺寸优化. [燕山大学工学博士学位论文]. 2006: 23-40
    141黄田,曾宪菁.等顶锥角3自由度球面并联机构的全参数解析尺度综合.机械工程学报, 2000, 36(8): 15-19
    142 G.B.1000-88.中国成年人人体尺寸, 1987
    143刘辛军,高峰.一种新型空间3自由度并联机构的正反解及工作空间分析.机械工程学报, 2001, 37(10): 36-39
    144刘玉旺,余晓流,储刘火,等.并联机构工作空间及参数优化研究.机械科学与技术2006, 25(2): 184-188
    145吴生富,王洪波,黄真.并联机器人工作空间的研究.机器人, 1991, 13(3): 33-39
    146于大泳,韩俊伟,李洪人.并联机器人位姿误差分析.哈尔滨商业大学学报:自然科学版, 2004, 20(3): 278-280
    147刘红军,龚民,赵明扬.一种四自由度并联机构的误差分析及其标定补偿.机器人, 2005, 27(1): 6-9
    148 C.E. Syrseloudis, I.Z. Emiris. A Parallel Robot for Ankle Rehabilitation-Evaluation and Its Design Specifications. International Conference on BioInformatics and BioEngineering, Athens, Greece, 2008: 1-6
    149宗光华,裴旭,于靖军,等.双平行四杆型远程运动中心机构的设计.机械工程学报, 2007, 43(12): 103-108
    150裴旭,于靖军,毕树生,等.一维远程运动中心机构的型综合.机械工程学报, 2009, 45(2): 144-148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700