玉米矮花叶病病原鉴定、检测及外壳蛋白基因变异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.浙江玉米矮花叶病病原鉴定
     从杭州田间表现典型花叶症的玉米病叶中得到病毒分离物ZJ1。以玉米作为病毒繁殖寄主,从中提取到大量线状病毒,病毒粒子大小约740×14nm;病叶组织中观察到大量风轮状内含体及片层聚集体;外壳蛋白亚基分子量大小约33kDa;用甘蔗花叶病毒(Sugarcane mosaic viru,SCMV)、玉米矮花叶病毒(Maize dwarf mosaic virus,MDMV)、高粱花叶病毒(Sorghum mosaic virus,SrMV)、约翰逊草花叶病毒(Johnsongrass mosaic virus,JGHV)等4种侵染禾本科的Potyvirus病毒特异性引物,对ZJ1进行RT-PCR扩增,结果用SCMV特异性引物扩增到l条长约0.8kb的DNA片段,经序列测定,片段山781个核苷酸(nt)组成,编码260个氨基酸(aa),序列覆盖近全长CP基因区。比较氨基酸序列同源性,发现该序列与SCMV的同源性最高,达97.8%;与MDMV、SrMV、JGUV等3种病毒的同源性相对较低,分别只有78.8%,73.8%和60.6%。根据马铃薯Y病毒科(Potyviridae)病毒种类和株系划分的标准,将ZJ1鉴定为SCMV。2.甘蔗花叶病毒单克隆抗体制备及检测研究
     利用SCMV ZJ1分离物提纯病毒粒子作为抗原免疫BAL B/C小鼠,获得2B5、2E8、3E6等3株单克隆抗体(MAbs)。经间接ELISA方法测定,3株单克隆抗体腹水的效价在1:32000-1:2048000之间;3株单克隆抗体只与SCMV不同分离物发生反应,与玉米粗缩病毒(MRDV)、高梁花叶病毒(SrMV)、马铃薯A病毒(PVA)、小麦黄花叶病毒(WYMV)、西葫芦黄花叶病毒(ZYMV)、菜豆普通花叶病毒(BCMV)、芜青花叶病毒(TuMV)等7种病毒不发生反应;选择2B5单克隆抗体进行检测灵敏度的测定,结果病叶检测灵敏度为1:10240,提纯病毒检测灵敏度为0.7 ng。表明,2B5单克隆抗体可用于SCMV特异性检测。3.我国12省市玉米矮花叶病病原的检测鉴定
     用SCMV浙江分离物(ZJ1)制备的2E5单克隆抗体对浙江杭州、浙江海宁、江苏南京、江苏东台、上海、山东泰安、河南郑州、河北保定、北京、山西太原、山西榆次、陕西杨凌、甘肃兰州、四川成都、云南昆明等12省市15地点的176株玉米矮花叶病样进行了间接ELISA检测,结果全部样品呈阳性反应。从各样品
    
     点分别选取 3株代表性样品,采m IC-RT-PCR方法分别进行 SCMV、MDMV、SrM\,。
     几MV等。1种病毒特异性扩增,结果从全部样品中均能扩增到札MV特异性片段,
     而用其他3种病毒特异性引物不能扩增出任何片段。综合单抗检测和IC-RI”-PCR
     检测结果,认为我囚[“大地区发生的玉米矮花叶病山SCMV引起,且不存在与其
     他3种病毒的混合侵染。
     4.我国门省市侵染玉米的 SCgr分离物外壳蛋白基因变异与进化
     测定了我国门省市 14个 SCMV玉米分离物和 1个高粱红条病原山西分离物
     近全长 CP序列,比较了序列 led源性,结果表明 15个分离物呈现出两组间的序列
     芹并,浙江、江苏、卜5每、山习二、河南、河北、山西、陕西等8省市11个玉米
     分i’t\5物具有极相似的序列,妆灯酸序列P]源性为98.8-99.sfyU,氨基酸序列同源
     性为 98.l]0096;村肃、凹)]】、云南等省的 3个玉米分焉物及山西的 1个高粱分
     离物具有较一致的序列,核什酸序列同源性为94.5-99.6%,氨基酸序列同源性
     为 99.2-100%,两组分离物之问的近全长 CP核昔酸序列同源性仅为 90%人右,氨
     基酸序列同源性为97%人h。我闷SC\1\分离物与欧洲分离物门’亲缘关系较近,
     与美囚、澳大利亚、南非分离物C!‘亲缘关系较远。
     5甘蔗花叶病毒致病性测定
     对 SCM\分离物 Zj]和* 在 13个玉米品种上进行了致病性测定,接种 GS
     的植株比接种Z刀的植株发病早、病害重、体内病毒浓度高,表明GS对石米的
     致病性要强于 ZJ。筛选到 5个高抗 GS和 ZJ的玉米品种,分别为白玉糯 2、苏
     玉糯 1、苏玉糯 2、3.t南花秆糯、农大 10s。
1. Identification of the viral pathogen of maize dwarf mosaic disease in Zhejiang
    A virus isolate ZJ1 was obtained from maize showing dwarf mosaic symptoms in Hangzhou, Zhejiang. The purified virus particles were flexuous rods with the size of 740 X 14nm, and pinwheels and laminated aggregates were found in the cytoplasm of the infected maize leaf tissues. Virus coat protein migrated as a single component in SDS-PAGE with MW of ~33kDa. RT-PCR was conducted with RNA purified from ZJ1 infected maize as template using primers specific to Sugarcane mosaic virus (SCMV), Maize dwarf mosaic virus (MDMV), Sorghum mosaic virus (SrMV) and Johnsongrass mosaic virus (JGMV), respectively. A fragment of about 0.8kb was amplified only with SCMV specific primer pair. Sequence analysis shows that the fragment covers nearly full-length CP region with 781 nucleotides (nt) encoding 260 deduced amino acids (aa). The 260 aa sequence of ZJ1 was compared with the counterpart of the related potyviruses. A high sequence identity (97.8%) was observed with SCMV, whereas lower sequence identities (60.6- 78.8%) were found with SrMV, MDMV, and JGMV. According to the taxonomy criterion of species and strain in Potyvirus, ZJ 1 is identified as SCMV.
    2. Production of monoclonal antibodies against sugarcane mosaic virus ZJ1 isolate and virus detection
    3 monoclonal antibodies (MAbs) were produced against Sugarcane mosaic virus ZJ1 isolate. These MAbs were found to be specific to SCMV isolates, while no serological reaction was found with Maize rough dwarf v/ras(MRDV), SrMV, Potato virus A (PVA), Wheat yellow mosaic virus (WYMV) , Zucchini yellow mosaic virus (ZYMV) , Bean common mosaic virus (BCMV) and Turnip mosaic virus (TuMV) . The titres of ascitic fluids of 3 MAbs ranged from 1: 32000 to 1: 2048000 when measured by indirect ELISA. The MAb 2B5 could detect SCMV in plant sap with 1:10240 dilution, and the detection sensitivity for purified virus particles was 0.7ng.
    3. Detection and identification of the pathogen of maize dwarf mosaic disease in 12 provinces in China
    
    
    
    176 maize samples showing dwarf mosaic symptoms from 15 sites in 12 provinces in China, were collected and detected with SCMV MAb 2B5 by indirect ELISA. SCMV was detected in all of samples. Some selected samples were then detected by immunocapture reverse-transcription PCR (IC-RT-PCR) with SCMV, MDMV, SrMV and JGMV specific primers, respectively. SCMV was detected in all the test samples, while no other potyviruses was observed. The results show that SCMV is probably the only potyvirus infecting maize in China. 4.Variability and evolution of coat protein gene of SCMV isolates from 11
    provinces in China
    The nearly full-length coat protein (CP) gene of 14 maize and 1 sorghum isolates of SCMV from 11 provinces in China were cloned and sequenced. It had 781 nucleotides encoding 260 amino acids. These 15 SCMV isolates formed two groups based on determined nucleotide sequence. Sequences of 11 maize isolates from Zhejiang, Jiangsu, Shanghai, Shandong, Henan, Hebei, Shanxi and Shannxi provinces have 98.8-99.8% identity on nucleotide level and 98.1-100% identity on amino acid level,respectively, whereas 3 maize isolates from Gansu, Sichuan and Yunnan province and 1 sorghum isolate from Shanxi province have 94.5-99.6% identity on nucleotide sequence level and 99.2-100% identity on amino acid sequence level, respectively. Isolates between the 2 groups have only 90% identity on nucleotide sequence level and 97% identity on amino acid sequence level. Phylogenetic analysis shows that SCMV isolates from China is closely related to SCMV isolates from Europe, and relatively less related to isolates from USA, Australia and South Africa. 5. Pathogenicity of Sugarcane mosaic virus isolates
    Pathogenicity of SCMV isolates ZJ1 and GS was tested on 13 maize cultivars. GS induced higher disease incidence with a shorter incubation period in some cultivars (Taiwan2,Taiwan3,Danyul3) when compared with ZJ1. Virus concentration in GS-infected plants was usually higher than that in ZJ1-infecte
引文
Azuhata F, Uyeda I.Kimura I,Shikata E. 1993. Close similarity between genome structures of rice black-streaked dwarf and maize rough dwarf viruses. Journal of General Virology, 74:1227-1232.
    Edwards MC, Zhang Z, Weiland JJ. 1997. Oat blue dwarf marafivirus resembles the tymoviruses in sequence, genome organization, and expression strategy. Virology, 232:217-229.
    Estabrook EM,Suyenaga K,Tsai JH. 1996. Maize stripe tenuivirus RNA2 transcripts in plant and insect hosts and analysis of pvc2, a protein similar to the Phlebovirus virion membrane glycoproteins. Virus Gene,12:239-247.
    Falk BW, Tsai JH.1983. Physicochemical characterization of maize mosaic virus. Phytopathology, 73:1536-1539.
    Falk BW, Tsai JH. 1986. The two capsid proteins of maize rayado fino virus contain common peptide sequences. Intervirology, 25:111-116.
    Ge X,Gordon DT, Gingery RE. 1989. Occurrence of a small RNA in maize chlorotic dwarf virus-like particles. Phytopathology, 79:195.
    Gingery RE. Louie R. 1985. A satellitelike virus particle associated with maize white line mosaic virus.Phytopathology, 75:870-874.
    Hammond RW, Ramirez P. 2001. Molecular characterization of the genome of Maize rayado f ino virus, the type member of the genus Marafivirus. Virology-New-York, 282 :338-347.
    Heaton LA, Hillman BI, Hunter BG. 1989. Physical map of the genome of Sonchus yellow net virus,a plant rhabdovirus with six genes and conserved junction sequences. Proc.
    
    Natl. Acad.Sci. USA,86:8665-8668.
    Huiet L, Feldstein PA, Tsai JH. 1993a.The maize stripe virus major noncapsid protein mRNA transcripts contain heterogeneous leader sequences at their 5' termini. Virology, 197:808-812.
    Huiet L, Tsai JH,Falk BW. 1992. Complete sequence of maize stripe virus RNA4 and mapping of its subgenomic RNAs. Journal of General Virology,73: 1603-1607.
    Huiet L, Tsai JH, Falk BW. 1993b. Maize stripe virus RNA5 is of negative polarity and encodes a highly basic-protein.Journal of General Virology,74:549-554.
    Hunt RE, Nault LR, Gingery RE. 1988. Evidence for infectivity of maize chlo-rotic dwarf virus and for a helper component in its leafhopper trans mission. Phytopathology, 78:499-504.
    Isogai M, Azuhata F, Uyeda I,Shikaata E, Kimura I. 1995. Genomic relationships between rice black-streaked dwarf and maize rough dwarf Fijiviruses detected by nucleic acid hybridization.Ann Phytopathol Soc Jpn, 61:513-518.
    Jyothi R, Muniyappa V, Narayana YD. 1995. Virus vector relationships of maize mosaic virus and planthopper(Peregrinus maidis)in sorghum. Indian Journal of Virology, 11:61-66.
    Kaper JM, Tousignant ME, Steen ML 1988. Cucumber mosaic virus-associated RNA 5. XI. Comparison of 14 CARN'A 5 variants relates ability to induce tomato necrosis to a conserved nucleotide sequence. Virology, 163: 284-292.
    Kogel R, Hammond RW, Ramirez P. 1996. Incidence and geographic distribution of maize rayado fino virus(MRFV)in Latin America. Plant Disease, 80:679-683.
    Lommel SA, Kendall TL, Siu NF, Nutter RC. 1991a. Characterization of maize chlorotic mottle virus. Phytopathology,81:819-823.
    Lommel SA, Kendall TL, Xiong Z, Nutter RC. 1991b. Identification of the maize chlorotic mottle virus capsid protein cistron and characterization of its subgenomic messenger RNA. Virology,181:382-385.
    Maroon CM, Gordon DT, Gingery RE. 1989. Serological relationships of the capsid proteins of the type isolate of maize chlorotic dwarf virus (MCDV-T). Phytopathology, 79:1157.
    Marzachi C, Antoniazzi S, Aquilio M, Boccardo G. 1996. The double-stranded RNA genome of maize rough dwarf Fi jivirus contains both mono and dicistronic segments. European Journal of Plant Pathology, 102:601-605.
    Marzachi C, Boccardo G, Milne R, Isogai M, Uyeda I. 1995. Genome structure and variability of fijiviruses. Seminars in Virology, 6:103-108.
    Nakashima N, Koizumi M,Watanabe H,Noda H. 1996. Complete nucleotide sequence of the Nilaparvata-lugens reovirus-a putative member of the genus Fi jivirus. Journal of General Virology, 77:139-146.
    Nutter RC, Scheets K, Panganiban LC,Lommel SA. 1989. The complete nucleotide sequence of the maize mottle virus genome. Nucleic Acids Research,17:3163-3177.
    Reddick BB, Habera LF, Law MD. 1997. Nucleotide sequence and taxonomy of maize chlo-
    
    rotic dwarf virus within the Sequiviridae.Journal of General Virology, 78:l165-1174.
    Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB.(eds).2OOO. Virus taxonomy:introduc-tion to the species concept in virus taxonomy, Seventh report of the interna-tional committee on taxonomy of viruses. San Diego, California 92101-4495, USA.
    Rivera C, Gamez RA. 1986. Multiplication of maize rayado fino virus in the leafhopper vector Dalbulus maidis. Intervirology, 25:76-80.
    Sano Y, Tanno F, Kato Y, Matsubara A, Kojima M. 1996. Complete nucleotide sequence of the Japanese isolate of barley yellow dwarf virus-PAV serotype. Annals of the Phytopathological Society of Japan, 62:566-571.
    Toriyama S, Kimishima T, Takahashi M, Shimizu T, Minaka N, Akutsu K.1998. The complete nucleotide sequence of the rice grassy stunt virus genome and genomic comparisons with viruses of the genus Tenuivirus. Journal of General Virology, 79:2051-2058.
    Zhang L, Zitter TA, Palukaitis P. 1991. Helper virus-dependent replication, nucleo-tide sequence and genome organization of the satellite virus of maize white line mosaic virus. Virology, 180:467-473.
    Zoeten GA, Reddick BB.1984.Maize white line mosaic virus. CMI/AAB Descriptions of Plant Viruses, No 283.
    Zucker M.1989.0n finding all suboptimal foldings of an RNA molecule. Science, 244: 48-52.
    方守国,于嘉林,冯继东,韩成贵,李大伟,刘仪.2000.我国玉米粗缩病株上发现的水稻黑条矮缩病毒.农业生物技术学报,8(1):12.
    贾力,吴茂森,张文蔚,陈卓敏.2001.大麦黄矮病毒PAV中国分离物外壳蛋白基冈的克隆及同源性分析.植物病理学报,31(3):219-224.
    谢联辉,林奇英,吴祖建.1999.植物病毒名称及归属.北京:中国农业出版社.
    张恒木,雷娟利,陈剑平,吕永平,陈声祥.2001.浙江和河北发生的一种水稻、小麦、玉米矮缩病是水稻黑条矮缩病毒引起的.中国病毒学,16(3):246-251.
    周益军,范水坚,程兆榜,吴淑华,侯庆树.1998.江苏省玉米病毒病种类及其病原鉴定.植物病毒与病毒病防治研究,中国农业科技出版社.p368-369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700