BYDV-GPV株系正向串联体结构复制酶基因介导的转基因小麦研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将人工合成的BYDV-GPV株系复制酶基因ORF1和ORF2 cDNA片段正向串联到了植物表达载体pWubi.tm1质粒上,成功地构建了植物表达载体pPPI29,利用花粉管通道法和基因枪法分别转化了普通小麦品种陇鉴127、CA8686、京冬8号和扬麦158,并进行了部分转基因小麦的抗病性鉴定;探讨了植物激素对成熟胚愈伤组织诱导的影响,获得了较高成熟胚愈伤组织的优化培养基配方:并对ORF1和ORF2基因进行了原核表达。
     研究结果为:
     根据已经测定的BYDV-GPV部分序列,设计并合成ORF1和ORF2相应的上、下游引物,在引物中分别引入BamHI、KpnI和EcoRI位点,使得ORF1 5′端BamHI、3′端含有KpnI位点,ORF2基因5′端含有KpnI、3′端含有EcoRI位点,以BYDV-GPV株系病毒RNA为模板,RT-PCR分别扩增了GPV株系的ORF1和ORF2基因片段,并将其分别插入到pGEM-T-vector载体中,获得重组质粒pGEMORF1和pGEMORF2;将pGEMORF1和含有植物特异性表达启动子ubiquitin和终止子tm1的pWubi.tm1用BamHI和KpnI双酶切、回收,使回收的pWubi.tm1和ORF1片段连接成重组质粒pWORF1;然后用KynI和EcoRI双酶切pWORF1和pGEMORF2,并回收pWORF1(7.553kb)和ORF2(1.875kb),同样进行连接、转化和鉴定得到植物表达载体pPPI29(9.428kb),用于小麦的遗传转化。
     利用基因枪轰击扬麦158愈伤组织1652个,经过双丙氨膦筛选,获得65株抗性小麦,经过分子检测共获得6株转基因植株,转化率为0.36%。
     利用花粉管通道法共转化3个小麦品种(陇鉴127、CA8686和京冬8号),3671朵小花,收获2577粒种子,将收获的种子分别播种于温室(于4℃冰箱中春化21天)和田间,进行检测。分子检测结果表明,检测到6株CA8686阳性材料,其转化效率为0.42%;1株陇鉴127阳性结果,其转化效率为0.1%;京冬8号没有检测到阳性后代。对T_0代部分转基因材料在田间进行抗病性鉴定,CA8686转基因小麦表现出具有对GPV株系的高度抗性,在对照植株严重发病时不表现症状或仅出现轻微的叶尖发黄症状,抗病性鉴定与分子检测结果一致;陇鉴127转基因系可达到减轻症状的效果,在对照下部叶片全部黄化时,下部叶片仍没有表现出严重症状,仅表现轻微症状。
     采用二次正交旋转组合试验设计,探讨了2,4-D、肌醇和激动素对陇鉴127和陕160小麦成熟胚的愈伤组织诱导率的影响。结果表明,肌醇浓度对于小麦成熟胚愈伤组织的贡献率最大,其次为2,4-D,再次为激动素,并建立了适合两个小麦品种愈伤组织诱导率的数学模型,筛选出了适合两个小麦品种成熟胚愈伤组
    
    刘太国 摘 要2003年6月
    织诱导的最佳配比培养基配方。适合陇鉴 127小麦成熟胚愈伤组织诱导的培养基
    配方为:1.57~1.91m旮L的2,4-D、0.79~l*Zing/L 的激动素和0.104~0.1259/L
    的肌醇;适合陕 160 ,J’麦成熟胚愈伤组织的诱导的培养基配方为:2刀8~2.40mg/L
    的二,4D、0.933~1.267mg/L的激动素和 0*99~0.112g/L的肌醇。
     构建了BYDVGPV株系复策酶基因的原核表达载体pETOgyl 和pETOgyZ,
    并进行了融合蛋白的初步表达,结果 ORF基因有特异性的蛋白产物得到初步表
    达,而ORFZ基因没有特异性蛋白表达。
ORF1 and ORF2 cDNA from BYDV-GPV strain were introduced into a plasmid (pwubi.tml) containing the maize ubiquitin promoter sequence which drives high levels of expression in cereal cells successively. Plasmid DNAs were introduced into four Triticum aestivum cultivars Longjian 127, CA8686, Jingdong 8 and Yangmai 158 by pollen tube pathway and microprojectile bombardment. The resistance of some transgenic wheat plants to BYDV-GPV was detected in the fields. It was studied about the effects on the callus induction of mature embryos by three phytohormones. The optimal recipes to Longjian 127 and Shan 160 were established. IPTG-induced expression vector in Escherichia coli (E. coli) was constructed and used to express fusion proteins of ORF1 and ORF2 gene. The results showed that:
    The plant expression vector pPPI29 was constructed by the following series of steps using standard recombinant DNA techniques. Full-length ORF1 (BamHI and Kpnl sites were added to its upstream and downstream terminal) and ORF2 (KpnI and EcoRI sequence were introduced into its 5' terminal and 3' terminal) cDNA were amplified from RNA extract of BYDV-GPV strain and cloned into pGEM-T-Vector to produce pGEMORFl and pGEMORF2. Several bases of pWubi.tml was replaced by digestion with BamHl and Kpnl and ligation of the same terminal ORF1 cut from recombinant pGEMORFl to yield plasmid pWORFl. Then plasmid pPPI29 was constructed by digestion of pWORFl with Kpnl and EcoRI and ligation of the same terminal ORF2 cut from recombinant pGEMORF2. The results showed that ORF1 and ORF2 were directly inserted into pWubi.tml in series.
    1652 calluses derived from immature embryos of Yangmai 158 were bombarded with microprojectiles coated with DNA containing pPPI29 and pAHC20 using a PDS 1000/He gun. The bombardment was performed 9 days after embryo induction. Sixty-five resistant wheat plants resist to 1-3 mg bialaphos per litre were obtained and six transgenic lines were confirmed by dot-plot, PCR-Southern hybridization.The transformed frequency was 0.36% by the biolistic method.
    After excision of the stigmas, a drop of a plasmid DNA solution (containing 1 g pPPI29, 1g p35SNEO and 5g ssDNA in 101 solution) was delivered to the end of the styles of florets from Triticum aestivum cultivar Longjian 127, CA8686 and Jingdong 8. A total 2577 mature wheat seeds were collected from 3551 florets. The seedlings from harvested seeds were screened by dot-blot, PCR-Southern
    
    
    
    hybridization and resistance assay in fields. The results showed that six CA8686 and one Longjian 127 positive seedlings in TO transgenic wheat were confirmed by molecular analysis. No positive result was determined in the seedlings of transformed Jingdong 8. Resistance assay in the fields showed that some transgenic lines of CA8686 displayed higher resistance to virus infection. When the controls showed serious symptom, the seedlings of transgenic lines have no symptoms or only slightly yellowing on the leaf apex after inoculation for 23 days. A substantial delay in symptom development was shown on the one transgenic line of Longjian 127. When the seedlings of controls all showed yellowing, the seedlings of transgenic wheat displayed milder symptom.
    The callus induction of Longjian 127 and Shan 160 mature embryos was carried out with quadratic orthogonal rotation combination designs. The results showed that inositol played a leading role on the callus induction than 2, 4-D and Kinetin. The mathematic models were established to fit for each wheat cultivar. The optimal concentrations of the media for Longjian 127 were 2, 4-D 1.57-1.91mg/L, inositol 0.104-0.125g/L and kinetin 0.79-1.02mg/L under the 95% confidence limit, and for Shan 160 it were about 2, 4-D 2.08-2.40mg/L, inositol 0.099-0.112g/L and kinetin 0.933-1.267mg/L.
    The IPTG-inducible expression vector pETORF1 and pETORF2 were constructed with ORF1 and ORF2 of BYDV-GPV strain, respectively. The two plasmids were transferred into E. coli BL21 (DE3)-plysS and fusion proteins was preliminary expressed. The results showed that the spe
引文
1.安德荣,程继红,成卓敏等.影响小麦RAPD稳定性的试验技术研究.麦类作物学报,2001,21(1):14-17
    2.安海龙,卫志明,黄健秋.小麦幼胚培养高效成株系统的建立.植物生理学报,2000,26(6):532-538
    3.曹云鹤.甜菜黑色焦枯病毒cDNA克隆的构建以及外壳蛋白基因与致病性关系的初步研究.中国农业大学博士学位论文.2002.北京.
    4.常胜军.大麦黄矮病毒GAV株系ORF1-5基因的克隆、测序及通读蛋白基因的表达.中国农业科学院博士研究生学位论文.1999.北京.
    5.陈定虎.美洲商陆抗病毒蛋白基因克隆、表达和遗传转化研究.中国农业科学院博士研究生学位论文.2002.北京.
    6.陈梁鸿,王新望,张晓东等.基因枪转化小麦不同受体的研究.华北农学报,1998,13(1):1-5
    7.陈孝,徐惠君,杜丽璞等.利用组织培养技术向普通小麦导入簇毛麦抗白粉病基因的研究.中国农业科学,1996,29(5):1-8
    8.成卓敏,何小源,吴茂森等.大麦黄矮病毒GPV株系外壳蛋白基因序列分析及其植物表达质粒的构建.中国科学(C辑),1996,26(3):250
    9.成卓敏,何小源,陈彩层等.大麦黄矮病毒外壳蛋白基因合成及用花粉管途径获得小麦转基因植株.自然科学进展--国家重点实验室通讯,1993,3(6):560-564
    10.成卓敏,何小源,陈彩层等.应用基因工程创造抗黄矮病毒转基因小麦新种质.植物保护,1996,22(3):18-20
    11.成卓敏.抗病毒转基因小麦研究进展.生物技术通报,1997,(4):11-13
    12.成卓敏,吴茂森,夏光敏等.应用基因枪法获得抗大麦黄矮病毒转基因小麦.植物病理学报,2000,30(2):116-121
    13.成卓敏,周广和.小麦黄矮病毒GPV株系的提纯及血清学研究.病毒学报,1986,2(3):275-278
    14.董槿.抗小麦黄花叶病毒转基因小麦的研究.中国农业大学博士学位论文.2002.北京.
    15.段晓岚,陈善葆.外源DNA导入水稻引起性状变异.中国农业科学,1985,(3):6-10
    16.段振锋,朱昌棋,朱庆麟.小麦幼穗及花药愈伤组织对赤霉病菌粗毒素的反应.山东农业科学,2000,(5):36-38
    17.傅荣昭,曹光诚,马江生等.用基因枪法将人工雄性不育基因导入小麦的研
    
    究初报.遗传学报,1997,24(4):358-361
    18.付永彩,吴茂森,成卓敏.小麦不同品种外植体的农杆菌转化方法的研究.农业生物技术学报,2002,10(1):25-28
    19.付永彩.农杆菌介导的大麦黄矮病毒CP基因转化小麦的研究.中国农业科学院植物保护研究所博士后研究工作报告.2000.北京.
    20.高丽丽,余新炳.植物基因转化技术在生物制药方面中的应用.热带医学杂志.2001,1(1):76-79
    21.葛台明,余毓君.小麦组织培养再生植株营养需求的研究.华中农业大学学报,1994,13(4):344-348
    22.龚蓁蓁,沈慰芳,周光宇等.受粉后外源NDA导入植物技术——DNA通过花粉管通道进入胚囊.中国科学(B辑),1988,(6):611-614
    23.郭宝太等.GUS与天花粉蛋白基因由花粉管通道导入小麦的研究.莱阳农学院学报,1996,13(1):1-4
    24.韩成贵.甜菜坏死黄脉病毒(BNYVV)RNA4基因组的克隆与表达.中国农业大学博士学位论文.1996.
    25.韩双艳,郭勇.农杆菌及基因枪在玉米遗传转化中的应用.广西植物.2002,22(3):259-263
    26.何海怀,杨益良,付士红等,我国分离的XJ-160病毒全基因组克隆的构建,病毒学报,2001,17(2):161-165
    27.何勇刚,林刚,刘曼西等.小麦不同生理状态的幼穗和幼胚盾片与诱导分化能力关系的研究.武汉植物学研究,2001,19(5):363-368
    28.黄大年,高振宇,华志华等.基因枪法在水稻工程育种中的应用.植物学通报,2001,18(3):283-287
    29.黄益洪,周淼平,叶兴国等.农杆菌介导法获得小麦转基因植株的研究.作物学报,2002,28(4):510-515
    30.贾力.大麦黄矮病毒外壳蛋白基因植物表达载体的构建及小麦遗传转化.中国农业科学院硕士研究生学位论文.1999.北京.
    31.贾力,吴茂森,张文蔚等.大麦黄矮病毒单双价外壳蛋白基因植物表达载体构建及小麦遗传转化.农业生物技术学报,2001,9(1):23-27
    32.金冬燕等译,(美)J.萨姆布鲁克等著.分子克隆实验指南(第二版).科学出版社,1992
    33.李贞霞,王玲玲,张兴国.影响基因枪法遗传转化的因素.生物学杂志,2002,19(2):31-32
    34.梁一池,杨华.植物组织培养技术的研究进展.福建林学院学报,2002,
    
    22(1):1-3
    35.林红波,刘云英,李维琪.小麦高分子量谷蛋白亚基及其基因的研究进展.西北植物学报,2002,22(4):1025-1029
    36.林万明等.PCR技术操作和应用指南.人民军医出版社.1993
    37.刘根齐等.外源DNA直接导入小麦及其在育种上的应用.遗传学报,1994,21(6):463-467
    38.刘伟华,李文雄,胡尚连等.小麦组织培养和基因枪轰击影响因素探讨.西北植物学报,2002,22(3):602-610
    39.刘玉乐,田波.抗病毒基因工程的研究进展.中国病毒学,1993,8(1):7-15
    40.刘志方,陈穗云,夏光敏等.利用花粉管通道法途径获得转基因小麦.山东大学学报(自然科学版),2001,36(1):84-89
    41.柳展基,单雷,徐平丽等.禾本科作物基因枪介导遗传转化研究进展.沈阳农业大学学报,2001,32(6):465-468
    42.钱幼亭,刘艳,孙晓平等.小麦—中间偃麦草新种质对大麦黄矮病毒(BYDV)的抗性及其分子标记的研究.植物病毒与病毒病防治研究278-282页,刘仪主编,中国农业科技出版社
    43.覃建兵,何光源.小麦遗传转化研究进展.生命科学研究,2001,5(3):110-116
    44.权洁霞,张艺兵,陈长法等.植物转基因成分PCR检测内对照系统的建立.云南植物研究,2002,24(3):333-340
    45.宋锡全,夏光敏,陈惠民.小麦族几种近缘植物细胞在长期离体培养中的染色体变异.植物生理学报,2000,26(1):33-38
    46.苏慧慈,刘彦仿.原位PCR.科学出版社,1995.
    47.唐宗祥,任正隆,张怀琼等.小麦新品种R59成熟胚的组织培养初报.四川农业大学学报,2001,19(4):398-399
    48.田苗英,吴茂森,陈彩层等.大麦黄矮病毒缺失复制酶基因植物表达载体的构建及转基因小麦的获得.中国农业科学,1999,32(5):49-54.
    49.王兰岚等.利用激光微束穿刺法将外源基因导入小麦的研究.遗传学报,1995,22(5):394-399
    50.王锡锋.麦蚜传播大麦黄矮病毒的机制研究.中国农科院博士学位论文,1998.
    51.汪秀峰,杨剑波,吴丽芳等.小麦叶片直接用于PCR和RAPD反应的方法.遗传,2002,24(3):332-334
    52.温孚江.大麦黄矮病研究进展.山东农业科学,1993,(1):4-10
    53.吴丽芳,李红,汪岑等.低能氮离子注入对小麦组织培养影响的研究.激光
    
    生物学报,1999,8(4):266-269
    54.吴茂森,田苗英,陈彩层等.通过花粉管途径将BYDV-GPV株系缺失复制酶基因导入小麦.农业生物技术学报,2000,8(2):125-127
    55.吴茂森.大麦黄矮病毒GPV株系复制酶基因介导的抗病毒转基因小麦的研究.中国农业科学院博士研究生学位论文.2000.北京.
    56.奚亚军,路明.小麦转基因技术的研究现状及在育种上的应用.中国农学通报,2002,18(3):55-58
    57.夏光敏,陈惠民,成卓敏,吴茂森.BYDV CP基因转化小麦原生质体及转基因植株再生.山东大学学报(自然科学版),1996,31(3):357-360
    58.夏光敏,陈惠民,郭光沁等.微弹射击将大麦黄矮病毒外壳蛋白基因转入小麦获可育植株.山东大学学报(自然科学版),1996,31(1):94-101
    59.项瑜等.改造的马铃薯Y病毒复制酶基因介导高度抗性.生物工程学报,1996,12(3):258-265
    60.肖兴国,张爱民,聂秀玲.转基因小麦的研究进展与展望.农业生物技术学报,2000,8(2):111-116
    61.谢道昕,范云六,倪丕冲.苏云金芽孢杆菌杀虫基因导入中国栽培水稻品种中花11号获得转基因植株.中国科学(B辑),1991,(8):830-834
    62.辛志勇,徐惠君,陈孝等.应用生物技术向小麦导入黄矮病抗性的研究.中国科学(B辑),1991,(1):36-42
    63.徐惠君,庞俊兰,叶兴国等.基因枪介导法向小麦导入黄花叶病毒复制酶基因的研究.作物学报,2001,27(6):688-694
    64.许雷.大麦黄矮病毒GPV株系ORF5基因的克隆、表达载体构建及转基因研究.中国农业科学院博士研究生学位论文.2001.北京.
    65.徐仲儒主编.回归分析与试验设计.中国农业出版社.1998
    66.徐仲儒编著.农业试验最优回归设计.黑龙江科学技术出版社.1988
    67.徐子勤.重要禾谷类植物转基因研究.生物工程进展,2001,2(1):59-74
    68.阎新甫,刘文轩,王胜军等.抗白粉病大麦DNA导入普通小麦的研究.农业分子育种研究进展.北京:中国农业科技出版社,1993,69-75
    69.燕义唐等.水稻条纹叶枯病毒外壳蛋白基因在工程水稻植株中的表达.植物学报,1992,34(12):933
    70.扬丰科,左立,刘均洪.基因疫苗导入技术研究进展.中国生物工程杂志,2003,23(2):59-63
    71.叶兴国,徐惠君,杜丽璞等.小麦遗传转化几个因素的研究.中国农业科学,2001,34(2):128-132
    
    
    72.曾君祉,王东江,吴有强等.用花粉管途径获得小麦转基因植株.中国科学(B辑),1993,23(3):256-262
    73.曾君祉,吴有强,王东江等,花粉管通道法转化的植株后代遗传表现及转化机理探讨.科学通报,1998,43(6):561-566
    74.张景昱,张中林苏宁,宋艳茹.叶绿体遗传转化:植物导入外源基因的新途径.植物学通报,2001,18(3):288-294
    75.张淑香,周广和.一种由麦二叉蚜、禾缢管蚜非专化性传播的小麦黄矮病毒株系鉴定.植物病理学报,1987,17(2):102-105
    76.张新春,庄炳昌,李自超.水稻基因枪转化的研究.吉林农业科学,2002,27(2)17-21
    77.赵虹,李名扬,裴炎等.用基因枪法将抗除草剂基因导入小麦栽培品种的研究.植物学通报,2002,19(4):457-461
    78.周嫦,杨弘远.小麦受精过程中若干问题的胚胎学研究[J].遗传学集刊,1964,(4):39-47
    79.周广和.世界大麦黄矮病研究概况.世界农业,1989,(7):36-38
    80.周广和,成卓敏,张向才等.麦类病毒病及其防治.上海科学技术出版社,1987.
    81.周广和,张淑香,一种由麦二叉蚜和麦长管蚜传播的小麦黄矮病毒株系鉴定,植物病理学报,1986,16:22-25
    82.周广和,张淑香,钱幼亭,小麦黄矮病毒4种株系鉴定与应用,中国农业科学,1987,20:12-16
    83.周文麟,倪建福,王亚馥等.外源C4作物DNA导入小麦的研究.作物学报,1992,18(6):418-424
    84.周益洪,周淼平,叶兴国等.农杆菌介导法获得小麦转基因植株的研究.作物学报,2002,28(4):510-515
    85. Adam, G., Sander, E., Shepherd, R. J.et al. Structural differences between pea enation mosaic virus strains affecting transmissibility by Acyrthosiphon pisum (Harris). Virology, 1979, 92:1-14
    86. Anderson, J. M. et al. A defective replicase gene induces resistance to cucumber mosaic virus in transgenic tobacco plants. Proc. Natl. Acad. Sci. U S A, 1992, 89:8759-8763
    87. Atkins, J. F., Weiss, R. B., and Gesteland, R. F. Ribozome gymnastics — degree of difficulty 9. 5, style10. 0. Cell, 1990, 62:413-423
    88. Ausubel, F. M. et al. Short protocols in molecular biology (Third edition).
    
    Published by John Wiley & Sons, Inc. USA 1995.
    89. Backer, D., Btettschneider, R., Lorz, H. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J. 1994, 5:299-307
    90. Bahner, I., et al. Expression of the genome of potato leafroll virus: readthrough of the coat protein termination codon in vivo. J. Gen. Virol., 1990, 71:2251-2256
    91. Baultenberger, D. E., Ohm, H. W., Foster, J. E. Reactions of oat, barley and wheat to infection with barley yellow dwarf isolates. Crop Sci., 1987, 27:195-198
    92. Banks, P. M., Larkin, P. J., Bariana, H. S., et al. The use of cell culture for subchromosomal introgression of barley yellow dwarf virus resistance from Trinopyrum intermedium to wheat. Genome, 1995, 38:395-405
    93. Barker, H., et al. Restricted virus multiplication in potatoes transformed with the coat protein gene of potato leafroll luteovirus: Similarities with a type of host gene-mediated resistance. Ann. Appl. Biol., 1992, 120:55-64
    94. Barro F, Rooke L, Bekes F, et al. Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nature-Biotechnology, 1997, 15: 1295-1299
    95. Baulcombe D. Replicase-mediated resistance: a novel type of virus resistance in transgenic plants. Trents in Microbiology, 1994, 2(2):60-63
    96. Bazan, J. F. and Fletterick, R. J., Structural and catalytic models of trypsin-like viral proteases. Semin. Virol., 1990, 1:311
    97. Blechl A E, Le H Q, Anderson O D., Muntz K. Engineering changes in wheat flour by genetic transformation. Journal of Plant Physiology, 1998, 152:703-707
    98. Bliffeld M, M undy J, Potrykus I, Fütterer J. Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor. Appl. Genet., 1999, 98:1079-1086
    99. Brault, V. and Miller, W. A. Translational frameshifting mediated by a viral sequence in plant cells. Proc. Natl. Acad. Sci. USA, 1992, 89:2262-2266
    100.Braun, C. J. and Hemenway, C. L. Expression of Amino-Terminal protein or full-lenth viral replicase genes in transgenic plantseonfers resistance to potato virus X infection. The Plant Cell, 1992, 4:735-744
    101.Brierley, I., Digard, P., and Inglis, S. C. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an rnapseudoknot. Cell, 1989, 57:537-547
    102.Burnett P A, Comeau A, Qualset C O. Host plant tolerance or resistance for
    
    control of barley yellow dwarf. In: Barley Yellow Dwarf: 40 Years of Progress. C. J. D'Arcy and P. Burnett, eds. The American Phytopathological Society, St. Paul. MN., 1995:29-53
    103.Cavener, D. R. and Ray, S. C. Eukaryotic start and stop translation sites. Nucleic Acids Res., 1991, 19:3185-3192
    104.Chan M T, Lee T M, Chang H H. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene. Plant Mol. Biol., 1993, 22:577-583
    105.Chay, C. A., Gunasinge, U. B., Dinesh-Kumar, S. P., Miller, M. A., Gray, S. M. Aphid transmission and systemic plant infection determines of barley yellow dwarf Luteovirus-PAV are contained in the coat readthrough domain, and 17-kD protein, respectively. Virology, 1996, 219:57-65
    106.Cheng M, Fry J E, Peng S, et al. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol., 1997, 115:971-980
    107.Cheng, S. L., Domier, L. L., D'Arcy, C. J., Detection of the readthrough protein of barley yellow dwarf virus. Virology. 1994, 202:1003-1006
    108.Cheng Z, He X, Chen C, et al. Resistance to virus gene expression in transgenic wheat plants. High Technology Letters, 1996, 2(2): 103-106
    109.Cheng Z, He X, Chen C, et al. Transgenic wheat plants resistant to barley yellow dwarf virus obtained by pollen tube pathway-mediated transformation. Chinene Agricultural Science--For the Compliments to the 40th Anniversary of the Chinese Academy of Agriculteral Sciences. China Agricultural Scientech Press, 1997:98-108
    110.Cheng, Z., He, X., Chen, C., et al. Transgenic wheat plants resistant to barley yellow dwarf virus obtained by pollen tube pathway-mediated transformation. In: Agricultural Biotechnology: Laboratory, Field and Market. ----Proceedings of the 4th Asia-Pacific Conference on Agricultural Biotechnology. 1998, P. J. Larkin, ed. Darwin Australia, pp21-23
    111.Cheng Zuomin, He Xiaoyuan, Chen Caiceng, et al. Transgenic wheat plants resistant to barley yellow dwarf virus obtained by pollen tube pathway-mediated transformation. Chinese Agricultural Sciences—for the compliments to the 40th anniversary of the founding of the Chinese Academy of Agricultural Sciences, 1997, pp98
    112.Collins, N. C., Paltridge, N. G., Ford, C. M., and Symons, R. H. The Yd2 gene for
    
    barley yellow dwarf virus resistance maps close to the centromere on the long arm of barley chromosome 3. Theor. Appl. Genet., 1996, 92:858-864
    113.Conti, M., et al., The "Yellow plague" of cereals, barley yellow dwarf virus, in: World Perspectives on Barley yellow Dwarf, 1990, P. A. Burnet, Ed., CIMMYT, Mexico D. F., pp1
    114.Cooper, J. I., and Jones, A. T. Responses of plants to virus: Proposals for the use of terms. Phytopathology, 1983, 73:127-128
    115.Culver, J.N., Dawson, W. O., Plonk, K. and Stubbs, G. Site-specific mutagenesis confirms the involvement of carboxylate groups in the disassembly of tobacco mosaic virus. Virology, 1995, 206:724-730 ~.
    116.Culver, J.N., Stubbs, G., and Dawson, W. O. Structure-function relationship between tobacco mosaic virus coat protein and hypersensitivity in Nicotina sylvestris. J.. Mol. Biol., 1994, 242:130-138
    117.D′Arty, C. J., Burnett, P. A. eds. Barley yellow dwarf virus: forty years of progress. St. Paul: APS Press, 1995
    118.Danthinne, X., Seurinck, J., Meulewaeter, F., et al. The 3′untranslated region of satellite tobacco necrosis virus RNA stimulates translateon in vitro. Mol. Cell Biol., 1993, 13:3340-3349
    119.De Block, M., Herrera-Estrella, L., Van Montagu, M., et al. Expression of foreign genes in regenerated plants and their progeny. EMBO J., 1984, 3:1681-1689
    120.DeloGu, G., Cattivelli, L., Snidaro, M., and Stanca, A. M. The Yd2 gene and enhanced resistance to barley yellow dwarf virus (BYDV) in winter barley. Plant Breed, 1995, 114:417-420
    121.Demler, S. A. and de Zoeten, G. A. The nucleotide sequence and luteovirus-like nature of an aphid non-transmissible strain of pea enation mosaic virus. J. Gen. Virol., 1991, 72:1819-1834
    122.Demler, S. A., et al. The chimeric nature of the genome of pea enation mosaic virus: the independent replication of RNA2. J. Gen. Virol., 1993, 74:1-14
    123.Deom, C. M., Schuber, K. R., Wolf, S., et al. Molecular characterization and biological function of the movement protein of tobacco mosaic virus in transgenic plants. Proc. Natl. Acad. Sci. USA, 1990, 87:3284-3288
    124.Deom, C. M., Lapidot, M., and Beachy, R. N. Plant virus movement proteins. Cell, 1992, 69:221-224
    125.Di, R., Dinesh-Kumar, S. P., Miller, W. A. Translational frameshifting by barley
    
    yellow dwarf virus (PAV serotype) in Escherichia coli and in eukaryotic cell-free extracts. Mol. Plant-Microbe Interact., 1993, 6:444-452
    126.Dinesh-Kumar, S. P. and Miller, W. A. Control of start codon choice on a plant viral RNA encoding overlapping genes. Plant Cell, 1993, 5:679-692
    127.Dinesh-Kumar, S. P., Brault, V., Miller, W. A. Precise mapping and in vitro translation of a trifunctional subgenomic RNA of barley yellow dwarf virus. Virology, 1992, 187:711-722
    128.English, J.J.and Baulcombe, D.C. The influence of small changes in transgene transcription on homology-dependent virus resistance and gene silencing. Plant J., 1997, 12, 1311-1318.
    129.English, J.J., Davenport, G.F., Elmayan, T., Vaucheret, H.and Baulcombe,D.C. Requirement of sense transcription for homology-dependent virus resistance and trans-inactivation. Plant J., 1997, 12, 597-603.
    130.English, J.J., Mueller, E.and Baulcombe, D.C. Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell. 1996, 8, 179-188.
    131.Falk, B. W., Chin, I. -S., Duffus, J. E. Complementary DNA cloning and hybridization analysis of beet western yellow luteovirus RNAs. J. Gen. Virol., 1989, 70:1301-1309
    132.Filichkin, S. A., Brumfield, S., Filichkin, T. P., et al. In vitro interactions of the aphid endosymbolic SymL chaperonin with barley yellow dwarf virus. J. Virol., 1997, 71:569-577
    133.Filichkin, S. A., Lister, R. M., McGrath, P. F., et al. In vivo expression and mutational analysis of the barley yellow dwarf virus readthrough gene. Virology, 1994, 205:290-299
    134.Fraley R. T. et al., Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA, 1983, 80:4803-4807
    135.Oarcia, A., van Duin, J., and Pleij, C. W. A. Differential response to frameshift signals in eukaryotic and prokaryotic translational systems. Nucleic Acids Res., 1993, 21:401-406
    136.Ge, A. Z., R. M. Pfister, and D. H. Dean. Hyperexpression of a Bacillus thuringiensis delta-endotoxin-encoding gene in Escherichia coli:propertyes of the product. Gene. 1990.93:49-54
    137.Gill, C. C., and Chong, J. Cytopathological evidence for the division of barley
    
    yellow dwarf virus isolates into two subgroups. Virology, 1979, 95:59-69
    138.Golemboski, D. B., Lomonossoff, G. P., and Zaitlin, M. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc. Natl. Acad. Sci. USA, 1990, 87:6311-6315
    139.Gorbalenya, A. E., Donchenko, A. P., Blinov, V. M., and Koonin, E. V., Cysteine protease of positive strand RNA viruses and chymotrypsin-like serine proteases. FEBS lett., 1989, 243:103-110
    140.Gray, S. M., Smith, D., and Altman, N. Barley yellow dwarf virus isolate-specific resistance in spring oats reduced virus accumulation and aphid transmission. Phytopathology, 1993, 83:716-720
    141.Guilley, H., Carrington, J. C., Balazs, E., et al. Nucleotide sequence and genome organization of carnation mottle virus RNA. Nucleic Acids Res., 1985, 13:6663-6667
    142.Guilley, H., Wipf-Scheibel, C., Richards, K., et al. Nucleotide sequence of cucurbit aphid-borne yellows luteovirus. Virology, 1994, 202:1012-1017
    143.Habili, N. and Symons, R. H. Evolutionary relationship between Luteoviruses and other RNA plant viruses based on sequence motifs in their putative RNA polymerases and nucleic acid helicases. Nucleic Acids Res., 1989, 17:9543-9555
    144.Hellwald, K-H., and Palukaitis, P. Viral RNA serves as a potential target for two independent mechanisms of replicase-mediated resistance against cucumber mosaic virus. Cell, 1995, 83:937-946.
    145.Hewings, A. D., Eastman, C. E. Epidemiology of barley yellow dwarf in North America. Pages 75-106 in CJ D'Arcy and P. A. Burnett (eds.). Barley yellow dwarf: 40 years of progress. APS Press: St. Paul, Minn. 1995
    146.Hiei, Y., Ohta, S., Komari, T., Kumashiro, T. Efficiant transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J., 1994, 6:271-282
    147.Horsch, R. B., Fraley, R. T., Rogers, S. G., et al. Inheritance of functional genes in plants. Science, 1984, 223:496-498
    148.Hull, R., Movement of viruses in plants. Annu. Rev. Phytopathol., 1989, 27:213
    149.Ishida, Y., Saito, H., Ohta, S., et al. High efficience transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol., 1996, 14:745-750
    150.Jacks, T., et al. Signals for ribosomal frameshifting in the Rous sarcoma virus
    
    gag-pol regain. Cell, 1988, 55:447-458
    151.Jacks, T., Varmus, H. E. Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science, 1985, 230:1237-1242.
    152.Jin, H., Domier, L. L., Kolb, F. L., and Brown, C. M. Identification of quantitative loci for tolerance to barley yellow dwarf virus in oat. Phytopathology, 1998, 88:410-415
    153.Jolly, C. A., and Mayo, M. A. Changes in the amino acid sequence of the coat protein readthrough domain of potato leafroll luteovims affect the formation of an epitope and aphid transmission. Virology, 1994, 201:182-185
    154.Kamer, G. and Argos, P. Primary structural comparison of RNA-dependent RNA polymerases from plant, animal and bacterial viruses. Nucleic Acids Res., 1984, 12:7269-7282
    155.Kaniewski, W., Lawson, C. Coat protein and replicase-mediated resistance to plant viruses. Plant Virus Disease Control. pp. 65-78 Eds: Hadidi A; American Phytopathological Society (APS Press), St. Paul, Minnesota, United States of America. 1998
    156.Kawchuk, L. M., Martin, R. R., and McPherson, J. Resistance in transgenic potato expressing the potato leaf roll vires coat protein gene. Mol. Plant-Microbe Interact., 1990, 3:301-307
    157.Kelly, L., Gerlach, W. L., Waterhouse, P. M. Characterisation of the subgenomic RNAs of an Australian isolate of barley yellow dwarf luteovims. Virology, 1994, 202:565-573
    158.Kim, C-H., Palukaitis, P. The plant defense response to cucumber mosaic vires in cowpea is elicited by the viral polymerase gene and affects virus accumulation in single cells. EMBO J., 1997, 16: 4060-4068.
    159.Klein, T. M., et al. High velocity microprojectiles for delivering nucleic acid into living cells. Nature, 1987, 327:70-73
    160.Koev, G., Liu, S., Beckett, R., Miller, W. A. The 3'-terminal structure required for replication of barley yellow dwarf virus RNA contains an embedded 3' end. Virology, 2002, 292, 114-126
    161.Koev G, Mohan B R, Dinesh-Kumar S P, et al. Extreme reduction of disease in oats transformed with the 5' half of the barley yellow dwarf virus-PAV genome. Phytopathology, 1998, 88:1013-1019
    162.Koev, G., and Miller, W. A. A positive-strand RNA virus with three very different
    
    subgenomic RNA promoters. Journal of virology, 2000,74(13):5988-5996
    163.Koonin, E. V. and Dolja, V. V. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol., 1993, 28:375-430
    164.Koonin, E. V. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J. Gen. Virol., 1991, 72:2197-2206
    165.Kozak, M. Structural features in eukaryotic mRNAs that modulate the initiation of translateon. J. Biol. Chem., 1991,266: 19867-19870
    166.Kozak, M. The scanning model for translation: an update. J. Cell Biol., 1989b, 108:229-241
    167.Kujawa, A. B., Drugeon, G., Hulanicka, D., Haenni, A. L. Structural requirements for efficient translational frameshifting in the putative viral RNA-dependent RNA polymerase of potato leafroll virus. Nucleic Acids Res., 1993, 21:2165-2171
    168.Landry, B., Comeau, A., Minvielle, F., and St-Pierre, C. -A. Genetic analysis of resistance to barley yellow dwarf virus in hybrids between Avena sativa 'Lamar' and virus-resistant lines of Avena sterilis. Crop Sci., 1984, 24:337-340
    169.Larkin, P. J., Banks, P. M., Lagudah, E. S., et al. Disomic Thinopyrum intermedium addition lines in wheat with barley yellow dwarf virus resistance and with rust resistances. Genome, 1995, 38:385-394
    170.Leiser, R. M., Ziegler-Graff, V., Reutenaur, A., et al. Agroinfection as an alternative to insects for infecting plants with beet western yellows luteovirus. Proc. Natl. Acad. Sci. USA, 1992, 89:9136-9140
    171.Li Yi-Wen, Seo Yong-Weon, Li Zhen-sheng, et al. Acta Botanica sinica, 2002, 44(5):505-518
    172.Lister, R. M. and Ranieri, R. Distribution and economic importance of barley yellow dwarf. Pages 29-53 in: Barley Yellow Dwarf: 40 Years of Progress. 1995, C. J. D'Arcy and P. Burnett, eds. The American Phytopathological Society, St. Paul, MN
    173.Lister, R. M., Vincent, J. R., Lei, C-H,, et al. Coat protein mediated resistance to barley yellow dwarf virus in oats. Phytopathology, 1995, 85:1117 (Abstr.)
    174.Ma, Chonglie and Mitra, Amitava. Intrinsic direct repeats generate consistent post-transcriptional gene silencing in tobacco. The Plant Journal, 2002, 31(1):37-49
    175.Marson P A, et al. Analysis of stable events of transformation in wheat via
    
    PEG-mediated DNA uptake into protoplasts. Plant Sci., 1993, 93:85-94
    176.Zhang, L., Rybczynski, J. J., Langenberg, W. G., et al. An efficient wheat transformation procedure: transformed calli with long-term morphogenic potencyal for plant regeneration. Plant Cell Reports, 2000, 19:241-250
    177.Martin, R. R., Keese, P. K., Young, M. J., et al. Evolution and molecular biology of luteoviruses. Annu. Rev. Phytopathol., 1990, 28:341-363
    178.Mayo, M. A., and Ziegler-Graff, V. Molecular biology of Luteoviruses. Adv. Virus Res., 1996, 46:413-460
    179.Mayo, M. A. Development in plant virus taxonomy since the publilcation of the 6th ICTV Report. Arch. Virol., 1999, 144:1659-1666
    180.Mayo, M. A., Robinson, D. J., Jolly, C. A., et al. Nucleotide sequence of potato leafroll luteovirus RNA. J. Gen. Virol., 1989, 70:1037-1051
    181.McCarthy P L, Hanson J, Shiel P J, et al. Coat protein-mediated resistance to wheat streak mosaic and barley yellow dwarf viruses in soft white winter wheat. Presented at 10th Int. Congr. Virol., 1996, Jerusalem: pp184
    182.McGrath, P. F., Hunter, B. G. Lister, R. M. A domain of the readthrough protein of barley yellow dwarf (NY-RPV isolate) is essential for aphid transmission. Eur. J. Plant Pathol., 1996, 102:671-679
    183.McGrath, P. F., Vincent, J. R., Lei, C. H., et al. Coat protein-mediated resistance to isolates of barley yellow dwarf in oats and barley. Eur. J. Plant Pathol., 1997, 103:695-710
    184.McKenzie, R. I. H., Burnett, P. A., Gill, C. C., et al. Inheritance of tolerance to barley yellow dwarf virus in oats. Euphytica, 1985, 34:681-687
    185.Miller, W. A., Koev, G. and Mohan, B. R. Are there risks associated with transgenic resistance to Luteoviruses? Plant Diseases, 87:700-710.
    186.Miller, W. A. and Koev, G. Synthesis of Subgenomic RNAs by Positive-Strand RNA Viruses. Virology, 2000, 273:1-8
    187.Miller, J. S. and Mayo, M. A. The location of the 5' end of the potato leafroll luteovirus subgenomic coat protein mRNA. J. Gen. Virol., 1991, 72:2633-2638
    188.Miller, W. A. and Rasochová, L. Barley yellow dwarf viruses. Annu. Rev. Phytopathol., 1997, 35:167-190
    189.Miller, W. A. and Young, M. J. Prospects for genetically engineered resistance to barley yellow dwarf virus, pp 345 in: Barley Yellow Dwarf: 40 Years of Progress. 1995, (C. J. D'Arcy and P. A. Burnett. Eds.). APS Press. St. Paul. MN.
    
    
    190.Miller, W. A., Dinesh-Kumar, S. P., Paul, C. P. Luteovirus gene expression. Crit. Rev. Plant Sci., 1995, 14:179-211
    191.Miller, W. A., Waterhouse, P. M., Kortt, A. A., et al. Sequence and identification of the barley yellow dwarf vires coat protein gene. Virology, 1988b, 165:306-309
    192.Miller, W. A., Waterhouse, P. M., Gerlach, W. L. Sequence and organization of barley yellow dwarf virus genomic RNA. Nucleic Acids Research, 1988a, 16:6097-6111
    193.Mitra, A., Higgins, D. W., Langenberg, W. G., et al. A mammalian 2-5-A system functions as an antiviral pathway in transgenic plants. Proc. Natl. Acad. Sci. USA, 1996, 93:6780-6785
    194.Mohan, B. R., Dinesh-Kumar, S. P., Miller, W. A. Genes and cis-acting sequences involved in replication of barley yellow dwarf virus-PAV RNA. Virology, 1985, 212:186-195
    195.Mueller, E., Gilbert, J.E., Davenport, G., Brigneti, G. and Baulcombe, D.C. Homology-dependent resistance: transgenic virus resistance in plants related to homology-dependent gene silencing. Plant J., 1995, 7, 1001-1013.
    196.Murphy, J. F., D'Arcy, C. J., Clark, J. M. J. Barley yellow dwarf virus RNA has a 5'-terminal genome-linked protein. J. Gen. Virol., 1989, 70:2253-2256
    197.Murai N. et al., Phaseolin Gene from Bean is Expressed after transfer to Sunflower via Tumor-inducing Plasmid Vectors. Science, 1983,222:476-482
    198.Murry, L. E., Elliott, L. G., Capitant S. A., et al. Transgenic corn plants expressing MDMV strain-B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus. Bio-Technol, 1993, 11:1559-1564
    199.Nass, P. H., Domier, L. L., Jakstys, B. P., and D'Arcy, C. J. In situ localization of barley yellow dwarf virus-PAV 17-kD protein and nucleic acids in oats. Phytopathology, 1998, 88:1031-1039
    200.Nehra N S, et al. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following mcroprojectile bombardment with two distinct gene constructs. Plant Journal, 1994, 5:285-297
    201.Ogawa, T., Hori, T., Ishida, I., et al. Virus-induced cell death in plants expressing the mammalian 2′, 5′Oligoadenylate system. Nat. Biotechnology, 1997, 14(11):1586-1590
    202.Oparka, K. J., Roberts, A. G., Roberts, I. M., Prior, D. A. M., and SantaCruz, S.
    
    Viral coat protein is targeted to, but does not gate, plasmodesmata during cell-to-cell movement of potato virus X. Plant Journal, 1996, 10: 805-813.
    203.Oparka, K. J., Roberts, A. G., Boevink, P., et al. Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell, 1999, 97:743-754
    204.Ortiz J P A, Reggiardo M I, Ravizzini R A, et al. Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Reports, 1996, 15:877-881
    205.Oswald, J. W., and Houston, B. R. A new virus disease of cereals, transmissible by aphid. Plant Disease Reporter, 1951, 35:471-475
    206.Palucha A, Zagrski W, Chrzanowska M, Hulanicka D. An antisense coat protein gene confers immunity to potato leafroll virus in a genetically engineered potato. Eur. J. Plant Pathol., 1998, 104:287-293
    207.Palukaitis, P. and Roossinck, M.J. Spontaneous change of a benign satellite RNA of cucumber mosaic virus to a pathogenic variant. Nature Biotechnology, 1996, 14: 1264-1268.
    208.Palukaitis, P. & Zaitlin, M. Replicase-mediated resistance to plant virus disease. Advances in Virus Research, 1997, 48: 349-377.
    209.Pelham, H. R. B. Leaky UAG termination codon in tobacco virus RNA. Nature, 1978,272:469-471
    210.Powell Abel, P., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T. & Beachy, R. N. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 1986, 232, 738-743.
    211.Presting, G. G., Smith, O. P., and Brown, C. R. Resistance to potato leafroll virus in potato plants transformed with the coat protein gene or with vector control constructs. Phytopathology, 1995 , 85:436-442
    212.Pfitzner, V. M., and Pfitzner, J. P. Expression of a viral avirulence gene in transgenic plants is sufficient to induce the hypersensitive defense reaction. MPMI, 1992, 5:318-321
    213.Powell-Abel, P., Nelson, R. S., De, B., Hoffman, N., Rogers, S. G., Fraley, R. T. & Beachy, R. N. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 1986, 232:738-743.
    214. Prüfer, D., Tacke, E., Schmitz, J., et al. Ribosomal frameshifting in plants: a novel signal directs the -1 frameshift in the synthesis of the putative viral
    
    replicase of potato leafroll luteovirus. EMBO J., 1992, 11:1111-1117
    215.Rathjen, J. P., Karageorgos, L. E., Habili, N., et al. Soybean dwarf luteovirus contains the third variant genome type in the luteovirus group. Virology, 1994, 198:671-679
    216.Reutenauer, A., Ziegler-Graff, V., Lot, H., et al. Identification of beet western yellows Luteoviruses genes implicated in viral replication and partite morphogenesis. Virology, 1993, 105:692-699
    217.Rhodes, C. A., Dorothy, A. P., Irvin, J. M., et al. Genetically transformed maize plants from protoplasts. Science, 1988, 240:204-207
    218.Rizzo, T. M. and Gray, S. M. Localization of a surface domain of the capsid protein of barley yellow dwarf virus. Virology, 1992, 186:300-302
    219.Rochow, W. F. Biological propertyes of four isolates of barley yellow dwarf virus. Phytopathology, 1969,59:1580-1589
    220.Rochow, W. F. Barley yellow dwarf virus: phenotype mixing and vector specificity. Science, 1970, 167:875-878
    221.Rochow, W. F., and Duffus, J. E. In "Handbook of Plant Virus Infections and Comparative Diagnosis" (E. Kurstak, ed.). 1981, pp147-170. Elsevier/North-Hooland, Amsterdam.
    222.Rochow, W. F. Barley yellow dwarf virus. CMI/AAB Descriptions of Plant Viruses, 1970a, No. 32
    223.Rochow, W. F., Muller, I. A fifth variant of barley yellow dwarf virus in New York. Plant Dis., 1971, 55:874-877
    224.Schaller, C. W., Qualset, C. O., and Rutger, J. N. Inheritance and linkage of the Yd2 gene conditioning resistance to the barley yellow dwarf virus disease in barley. Crop Sci., 1964, 4:544-548
    225.Sharmar, H., Ohm,H.; Goulart, L., et al. Introgression and characterizeation of barley yellow dwarf vifus resistance from Thinopyrum intermedium into wheat. Genome, 1995, 38:406-413
    226.Shepherd, R. J., Francki, R. I. B., Hirth, L., Hollings, M., Inouye, T.,et al, Intervirology, 1976,6:181-184
    227.Silver, S. L., et al. Replication of barley yellow dwarf virus satellite RNA transcripts in oat protoplasts. Virology, 1994, 198:331-335
    228.Singh, R. P., Burnett, P. A., Albarran, M., et al. Bydl: a gene for tolerance to barlley yellow dwarf virus in bread wheats. Crop Sci., 1993, 33:231-234
    
    
    229.Smith, O. P. and Harris, K. F. Potato leafroll virus 3' genome organization: Sequence of the coat protein gene and identification of a viral subgenomic RNA. Phytopathology, 1990, 80:609-614
    230.Songstad, D. D., Somers, D. A., Griesbach, R. J. Advances in alternative DNA delivery techniques. Plant Cell Tiss. Org. Cult., 1995, 40:1-15
    231.Srivastava V, Vasil V, Vasil I K. Molecular characterization of the fate of transgenes in transformed wheat (Triticum aestivum L.). Theor. Appl. Genet., 1996, 92:1031-1037
    232.Suneson, C. A. Breeding for resistance to yellow dwarf virus in barley. Agron. J., 1955, 47:283
    233.Tacke, E., Prüfer, D., Salamini, F., et al. Characterization of a potato leafroll luteovirus subgenomic RNA: differential expression by internal translation initiation and UAG suppression, J. Gen. Virol., 1990, 71:2265-2272
    234.Tacke, E., Prüfer, D., Schmitz, J., et al. The potato leafroll luteovirus 17K is a single-stranded nucleic acid-binding protein. J.. Gen. Virol., 1991, 72:2035-2038
    235.Tacke, E., Schmitz, J., Prüfer, D., et al. Mutational analysis of the nucleic acid-binding 17kD phosphoprotein of potato leafroll luteovirus identifies an amphipathic α-helix as the domain for protein/protein interactions. Virology, 1993, 197:274-282
    236.Tacke, E., Salamini, F., Rohde, W. Genetic engineering of potato for broadspectum protection against virus infection. Nat. Biotechnol., 1996, 14:1597-1601
    237.Lee, Tae-Jin, Coyne, Dermot P., Clemente, Thomas E. and Mitra, Amitava. Partial resistance to bacterial wilt in transgenic tomato plants expressing antibacterial lactoferrin gene. J. Amer. Soc. Hort. Sci., 2002, 127(2):158-164
    238.Tarnada, T. and Kojima, M. Soybean dwarf virus. CMI/AAB Descriptions of Plant Viruses, 1977, No. 179
    239.Timmer, R. T., Benkowski, L. A., Schodin, D., et al. The 5′and 3′untranslated regions of satellite tobacco necrosis RNA affect translational efficiency and dependence on a 5′cap structure. J. Biol. Chem., 1993, 268:9504-9510
    240.Tenllado, et al. Some 54K transgenics harboring a gene derived from pepper mild mottle tobamovirus appear to operate to resist PMMV by an RNA-mediated mechanism. Virology, 1995, 211:170
    241.Truve, E., Aaspollu, A., Honkanen, J., et al. Transgenic potato plants expressing
    
    mammalian 2-5 A oligoadenylate synthetase are protected from potato virus X infection under field conditions. Bio/Technology, 1993, 11:1048-1058
    242.Ueng, P. P., Vincent, J. R., Kawata, E. E., et al. Nuecleotide sequence analysis of the genomes of the MAV-PS1 and P-PAV isolates of barley yellow dwarf virus. J. Gen. Virol., 1992, 73:487-492
    243.Van der Wilk, Molthoff, J., van der Heuvel, J., et al. Transgenic potato plants expressing PLRV ORF1. pp64 (Abstr.). Ⅸth. Int. Congr. Virol. 1993, Glasgow.
    244.Vasil V, Aha M C, Diane R, et al. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology, 1992, 10:667-674
    245.Vasil, V., V. Srivastava, A.M. Castillo, M.R. Fromm, and I.K. Vasil. Rapid production of transgenic plants by direct bombardment of cultured immature embryos. Bio/Technology, 1993, 11:1553-1558.
    246.Veidt, I., Lot, H., Leiser, M., et al. Nucleotide sequence of beet western yellows virus RNA. Nucleic Acids Research, 1988, 16:9917-9932
    247.Veidt, I., Bouzoubaa, S. E., Leiser, J., et al. Synthesis of full-length transcripts of beet western yellows virus RNA: messenger properties and biological activity in protoplasts. Virology, 1992, 186:192-200
    248.Vincent, J. R., Lister, R. M,, Larkins, B. A. Nucleotide sequence analysis and genomic organization of the NY-RPV isolate of barley yellow dwarf virus. J. Gen. Virol., 1991, 72:2347-2355
    249.Vincent, J. R., Ueng, P. P., Lister, R. M., et al. Nucleotide sequences of coat protein genes for three isolates of barley yellow dwarf virus and their relationships to other luteovirus coat protein sequences. J. Gen. Virol., 1990, 71:2791-2799
    250.Wang G-L, Song W-Y, Ruan D-L, et al. The cloned gene, Xa21, confers resistance to multiple Xanthomonaa oryzae pv. oryzae isolates in transgenic plants. Mol. Plant-Microbe Interact., 1996, 9:850-855
    251.Wang, J. Y., Chay, C., Gildow, F. E., et al. Readthrough protein associated with virions of barley yellow dwarf luteovirus and potantial role in regulating the efficiency of aphid transmission. Virology, 1995, 206:954-962
    252.Wang, M. -B., Cheng, Z., Keese, P., et al. Comparison of the coat protein, movement protein and RNA polymerase gene sequences of Australian, Chinese, and American isolates of barley yellow dwarf virus transmitted by
    
    Rhopalosiphum padi. Arch. Virol. , 1998, 143:1005-1013
    253.Wang, M. -B., Waterhouse, P. M. High efficiency silencing of a β-glucuronidase gene in rice is correlated with repetitive transgene structure but is independent of DNA methylation. Plant Mol. Biol., 2000, 43:67-82
    254.Wang, S. Browning, K. S. Miller, W. A. A viral sequence in the 3′untranslated region mimics a 5′cap in stimulating translation of uncapped mRNA. EMBO J. 1997, 16:4107-4116
    255.Wang, S., Miller, W. A. A sequence located 4. 5 to 5 kilobases from the 5′end of the barley yellow dwarf virus (PAV) genome strongly stimulates translation of uncapped mRNA. J. Biol. Chem., 1995, 270:13446-13452
    256.Waterhouse, P. M., Gildow, F. E., Johnstone, G. R. Luteovirus group. CMI/AAB Descriptions of Plant Viruses, 1988, No. 339
    257.Waterhouse, P. M., Graham, M. W., and Wang, M. -B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA, 1998, 95:13959-13964
    258.Waterhouse, P. M., Martin, R. R., and Gerlach, W. L. BYDV-PAV virions contain readthrough protein. Phytopathology (Abstr.), 1989, 79:1215
    259.Waterhouse, P. M., Wang, M. -B., and Lough, T. Gene silencing as an adaptive defence against viruses. Nature, 2001, 411:834-842
    260.Weeks, J. T., Anderson, O. D., Blechl, A. E. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiology, 1983, 102:1077-1084
    261.Whitham S, McCormick S, and Baker B. The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc. Natl. Acad. Sci. USA., 1996, 93:8776-8781
    262.Willem G. Langenberg, Lingyu Zhang, Donald L. Court, et al. Transgenic tobacco plants expressing the bacterial mc gene resist virus infection. Molecular Breeding, 1997, 3:391-399
    263.Xia Guang-Min, Li Zhong Yi, He Chen-Xia, et al. Transgenic plants regeneration from wheat (Triticum aestivus L. ) mediated by Agrobacterium tumefaciens. Acta Phytophysiologica Sinica, 1999, 25(1):22-28
    264.Xiong, Z., Kim, K. H., Kendall, T. L., et al. Synthesis of the putative red clover necrotic mosaic virus RNA polymerase by ribosomal frameshifting in vitro. Virology, 1993, 193:213-221
    
    
    265.Young, M. J., Larkin, L., Waterhouse, P. M., Gerlach, W. L. Infections in vitro transcripts from a cloned cDNA of barley yellow dwarf virus. Virology, 1991, 180:372-379
    266.Zambryski, P., Joos, H., and Genetello, C., et al. Ti plamid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J., 1983, 2:2143-2150
    267.Zhang, W., and Wu, R. Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theor. Appl. Genet., 1988, 76:835-840
    268.Zhou Guang-he, Qian You-ting, Cheng Zhuo-min, et al. A Cereal Germplasm, "Zhong 4" for resistance to barley yellow dwarf virus in China. Pages 394-395 in: World Perspective on Barley Yellow Dwarf. Burnett, P. A. eds., 1990, CIMMYT, Mexico, D. F., Mexico
    269.Ziegler-Graff, V., Brault, V., Mutterer, D., et al. The coat protein of beet western yellows luteovirus is essentiall for systemic infection but the viral gene products P29 and P19 are dispensible for systemic infection and aphid transmitssion. Mol. Plant-Microbe Interact., 1996, 9:501-510

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700