转雪花莲凝集素基因小麦抗蚜性及建立高效小麦转化体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是中国和世界上最重要的粮食作物之一,但其生产正受到虫害日益严重的威胁。应用基因工程手段培育抗虫品种已成为解决小麦虫害的一种有效途径。豫麦66是高产、优质、抗病小麦新品种,但该品种易感蚜虫,限制了其产量潜力的进一步发挥。植物凝集素是一类具有特异糖结合活性的蛋白,存在于许多植物的种子和营养器官中。基于植物凝集素和糖的特异相互识别的特性,一般认为植物凝集素不仅在植物体内具有一定的功能,如作为氮源、特异的识别因子等,更重要的是它还可能作为防御蛋白发挥作用。已经发现多种植物凝集素具有抵抗农业害虫的特性,特别是对蚜虫等同翅目害虫具有抗杀作用。此外,植物凝集素还可以抵抗植物病原性线虫、真菌及病毒的侵染。雪花莲凝集素是植物凝集素的一种,它属于单子叶甘露糖结合凝集素家族,对具有刺吸式口器的同翅目害虫具有毒杀作用。本研究用基因枪法将雪花莲凝集素基因(GNA14)转入普通春小麦品种中-60634和生产上正在推广的冬小麦高产品种——豫麦66中,分别获得了抗蚜性良好的转基因抗蚜小麦新材料。但实验中发现,基因枪转化法不仅转化频率偏低(平均1%左右),而且使用费用偏高,限制了大规模基因工程分子育种工作的开展。故应用一种适用于普通24孔培养板的便携式、可重复使用的环形电极,将外源基因转入完整的小麦幼胚组织并获得稳定遗传的转基因植株,建立了一种环形电极电激法介导的简便、快速、高效、经济的高频率小麦基因转化系统。
     1.应用基因枪转化法将雪花莲凝集素基因(GNA14)转入普通春小麦品种中-60634和生产上正在推广的冬小麦高产品种——豫麦66中,分别获得了转基因小麦植株。对转基因小麦当代及其后代进行PCR及Southern杂交检测,证明外源基因已稳定整合到小麦基因组中。中-60634和豫麦66的外源基因转化频率均为0.37%。
     2.抗蚜实验证明,转化gna基因的小麦植株对我国北方冬麦区的主要麦蚜——麦长管蚜和禾谷缢管蚜的抗性效果不尽相同。对禾谷缢管蚜,在接种当代即表现出明显的毒杀作用。对麦长管蚜,则表现为虫体发育减缓并且降低了其所生产的若蚜成活率。在自然放养条件下,gna基因则对这两种麦蚜的取食均起到了一定的抑制作用。
     3.获得20个豫麦66抗蚜新材料分别来自由8个独立的转基因T_0代抗蚜植株所获得的73个T_1代转基因单株。T_0代转基因植株与对照相比对蚜虫的抗性表现出极为显著的差异,特别是禾谷缢管蚜在生态盒中的死亡率高达47.1%~71.7%,比对照(16.0%)提高31.1%~55.7%。T_1代植株开放接蚜鉴定,3w后观察发现,转基因植株未找到任何蚜虫,推测可能迁移至对照植株上。2个中-60634抗蚜新材料表现为减缓蚜虫虫体发育并且降低若蚜成活率。
Wheat (Triticum aestivum L.) is an important and a major crop not only in China but also in the world. The product loss of wheat due to insects is very high in recent years. Biotechnology is a valid way on insect control comparing with conventional insecticides. Yumai66 is a new commercial variety of wheat with high yield, desirable grain quality and resistance disease, which had been examined and approved by National Crop Variety Approval Committee in 2003. The yield of Yumai66 in each hectare is 10,812 kilogrammes that is equal to 720.8 kilogrammes per Chinese mu, which has achieved the highest yield level of wheat with desirable grain quality in Huang Huai region of China. However, Yumai66 is susceptible to the infection of aphids. Plant lectin is a family of proteins with specific carbohydrate-binding activity distributing in seeds as well as different types of plant vegetative tissues. On the basis of carbohydrate-binding specificity, plant lectins are proposed to not only functions as nitrogen resource or specific recognition factors, but also involved in defense of plant. Plant lectins have deleterious effects on insects, especially against the members of Homoptera. Toxicity of plant lectins towards nematodes, fungi and virus was also reported. Snowdrop lectin (Galanthus nivalis agglutinin; GNA), as a kind of plant lectins, is belong to monocotyledon mannose-binding lectin that is toxic to sap sucking injurious insects of Homopteran. GNA14 gene has been successfully transferred into a common spring wheat Zhong60634 and a winter wheat "Yumai66" by using the biolistic transformation method in my laboratory. The transgenic plants with good resistance to aphid were obtained either in Zhong60634 or in Yumai66. However, the transformation efficiency by particle bombardment is not only low but expensive, which limits development of molecular breeding. Plasmid DNA was delivered into the tissue of intact wheat immature embryos and transgenic plants with stable integration and inheritance were obtained by a portable and permanent ring electrode which fitted into the wells of 24-well plates in my experiments. A simple, fast, efficient and inexpensive wheat transformation procedure was developed by electroporation with ring electrode-mediated gene transfer, which takes a possibility for molecular breeding via genetic engineering in a large scale. 1. GNA14 gene has been transferred respectively into common spring wheat Zhong60634 and winter wheat Yumai66 by using the biolistic transformation method. Transgenic wheat plants have been obtained in both of the two varieties. PCR and Southern blot analysis confirmed the integration of the foreign gene in the transgenic plants genome. Two transgenic plants (T_0) were obtained from the bombarded 535
引文
1.王兰岚,傅荣昭,宋桂英,张健,徐正平,孙勇如.利用激光微束穿刺法将外源基因导入小麦的研究.遗传学报,1995,22(5):394~399
    2.王晓军,陶岭梅,张青文.麦长管蚜和禾谷缢管蚜对吡虫啉敏感性的比较研究.昆虫知识,2004,41(2):155~157
    3.王永勤,肖兴国,张爱民.农杆菌介导的小麦遗传转化几个影响因素的研究.遗传学报,2002,29(3):260~265
    4.王志斌,李学勇,郭三堆.植物凝集素与抗虫基因工程.生物技术通报,1998,2:5~10
    5.王志斌,张秀梅,郭三堆.在转基因植物中利用植物凝集素防治害虫的研究.植物学通报,2000,17(2):108~113
    6.冯德江,刘翔,孟昆,廖立力,魏晓丽,徐鸿林,朱祯.cp基因的修饰引起转基因的沉默及其介导的PVX抗性.科学通报,2003,48(12):1308~1314
    7.冯英,薛庆中.作物抗虫基因工程及其安全性.遗传,2001,23(6):571~576
    8.付永彩,吴茂森,成卓敏.小麦不同品种外植体的农杆菌转化方法的研究.农业生物技术学报,2002,10(1):25~28
    9.皮灿辉,易自力,王志成.提高转基因植物外源基因表达效率的途径.中国生物工程杂志,2003,23(1):1~10
    10.叶爱华,吴延军,杨莉.基因沉默及其克服策略.中国农学通报,2003,19(1):81~83
    11.华志华,黄大年.转基因植物中外源基因的遗传学行为.植物学报,1999,41(1):1~5
    12.李长缨,简元才.花粉管通道法在植物遗传转化中的应用.生物学杂志,2000,17(1):9~10
    13.李晓兵,陈彩艳,翟文学.培育具有安全选择标记或无选择标记的转基因植物.遗传,2003,25(3):345~349
    14.李旭刚,陈松彪,路子显,常团结,曾千春,朱祯.GUS基因拷贝数对转基因在受体植物烟草中表达的影响.植物学报,2002,44(1):120~123
    15.李雪雁,杨勇,许维岸.植物蛋白酶抑制剂及其在抗虫植物基因工程中的应用.生命的化学,2002,22(3):270~272
    16.刘勇,陈巨莲,倪汉祥.麦长管蚜和禾谷缢管蚜对小麦挥发物的触角电位反应.昆虫学报,2003,46(6):679~683
    17.刘召华,张振山,郭洪年,贾燕涛,郑光宇,田颖川.两种凝集素基因在转基因烟草 中表达的研究.遗传学报,2005,32(7):758~763
    18.许耀,贾敬芬,郑国铝.酚类化合物促进根癌农杆菌对植物离体外植体的高效转化.科学通报,1988,33(22):1745~1748
    19.朱新产,赵文明.豌豆花DNA向小麦体中转移的研究.作物学报,1996,22(3):372~374
    20.朱新生,朱玉贤.抗虫植物基因工程研究进展.植物学报,1997,39(3):282~288
    21.朱玉,吴:茜,高越峰,徐鸿林,刘春明,周兆澜,朱祯,李向辉.雪花莲外源凝集素基因的克隆、序列和植物表达载体的构建.农业生物技术学报,1997,5:331~338
    22.朱玉,朱祯,徐鸿林.雪花莲外源凝集素基因的克隆及其多态性分析.高技术通讯,1999,9(9):36~41
    23.朱祯,李向辉,孙勇如,孙宝林,李玉英,侯云得.转基因水稻植株再生及外源人α—干扰素cDNA的表达.中国科学(B辑),1992,2:149~155
    24.朱祯,孙宝林,刘春明,肖桂芳,李向辉.转化脂介导小麦原生质体转化及转基因白化苗的再生.生物工程学报,1993,9(4):320~323
    25.朱祯.走向21世纪的植物分子生物学.北京:科学出版社,2000,121
    26.朱祯.高效抗虫转基因水稻的研究与开发.中国科学院院刊,2001,5:353~357
    27.何道一,李中存,王洪刚.农杆菌介导的小麦活体转化.中国农业科学,2003,36(12):1437~1441
    28.吴迪,朱延明.转基因植物中外源基因沉默机制及防止对策.生物技术通讯,2002,13(3):228~238
    29.吴丽芳,李红,宋道君,冯慧云,余增亮.建立低能离子束介导小麦转基因方法并获得转GUS基因植株.遗传学报,2000,27(11):982~991
    30.吴丽芳,尹若春,谷运红,吴李君,余增亮.离子注入法将外源DNA直接导入小麦的研究.生物物理学报,2001,17(4):724~730
    31.余炳生,张仪.生物学显微技术.北京:北京农业大学出版社,1989,60~62
    32.余桂荣,尹钧,任江萍,郭向云.小麦花粉管通道法转基因研究.麦类作物学报,2004,24(2):15~19
    33.张晓东,梁荣奇,陈绪清,杨风萍,张立全.优质HMW谷蛋白亚基转基因小麦的获得及其遗传稳定性和品质性状分析.科学通报,2003,48(5):474~479
    34.张新梅,徐惠君,杜丽璞,叶兴国,辛志勇,郭蔼光,薛崧,马有志.共转化法剔除转基因小麦中的bar基因.作物学报,2004,30(1):26~30
    35.金危危,李宗芸,宁顺斌,凌定厚,李立家,宋运淳.基因枪介导质粒共转化整合模式的FISH研究.科学通报,2001,46(15):1281~1284
    36.罗素兰,长孙东亭.雪花莲外源凝集素基因及其应用.生物学通报,2001,36 (12):9~10
    37.武丽敏,郑有良,魏育明,吴卫,颜泽洪,张志清.小麦转基因研究进展.四川农业大学学报,2003,21(2):176~180
    38.武予清,李素娟,刘爱芝,李世功.小麦抗蚜育种研究进展.河南农业科学,2002,2:19~20
    39.杨书礼,曾君祉,吴有强,朱小平,王东江,张健.抗除草剂基因和荧光素酶基因在小麦愈伤组织中的稳定表达.植物学报,1993,35(11):825~830
    40.周春江,黄占景,沈银柱,赵世民,何聪芬.兔防御素NP-1基因在小麦抗病育种中应用的初步研究.麦类作物学报,2003,23(2):7~10
    41.周光宇.远源杂交的分子基础——DNA片段杂交假设的一个论证.遗传学报,1979,4:405~413
    42.周兆斓,朱祯.植物抗虫基因工程研究进展.生物工程进展,1994,14(4):18~24
    43.郭光沁,许智宏,卫志明,陈惠民.用PEG法向小麦原生质体导入外源基因获得转基因植株.科学通报,1993,38(13):1227~1231
    44.侯丙凯,陈正华.植物抗虫基因工程研究进展.植物学通报,2000,17(5):385~393
    45.侯文胜,郭三堆,路明.利用转基因技术进行植物遗传改良.生物技术通报,2002,1:10~15
    46.侯文胜,郭三堆,路明.利用花粉管通道法获得转雪花莲凝集素基因(sgna)小麦.植物学通报,2003,20(2):198~204
    47.胡柏海,沈佐锐.农作物重大虫害发生规律与“九五”趋势分析.昆虫学报,1998,41(增刊):156~162
    48.柯遐义,黄粤,石和平,李宝健.利用电激法转化小麦幼胚的研究.武汉植物学研究,1997,15(2):103~107
    49.姚江.苏云金芽孢杆菌及其在害虫防治上的应用.连云港师范高等专科学校学报,2002,3(1):36~41
    50.赵慧,张正斌,徐萍.转基因小麦目录.麦类作物学报,2005,25(4):116~126
    51.赵艳,于彦春,黄大年.植物中转基因的整合机制.中国生物工程杂志,2003,23(2):29~32
    52.高莹,翟礼嘉,陈章良.植物凝集素的分子生物学研究.生物技术通报,2000,5:18~22
    53.姬生栋,李吉学,徐存拴,秦广雍,霍裕平,赵宗武,马华平.离子束介导大豆DNA小麦后代的蛋白质变异性分析.麦类作物学报,2001,21(3):18~21
    54.贾力,吴茂森,张文蔚,肖红,成卓敏.大麦黄矮病毒单双价外壳蛋白基因植物表达载体构建及小麦遗传转化.农业生物技术学报,2001,9(1):23~27
    55.夏光敏,陈惠民,成卓敏,吴茂森.BYDV CP基因转化小麦原生质体及转基因植株再生.山东大学学报(自然科学版),1996,31(3):357~359
    56.徐琼芳,李连城,陈孝,马有志,叶兴国,张增艳,徐惠君,辛志勇.基因枪法获得GNA转基因小麦植株的研究.中国农业科学,2001,34(1):5~8
    57.曹雅忠.小麦蚜虫及其综合治理.见:李光博主编,小麦病虫草鼠综合治理.北京:中国农业科技出版社,1990,316~339
    58.常团结,朱祯.植物凝集素及其在抗虫植物基因工程中的应用.遗传,2002,24(4):493~500
    59.龚秦秦,沈慰芳,周光宇.受粉后外源DNA导入植物技术——DNA通过花粉管通道进入胚囊.中国科学(B辑),1988,6:611~614
    60.程在全,黄兴奇,Wu R.基因枪法和农杆菌介导法对水稻转基因拷贝数和基因重排概率的影响.植物学报,2001,43(8):826~833
    61.曾君祉,王东江,吴有强,张健,周文娟,朱小平,徐乃正.用花粉管途径获得小麦转基因植株.中国科学(B辑),1993,23(3):256~262
    62.路子显,常团结,朱祯.植物外源凝集素及其在植物基因工程中的应用.生物工程进展,2002,22(2):3~9
    63.赫卫清,潘一廷,唐益群.淀粉酶抑制剂与抗虫的研究进展.生命的化学,2002,22(2):172~174
    64. Amoah B K, Wu H, Sparks C, Jones H D. Factors influencing Agrobacterium-mediated transient expression of uid A in wheat inflorescence tissue. J Exp Bot, 2001, 52(358): 1135~1142
    65. Anandarajah K, McKersie B. Manipulating the desiccation tolerance and vigor of dry somatic embryos of Medicago sativa L. with sucrose, heat shock and abscisic acid. Plant Cell Rep, 1991, 9: 451~455
    66. Aragao F J L, Grossi de Sa M F, Davey M R, Brasileiro A C M, Faria J C, Rech E L. Factors influencing transient gene expression in bean (Phaseolus vulgaris L. ) using an electrical particle acceleration device. Plant Cell Rep, 1993, 12: 483~490
    67. Arencibia A, Gentinetta E, Cuzzoni E, Castiglione S, Kohli A, Vain P, Leech M, Christou P, Sala F. Molecular analysis of the genome of transgenic rice (Oryza sativa L. ) plants produced via particle bombardment or intact cell electroporation. Molecular Breeding, 1998, 4: 99~109
    68. Asano Y, Otsuki Y, Ugaki M. Electroporation-mediated and silicon carbide fiber-mediated DNA delivery in Agrostis alba. Plant Science, 1991, 79: 247~252
    69. Barcelo P, Hagel C, Becker D, Martin A, Loerz H. Transgenic cereal (tritordeum) plants obtained at high efficiency by microprojectile bombardment of inflorescence tissue. Plant Journal, 1994, 5(4): 583~592
    70. Baron-Epel O, Gharyal P K, Schindler M. Pectins as mediators of wall porosity in soybean cells. Planta,1988,175: 389~395
    
    71. Barre A, Bourne Y, Van Damme E J M, Peumans W J, Rouge P. Mannose-binding plant lectins: different structural scaffolds for a common sugar-recognition process. Biochimie, 2001, 83: 645~651
    
    72. Becker D, Brettscgbeuder R, Loerz H. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant Journal, 1994, 5: 299~307
    
    73. Beuchat G D A. Effects of potassium sorbate on growth patterns, morphology, and heat resistance of Zygosaccharomycesrouxii at reduced water activity. Can J Microbiol, 1992, 38:1252~1259
    
    74. Bill M. The Russian wheat aphid in Oklahoma. Extension Facts (issued by Oklahoma State University. #501300792 TD Reprint), 1999,1~4
    
    75. Bostwick D E, Skaggs M I, Thompson G A. Organization and characterization of Cucurbita phloem lectin genes. Plant Mol. Boil, 1994, 26: 887~897
    
    76. Bouckaert J, Hamelryck T, Wyns L, Loris R. Novel stuctures of plant lectins and their complexes with carbohydrates. Current Opinon in structural Biology, 1999, 9: 572~577
    
    77. Bown D P, Wilkinson H S, Gatehouse J A. Regulation of expression of genes encoding digestive proteases in the gut of a polyphagous lepidopteran larva in response to dietary protease inhibitors. Physiological Entomology, 2004, 29(3): 278~290
    
    78. Boyd W C and Reguera R M. Studies on haemagglutinins presented in seeds of some representatives of Leguminouseae. Journal of Immunology, 1949, 62: 333~339
    
    79. Breyne P, Montagu M V, Depicker A, Gheysen G Characterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco. The Plant Cell, 1992,4: 463~471
    
    80. Breyne P, Montagu M V, Grieysen G The role of scaffold attachment regions in the structural and functional organization of plant chromatin. Transgenic Research, 1994, 3:195~202
    
    81. Broekaert W F, Van Parijs J, Leyns F, Joos H, Peumans W J. A chitin-binding lectin from stinging rhizomes with antifungal properties. Science, 1989, 245:1100~1102
    
    82. Carpita N, Sabularse D, Montezinos D, Delmer D P. Determination of the pore size of cell walls of living plant cells. Science, 1979, 205:1144~1147
    
    83. Cheng M, Fry J E, Pang S Z, Zhou H P, Hironaka C M, Duncan D R, Conner T W, Wan Y C. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol, 1997, 115: 971~980
    84. Chrispeels M J and Raikhel N V. Lectins, lectin genes, and their role in plant defense. Plant Cell, 1991, 3: 1~9
    85. Christensen A H, Quail P H. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Research, 1996, 5: 213~218
    86. Christou P, Ford T L, Kofron M. Production of transgenic rice (Oryza Sativa L. ) plants from agronomically important Indiea and Japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology, 1991, 9: 957~963
    87. Dekeyser R A, Claes B, De Rycke R M U, Habets M E, Van Montagu M C, Caplan A B. Transient gene expression in intact and organized dee tissues. The Plant Cell, 1990, 2: 591~602
    88. Diaz C L, Metchers L S, Hooykaas P J J, Lugtenberg B J J, Kijne J W. Root lectin as a determiant of host-plant specificity in the Rhizobium-legume symbiosis. Nature, 1989, 338: 579~581
    89. Does M J, Houterman P M, Dekker H L, Cornelissen B J C. Processing, targeting, and antifungal activity of stinging nettle agglutinin in transgenic tobacco. Plant Physiology, 1999, 120: 421~431
    90. Down R E, Ford L, Woodhouse S D, Raemaekers R J, Leitch B, Gatehouse J A, Gatehouse A M. Snowdrop lectin (GNA) has no acute toxic effects on a beneficial insect predator, the 2-spot ladybird(Adalia bipunctata L. ). Journal of Insect Physiology, 2000, 46: 379~391
    91. Down R E, Ford L, Woodhouse S D, Davison G M, Majerus M E, Gatehouse J A, Gatehouse A M. Tritrophic interactions between transgenic potato expressing snowdrop lectin (GNA), an aphid pest (peach-potato aphid; Myzus persicae (Sulz. ) and a beneficial predator (2-spot ladybird; Adalia bipunctata L. ). Transgenic Research, 2003, 12: 229~241
    92. Dupuis I, Pace G M. Gene transfer to maize male reproductive structure by particle bombardment of tassel primordia. Plant Cell Rep, 1993, 12: 607~611
    93. Ebinuma H, Sugita K, Matsunaga E, Yamakado M. Selection of marker-free transgenic plants using isopentenyl transferase gene. Proc Nati Acad Sci USA, 1997, 94: 2117~2121
    94. Ferry N, Raemaekers R J M, Majerus M E N, Jouanin L, Port G, Gatehouse J A, Gatehouse A M. Impact of oilseed rape expressing the insecticidal cysteine protease inhibitor oryzacystatin on the beneficial predator Harmonia axyridis (multicoloured Asian ladybeetle). Molecular Ecology, 2003, 12: 493~500
    95. Ferry N, Edwards M G, Gatehouse J A, Gatehouse A M. Plant-insect interactions: molecular approaches to insect resistance. Current Opinion in Biotechnology, 2004, 15: 155~161
    96. Fitches E, Edwards M G, Mee C, Grishin E, Gatehouse A M, Edwards J P, Gatehouse J A. Fusion proteins containing insect-specific toxins as pest control agents: snowdrop lectin delivers fused insecticidal spider venom toxin to insect haemolymph following oral ingestion. Journal of Insect Physiology, 2004, 50: 61~71
    97. Fokunang C N and Rastall R A. Phytohaemagglutinins in membrane signalling, biomedical and genetic engineering research. Biotechnology, 2003, 2(2): 162~177
    98. Foiling L, Olesen A. Transformation of wheat (Triticum aestivum L. ) microspore-derived callus and microspores by particle bombardment. Plant Cell Rep, 2001, 20: 629~636
    99. Funatsaki H, Huroda H, Kihara M, Lazerri P A, Muller E, Lorz H, Kishinami I. Fertile transgenic barley generated by direct DNA transfer to protoplasts. Theor Appl Genet, 1995, 91: 707~712
    100. Futterer J, Gisel A, Iglesias V. PCR amplification of plant genomic DNA. In: Potrykus I, Spangenberg G eds., Gene Transfer to Plants. Berlin, Heidelberg: Springer-Verlag, 1995, 242~245
    101. Gogarten J. Physical properties of the cell wall of photoautotrophic suspension cells from Chenopodium rubrum L. Planta, 1988, 174: 333~339
    102. Goldsbrough A P, Lastrella C N, Yoder J I. Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato. Biotechnology, 1993, 11: 1286~1292
    103. Hansen G, Shillito R D, Chilton M D. "Agrolistic" transformation of plant cells integration of T-strands generated in plant. Proc NatlAcad Sci USA, 1996, 93: 14978~14983
    104. He D G, Mouradov A, Yang Y M, Mouradova E, Scott K J. Transformation of wheat (Triticum aestivum L. ) through electroporation of protoplasts. Plant Cell Rep, 1994, 14: 192~196
    105. He G Y, Lazzeri P A. Analysis and optimisation of DNA delivery into wheat scutellum and Tritordeum inflorescence explants by tissue electroporation. Plant Cell Rep, 1998, 18: 64~70
    106. Herve V. Transgene-induced gene silencing in plants. The Plant Journal, 1997, 66: 197~203
    107. Hester G, Kaku H, Goldstein I J, Wright C S. Structure of mammose-specific snowdrop (galanthus nivalis) lectin is representative of a new plant lectin family. Nature Stuctural Biology, 1995, 2: 472~479
    108. Hester G and Wright C S. The mammose-specific bulb lectin from Galanthus nivalis (Snowdrop) binds mono- and dimammosides at distinct sites. Structure analysis of refined complexes at 2.3 (?) and 3.0 (?) resolution. J. Mol. Biol., 1996, 262: 516~531
    109. Hilder V A, Powell K S, Gatehouse A M R, Gatehouse J A, Gatehouse L N, Shi Hamilton W D O, Merryweather A, Newell C A. Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Research, 1995, 4: 18~25
    110. Hohn B, Levy A, Puchta H. Elimination of selection markers from transgenic plants. Current Opinion in Biotechnology, 2001, 12(2): 139~143
    111. Hu T, Metz S, Chay C, Zhou H P, Blest N, Chen G, Cheng M, Feng X, Radionenko M, Lu F, Fry J. Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L. ) using glyphosate selection. Plant Cell Rep, 2003, 21: 1010~1019
    112. Huang S, Cerny R E, Qi Y L, Bhat D, Aydt C M, Hanson D D, Malloy K P, Ness LA. Transgenic studies on the involvement of Cytokinin and Gibberellin in male development. Plant Physiology, 2003, 131: 1270~1282
    113. Iannacoe R, Grieco P D, Cellini F. Specific sequence modification of a cry3B endotoxin gene result in high levels of expression and insect resistance. Plant Mol Biol, 1997, 34: 485~496
    114. Jordan M C. Green fluorescent protein as a visual marker for wheat transformation. Plant Cell Rep, 2000, 19: 1069~1075
    115. Khanna H K, Daggard G E. Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep, 2003, 21: 429~436
    116. Kihara M, Saek K, Ito K. Rapid production of fertile transgenic barley (Hordeum vulgate L. ) by direct gene transfer to primary callus-derived protoplasts. Plant Cell Rep, 1998, 17: 937~940
    117. Kilpatrick D C. Isolation of a lectin from the pericarp of potato (solanum tuberosum) fruits. Biochemical Journal, 1980, 191: 273~275
    118. Kloti A, Iglesias V A, Wunn J, Burkhardt P K, Datta S K, Potrykus I. Gene transfer by electroporation into intact scutellum cells of wheat embryos. Plant Cell Rep, 1993, 12(12): 671~675
    119.Kohli A, Leech M, Vain P, Laurie D A, Christou P. Transgene orgnization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc. Natl. Acad. Sci. USA, 1998, 95(12): 7203~7208
    120.Kohli A, Griffiths S, Palacios N. Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspots in the CaMV35S promoter and confirms the predominance of microhomology mediated recombination. The Plant Journal, 1999,17(6): 591~601
    121.Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J,1996,10(1): 165~174
    122.Konami Y, Yamamoto K, Osawa T. The primary structures of two types of the Ulex europeus seed lectin. Jounal of Bioechemistry, 1991,109: 650~658
    123.Koprek T, Rangel S, McElroy D, Louwerse J D, Williams-Carrier R E, Lemaux P G Transposon-mediated single-copy gene delivery leads to increased transgene expression stability in barley. Plant Physiology, 2001,125:1354~1362
    124.Krens F H, Molendijk L, Wullems C J, Schiperovrt R A. In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature, 1982, 296: 72~74
    125.Langbecker C L, Ye G N, Broyles D L, Duggan L L, Xu C W, Hajdukiewicz P T J, Armstrong C L, Staub J M. High-frequency transformation of undeveloped plastids in tobacco suspension cells. Plant Physiology, 2004,135: 39~46
    126.Lewin B. The topology of nucleic acids. In: Lewin B eds., Gene V. Oxford University Press, Oxford New York Tokyo, 1994,109~126
    127.Li X G, Volrath S L, Nicholl D B G, Chilcott C E, Johnson M A, Ward E R, Law M D. Development of protoporphyrinogen oxidase as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation of maize. Plant Physiology, 2003,133: 736~747
    128.Li Y W, Seo Y W, Li Z S, Jia X. Genetic transformation in triticeae crops. Acta Botanica Sinica, 2002,44(5): 505~518
    129.Liang H, Zheng J, Duan X Y, Sheng B Q, Jia S E, Wang D W, Ouyang J W, Li J Y, Li L C, Tian W Z, Hain R, Jia X. A transgenic wheat with a stilbene synthase gene resistant to powdery mildew obtained by biolistic method. Chinese Science Bulletin, 2000, 45(7): 634~638
    130. Lodeiro A R, Lopez-Garcia S L Vazquez T E. Stimulation of adhesiveness, infectivity, and competitiveness for nodulation of Bradyrhizobium japonucum by its pretreatment with soybean seed lectin. FEMS Microbiol Lett, 2000, 188: 177~184
    131. Lu H, Zhou X, Gong Z. Generation of selectable marker-free transgenic rice using double fight-border (DBR) binary vectors. J Plant Physiol, 2001, 28: 241~248
    132. Maeaer S, Kahmann R. The Gin recombinase of phage Mu can catalyze site-specific recombination in plant protoplast. Mol Gen Genet, 1991, 230: 170~176
    133. Mahmood N and Hay A J. An ELISA utilizing immobilised snowdrop lectin GNA for the detection of envelope gly~oproteins of HIV and SIV. Journal of Immunological Methods, 1992, 151: 9~13
    134. Mattila P, Korpela J, Tenkanen T, Pitkanen K. Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase-anextremely heat stable enzyme with proofreading activity. Nucleic Acids Research, 1991, 19: 4967~4973
    135. McCann M, Wells B. Direct visualization of cross-links in the primary plant cell wall. J Cell Sci, 1990, 96: 323~334
    136. Mello M O and Silva-Filho M C. Plant-insect interactions: an evolutionary arms race between two distinct defense mechanisms. Braz. J. Plant Physiol., 2002, 14(2): 71~81
    137. Michael S C, Sharron S Q, Francois D T. The value conserved wheat germplasm evaluated for arthropod resistance. In: Stephen L C, Sharron S Q eds., Global genetic plant resources for insect-resistant crops. Boca Raton Boston London New York Washington, D, C. CRC Press, 1999, 25~49
    138. Money N. Measurement of pore size in the hyphal cell wall of Achlya bisexualis. Exp Mycol, 1990, 14: 234~242
    139. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 1962, 15: 473~497
    140. Murdock L L, Huesing J E, Nielsen S S, Pratt R C, Shade R E. Biological effects of plant lectins on the cowpea weevil. Phytochemistry, 1990, 29: 85~89
    141. Nagadhara D, Ramesh S, Pasalu I C, Kondala Rao Y, Krishnaiah N V, Sarma N P, Bown D P, Gatehouse J A, Reddy V D, Rao K V. Transgenic indica rice resistant to sap-sucking insects. Plant Biotechnology Journal, 2003, 1: 231~240
    142. O'Kennedy M M, Burger J T, Botha F C. Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep, 2004, 22: 684~690
    143. Omirulleh S, Ismagulova A, Karabaev M, Meshi T, Iwabuchi M. Silicon carbide fiber-mediated DNA delivery into cells of wheat (Triticum aestivum L.) mature embryos. Plant Cell Rep, 1996,16:133~136
    144.Pang Y Z, Yao J H, Shen G A, Qi H X, Tan F, Sun X F, Tang K X. Transgenic tobacco expressing Lycoris radiate agglutinin showed enhanced resistance to aphids. Acta Botanica Sinica, 2004,46(7): 767~772
    145.Pastori G M, Wilkinson M D, Steele S H, Sparks C A, Jones H D. Age-dependent transformation frequency in elite wheat varieties. J Exp Bot, 2001, 52(357): 857~863
    146.Pellegrineschi A, Noguera LM, Skovmand B, Brito R M, Velazquez L, Salgado M M, Hernandez R, Warburton M, Hoisington D. Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants. Genome, 2002, 45: 421~430
    147.Peumans W J and Van Damme E J M. Lectins as plant defense proteins. Plant Physiol, 1995,109: 347~352
    148.Peumans W J and Van Damme E J M. Plant lectins: versatile proteins with important perspectives in biotechnology. Biotechnology and Genetic Engineering Reviews, 1998,15:199~228
    149.Potrykus I. Gene transfer to cereals: an assessment. Bio/Technology, 1990, 8: 535~542
    150.Powell K S, Gatehouse A M R, Hilder V A, Gatehouse J A. Antimetabolic effects of plant and fungal enzymes on the nymphal stages of two important rice pests, Nilaparvata lugens and Nephotettix cinciteps. Entmol. Exp. Appl., 1993, 66: 119~126
    151.Powell K S. Antimetabolic effects of plant lectins towards nymphal stages of the planthoppers Tarophagous proserpina and Nilaparvata lugens. Entomologia Experimentalis et Applicata, 2001, 99: 71~77
    152.Pusztai A, Ewen SWB, Grant G The relation ship between survival and binging of plant lectins during small intestinal passage and their effectiveness as growth facters. Digestion, 1990, 46: 308~316
    153.Raina A and Datta A. Molecular cloning of a gene encoding a seed-specific protein with nutritionally balanced amino acid composition from Amaranthus. Proc. Natl. Acad. Sci., 1992, 89:11774~11778
    154.Rao K V, Rathore K S, Hodges T K, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bharathi M, Bown D P, Powell K S, Spence J, Gatehouse A M, Gatehouse J A. Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. The Plant Journal, 1998, 15(4): 469~477
    155. Rasco-Gaunt S, Riley A, Barcelo P, Lazzeri P A. Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Rep, 1999, 19: 118~127
    156. Salmenkallio-Marttila M, Aspergren K, Akerman S, Kurten U, Mannonnen L, Ritala A, Teeri T H, Kauppinen V. Transgenic barley (Hordeum vuglare L. ) by electroporation of protoplasts. Plant Cell Rep, 1995, 15: 301~304
    157. Saunders J A, Lin C H, Hou B H, Cheng J, Tsengwa N, Lin J J, Smith C R, McIntosh M S, Wert S V. Rapid optimization of electroporation conditions for plant cells, protoplasts and pollen. Mol. Biotechnol, 1995, 3: 181~190
    158. Shepherd V A, Goodwin P B. Porosity of permeabilized Chara cells. J Plant Physiol, 1989, 16: 231~239
    159. Shillito R D, Saul M W, Paszkowski J, Muller M, Potrykus I. High efficiency direct gene transfer to plants. Bio/Technology, 1985, 3: 1099~1103
    160. Shulda S, Arora R, Sharma H C. Biological activity of soybean trypsin inhibitor and plant lectins against cotton bollworm/legume pod borer, Helicoverpa armigera. Plant Biotechnology, 2005, 22(1): 1~6
    161. Smith C M, Quisenberry S S, Francois du Toit. The value conserved wheat germplasm evaluated for arthropod resistance. In: Quisenberry S S eds., Global genetic plant resources for insect-resistant crops. BocaRaton Boston London New York, Washington, D. C. CRC Press, 1999, 25~49
    162. Smith S B, Finzi L, Bustamante C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science, 1992, 258: 1122~1126
    163. Sorokin A P, Ke X Y, Cben D F, EUiott M C. Production of fertile transgenic wheat plants via tissue electroporation. Plant Science, 2000, 156: 227~233
    164. Spiker S, Thompson W F. Nuclear matrix attachment regions and transgene expression in plants. Plant Physiol, 1996, 110: 15~21
    165. Srivastava V, Vasil V, Vasil I K. Molecular characterization of the fate of transgenes in transformed wheat (Triticum aestivum L. ). Theor Appl Genet, 1996, 92: 1031~1037
    166. Stoger E, Williams S, Christou P, Down R E, Gatehouse J A. Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Molecular Breeding, 1999, 5: 65~73
    167. Sudhakar D, Fu X D, Stoger E, Williams S, Spence J, Brown D P, Bharathi M, Gatehouse J A, Christou P. Expression and immunolocalisation of the snowdrop lectin, GNA in transgenic rice plants. Transgenic Research, 1998, 7: 371~378
    168. Sugita K, Kasahara T, Matsunaga E, Ebinuma H. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J, 2000, 22(5): 461~469
    169. Tinjuangiun P, Loc N T, Gatehouse A M R, Gatehouse J A, Christou P. Enhanced insect resistance in Thai rice varieties generated by particle bombardment. Molecular Breeding, 2000, 6: 391~399
    170. Torbert K A, Rines H W, Somers D A. Transformation of oat using mature embryo-derived tissue cultures. Crop Sci, 1998, 38: 226~231
    171. Trojanowska M R. Alternative methods of plant transformation. Cellular & Molecular Biology Letters, 2002, 7: 849~858
    172. Vain P, McMullen D M, Finer J J. Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep, 1993, 12: 84~88
    173. Van Damme E J M, Allen A K, Peumans W J. Related mannose-specific lectins from different species of the family Amaryllidaceae. Physiologia Plantarum, 1988, 73: 52~57
    174. Van Damme E J M and Peumans W J. Developmental changes and tissue distribution of lenin in Galanthus nivalis L and Narcissus cv. Carlton. Planta, 1990, 182: 605~609
    175. Van Damme E J M, Barre A, Rouge P, Van Leuven F, Peumans W J. The seed lectins of black locust (Robinia pseudoacacia) are encoded by two genes which differ from the bark lectin genes. Plant Mol. Biol., 1995, 29: 1197~1210
    176. Van Damme E J M, Peumans W J, Pusztai A, Bardocz S. Handbook of plant lectins: properties and biomedical applications. Published by John Willey and Sons Ltd, Chichester, England, 1998
    177. Van Damme E J M, Barre A, Mazard A M, Verhaert P, Horman A, Debray H, Rouge P, Peumans W J. Characterization and molecular cloning of the lectin from Helianthus tuberosus. Eur. J. Biochem., 1999, 259: 135~142
    178. Vasil V, Castillo A M, Formm M E, Vasil I K. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology, 1992, 10: 667~674
    179. Wang Z Y, Ye X D, Nagel J, Potrykus I. Expression of a sulphur-rich sunflower albumin gene in transgenic tall rescue (Festuca arundinacea Schreb. ) plants. Plant Cell Rep, 2001, 20: 213~219
    180. Weeks J T, Anderson O D, Blechl A E. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum asetivum). Plant Physiol, 1993, 102: 1077~1084
    181. Wenck A, Pugieux C, Turner M, Dunn M, Stacy C, Tiozzo A, Dunder E, Grinsven E V, Khan R, Sigareva M, Wang W C, Reed J, Drayton P, Oliver D, Trafford H, Legris G, Rushton H, Tayab S, Launis K, Chang Y F, Chen D F, Melchers L Reef-coral proteins as visual, non-destructive reporters for plant transformation. Plant Cell Rep, 2003, 22: 244~251
    182. Withka J, Swaminathan S, Srinivasan J, Bebeddge D, Bolton E Toward a dynamical structure of DNA: comparison of theoretical and experimental NOE intensities. Science, 1992, 255: 597~599
    183. Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Attire-Moore L Efficient biolistic transformation of maize (Zea mays L. ) and wheat (Triticum aestivum L. ) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep, 2001, 20: 429~436
    184. Wu A, Sun X, Pang Y, Tang K. Homozygous transgenic rice lines expressing GNA with enhanced resistance to the rice sap-sucking pest Laodelphax striatellus. Plant Breeding, 2002, 121: 93~95
    185. Wu C F, An J, He X J, Deng J, Hong Z X, Liu C, Lu H Z, Li Y J, Wang C J, Chen F, Bao J K. Molecular cloning of a novel mannose-binding lectin gene from bulbs of Amaryllis vittata(Amaryllidaceae). Acta Botanica Sinica, 2004, 46(11): 1301~1306
    186. Wu F S, Cahoon A B. Plasmolysis facilitates the accumulation of protein and DNA into extra-plasmalemma spaces of intact plant cells. Plant Scie, 1995, 104: 201~214
    187. Wu F S, Feng T Y. Delivery of plasmid DNA into intact plant cells by electroporation of plasmolyzed cells. Plant Cell Rep, 1999, 18: 381~386
    188. Wu H, Sparks C, Amoah B, Jones H D. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep, 2003, 21: 659~668
    189. Yao J H, Zhao X Y, Liao Z H, Lin J, Chen Z H, Chen F, Song J, Sun X F, Tang K X. Cloning and molecular characterization of a novel lectin gene from Pinellia ternata. Cell Research, 2003, 13(4): 301~308
    190. Yoder J I, Goldsbrough A P. Transformation systems for generation marker-free transgenic plants. Bio/Technology, 1994, 12: 263~267
    191. Young N M, Johnston R A, Watson D C. The amino acid sequences of jacalin and the Maclura pomifera agglutinin. FEBS Letter, 1991, 282: 382~384
    192. Yuan Z Q, Zhao C Y, Zhou Y, Tian Y C. Aphid-resistant transgenic tobacco plants expressing modified gna gene. Acta Botanica Sinica, 2001, 43(6): 592~597
    193. Zhou H, Zheng Y, Konzak C. Osmotic potential of media affecting green plant percentage in wheat anther culture. Plant Cell Rep, 1991, 10: 63~66
    194. Zhu-Salzman K, Ahn J E, Salzman R A, Koiwa H, Shade R E, Balfe S. Fusion of a soybean cysteine protease inhibitor and a legume lectin enhances anti-insect activity synergistically. Agricultural and Forest Entomology, 2003, 5: 317~323

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700