混凝土管桩沉桩机理和承载力计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力混凝土管桩具有诸多优点,因此在全国各地得到了广泛的应用。但由于许多工程人员对其沉桩和承载机理认识不够充分,因此在设计和施工中难免出现一些问题,如选型不当、构造措施不妥、桩的挤土效应严重影响邻桩的承载力和周边建筑等。为解决这些问题,本文针对预应力混凝土管桩的特殊性,对预应力混凝土管桩的沉桩机理和承载力计算方法进行了系统的研究。
     首先,采用圆孔扩张理论研究了混凝土管桩沉桩挤土效应。基于不同模量弹性理论和非关联Mohr-Coulomb流动法则推导得到了球形孔和柱形孔扩张时弹性区和塑性区的应力、塑性区半径和扩张压力的表达式。通过参数分析探讨了不同拉压模量之比、拉压泊松比和剪胀角对球形孔和柱形孔扩张的扩张压力及塑性区半径的影响。结果表明这些参数对塑性区的发展和土体中的应力有很大的影响。随后引入土塞增长率来衡量开口管桩内土塞的闭塞程度,得到了包含土体拉压模量比和土塞增长率的塑性区半径和桩外壁处的扩张压力解答,并分析了开口管桩沉桩过程中土塞增长率对开口管桩沉桩挤土范围的影响,结果表明土塞增长率越小,开口管桩挤土效应越明显。
     其次,研究了沉桩后土体中超孔隙水压力的消散问题。采用对数坐标系中有效应力和孔隙率的关系以及渗透系数和孔隙率的关系考虑固结过程中压缩性和渗透性的变化,得到了渗透系数和压缩系数变化的径向固结控制方程,采用分离变量法和Bessel方程求得了径向固结控制方程的半解析解。然后通过实例计算验证了该方法的正确性,通过参数分析讨论了不同渗透指数和压缩指数对超孔隙水压力消散过程的影响。并且研究了开口管桩内土塞中的超孔隙水压力消散问题,将其简化为一维竖向固结问题,通过迭代法求解了竖向固结控制方程,该解答能真实反映土塞中超孔隙水压力消散过程中土体渗透性和压缩性的变化规律。
     然后,探讨了预应力混凝土管桩桩端端阻力的计算方法。分析了武汉地区预应力混凝土管桩静载荷试验结果,并将这些结果与按湖北省地方标准《建筑地基基础技术规范》计算得到的值进行对比,结果表明实测值大于设计值。然后基于双剪滑移线理论,考虑了岩土材料的拉伸强度和压缩强度的不等性,通过滑移线的应力传递公式得到了考虑中间主应力的桩端端阻力计算公式。总结了不同规范中管桩端阻力的计算公式,分析了土塞的受力性状,得到了完全排水条件和不排水条件下土塞的端阻,结果有效地反映了开口管桩的承载特性。
     最后,分析了预应力混凝土管桩水平承载特性。首先验算了管桩规程中给出的水平承载力特征值是否满足抗裂的要求。然后基于地基土为理想弹塑性材料的假设,求解了水平荷载作用下,部分桩前土体处于塑性状态时任一深度处桩的水平位移、转角、弯矩和剪力的解答。这些计算公式可应用于分析承受水平荷载为主且水平位移较大的桩基的水平承载特性。
     本文的研究成果对预应力混凝土管桩的设计与施工具有重要的参考价值。
Prestressed concrete pipe piles are widely used in China owing to their advantages. However many engineers are not familiar with the mechanisms of the installation and bearing capacity of the prestressed concrete pipe piles. Thus there are a lot of problems existing in the design and construction of the prestressed concrete pipe piles, such as mischoosing pile types, unsuitable structures, and severe influences of the squeezing effect on the bearing capacity of adjacent piles and surrounding buildings during pile installation. This dissertation mainly deals with the installation mechanism and calculation method for bearing capacity of the prestressed concrete pipe piles consideraing their characteristics.
     Firstly, the squeezing effect of prestressed concrete pipe piles is studied with cavity expansion theory. Analyses of spherical and cylindrical cavity expansion in elasto-plastic soil are performed based on the elastic theory considering different moduli in tension and compression. The characteristics of dilation are taken into account by using the non-associated Mohr-Coulomb yield criterion. The analytical solutions for the stresses in elastic and plastic regions, maximum radii of the plastic regions and expansion pressures are obtained. Then the influences of different tension and compression moduli ratios, Poisson's ratios and dilation angles on the expansion pressures and radii of plastic regions are discussed by parametric study. The results show that different ratios of tension and compression moduli, Poisson's ratios and dilation angles have significant influences on the development of plastic regions and the stresses in the soil. Subsequently, the incremental filling ratio is introduced to quantify the degree of soil plugging in the open-ended pipe pile. The radii of plastic regions and the expansion pressures on the external wall are formulated including ratio of tension and compression moduli and incremental filling ratio. Moreover, the influences of incremental filling ratios on the squeezing areas induced by installation of open-ended pipe piles are investigated. The results of the parametric analyses show that the squeezing effects of the open-ended pipe piles with smaller incremental filling ratios are more severe than those with larger incremental filling ratios.
     Secondly, the dissipation of the excess pore water pressure after pile installation is studied. The dissipation of the excess pore pressure is analyzed by radial consolidation theory with a variable consolidation coefficient based on the linear responses of effective stress-void and permeability coefficient-void. The governing equation of the radial consolidation considering variable compressibility and permeability is solved by the variable separation method. Bessel functions are used to solve the differential equations for the time independent part. Then the accuracy of this method is validated by comparing calculated values with numerical results and field data observed from two project cases. And the influences of variable compressibility and permeability on the variation of consolidation coefficient and excess pore pressure dissipation are analyzed. Moreover, the dissipation of the excess pore water pressures in the soil plugs of open-ended pipe piles is analyzed by one-dimensional vertical consolidation theory. And the differential equation of vertical consolidation is solved with iterative method. The solutions obtained can effectively reflect the variation laws of permeability and compressibility of soils during excess pore pressure dissipation in soil plug.
     Thirdly, the calculation method of tip resistances of the prestressed concrete pipe piles is investigated. The results of static load tests of prestressed concrete pipe piles in Wuhan are accumulated and analyzed. These results are compared to the values obtained from local standard of Hubei province "Technical code for building foundation", which show that test data are larger than the calculation values. Then a method to evaluate the end bearing capacity of pile by twin shear slip-line theory is recommended. The difference between the tension strength and compression strength of soil is considered and the effect of intermediate principal stress is included in the formula. The stress transferring formula of the slip-line method is applied during the calculation process. Whereafter, the calculation methods of tip resistances of open-ended pipe piles in different specifications are summarized. The characteristics of the soil plugs are analyzed. And the tip resistances of soil plugs under fully drained and undrained conditions are obtained, which can reflect the characteristics of bearing capacities of open-ended pipe piles.
     Finally, the lateral bearing characteristics of prestressed concrete pipe piles are analyzed. The anti-crack requirements of prestressed concrete pipe piles are verified under the condition of lateral loads, which act on the top of the piles and takes the characteristic values of lateral bearing capacity. Then based on the assumption that the soil is elastic-perfectly plastic material, the theoretical solutions of deflection, rotation, moment and shear force at any depth of the pile under lateral force are obtained, which can be applied to analyze the lateral bearing capacity of the piles mainly exerted by lateral force and with large lateral deflection.
     The achievements in this dissertation can be valuable references for the design and construction of the prestressed concrete pipe piles.
引文
[1]阮起楠.预应力混凝土管桩.北京:中国建材工业出版社,2000
    [2]湖北省地方标准(DB42/489-2008).预应力混凝土管桩基础技术规程.2008
    [3]湖北省地方标准(DB42/242-2003).建筑地基基础技术规范.2003
    [4]朱宁.静力压桩引起桩周土体变形的理论分析[博士学位论文].南京:河海大学,2005.
    [5]Hunt C E.Effect of Pile Installation on Static and Dynamic Soil Properties[Ph.D.Dissertation].University of Califomia,Berkeley,2000
    [6]Hwang J H,Liang N,Chen C H.Ground response during pile driving.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2001,127(11):939-949
    [7] Pestana J M,Hunt C E,Bray J D.Soil deformation and excess pore pressure field around a closed-ended pile.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2002,128(1):1-12
    [8]陈文,施建勇,龚友平等.饱和黏土中静压桩挤土效应的离心模型试验研究.河海大学学报,1999,27(6):103-109
    [9]徐建平,周健,许朝阳等.沉桩挤土效应的模型试验研究.岩土力学,2000,21(3):235-238
    [10] Gibson R E,Anderson W F.In-situ measurement of soil properties with the pressuremeter.Civil Engineering and Public Works Review,1961,56(5):615-618
    [11] Vesic A S.Expansion of cavities in finite soil mass.Journal of Soil Mechanics and Foundation Division,ASCE,1972,(SM3):265-290
    [12] Palmer A C.Undrained plane-strain expansion of a cylindrical cavity in clay:a simple interpretation of the pressuremeter test.G(?)otechnique,1972,22(3):451-457
    [13] Hughes J M O,Wroth C P,Windle D.Pressuremeter tests in sands.G(?)otechnique,1977,27(4):455-477
    [14] Houlsby G T,Wither N J.Analysis of the cone pressuremeter test in clay.G(?)otechnique,1988,38(4):575-587
    [15] Yu H S.Cavity expansion theory and its application to the analysis of pressuremeters[Ph.D.Dissertation].University of Oxford,UK,1990
    [16] Cao L F, Na Y M, Win B M, et al. Analysis of cone pressuremeter test in clay. In: Proceedings of the 13th Southeast Asian Geotechnical Conference, Taiwan, 1998: 23-28
    [17] Bolton M D, Whittle R W. A non-linear elastic-perfectly plastic analysis for plane strain undrained expansion tests. Geotechnique, 1999, 49(1):133-141
    [18] Ramesh C G, John L D. Piezoprobe determined coefficient of consolidation. Soils and Foundation, 1986, 26(3): 12-22
    [19] Mayne P W. Determination of OCR in clays by piezocone tests using cavity expansion and critical-state concepts. Soils and Foundation, 1991, 31(2): 65-76
    [20] Salgado R, Mitchell J K, Jamiolkowski M. Cavity expansion and penetration resistance in sand. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997,123(4): 344-354
    [21] Salgado R, Prezzi M. Computation of cavity expansion pressure and penetration resistance in sands. Journal of Geomechanics, ASCE, 2007, 7(4): 251-265
    [22] Chang M F, Choa V, Cao L F, et al. Evaluating the state of consolidation of clay at a reclaimed site. In: Proceedings of the 1st International Conference on Site Characterization, Atlanta, USA, 1998: 1403-1408
    [23] Chang M F, Teh C I, Cao L F. Undrained cavity expansion in modified Cam clay Ⅱ: Application to the interpretation of the piezocone test. Geotechnique, 2001, 51(4): 335-350
    [24] Randolph M F, Carter J P, Wroth C P. Driven piles in clay- the effect of installation and subsequent consolidation. Geotechnique, 1979, 29(4): 361-393
    [25] Randolph M F, Dolwin J, Beck R. Design of driven piles in sand. Geotechnique, 1994, 44(3): 427-448
    [26] Yu H S, Houlsby G T. Finite cavity expansion in dilatant soils: loading analysis. Geotechnique, 1991,41(2): 173-183
    [27] Cater J P, Kulhawy F H. Analysis of laterally loaded shafts in rock. Journal of Geotechnical Engineering, ASCE. 1992, 118(6): 839-855
    [28] Verruijit A, Booker J R. Surface settlements due to deformation of a tunnel in an elastic half plane. Geotechnique, 1996, 46(4):753-756
    [29] Loganathan N, Poulos H G Analytical prediction for tunneling-induced ground movements in clays. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998,124(9): 846-856
    [30] Yu H S, Rowe R K. Plasticity solutions for soil behaviour around contracting cavities and tunnels. International Journal for Numerical and Analytical Methods in Geomechanics, 1999,23(12):1245-1279
    [31] Carter J P, Booker J R, Yeung S K. Cavity expansion in cohesive factional soils. Geotechnique, 1986,36(3): 349-358
    [32] Yu H S, Carter J P. Rigorous similarity solutions for cavity expansion in cohesive-frictional soils. The International Journal of Geomechanics, 2002, 2(2): 233-258
    [33] Palmer A C, Mitchell R J. Plane-strain expansion of cylindrical cavity in clay. In: Stress-Strain Behaviour of Soils: Proceedings of the Roscoe Memorial Symposium, Cambridge, 1972: 588-899
    [34] Cao L F, Teh C I, Chang M F. Undrained cavity expansion in modified Cam clay I: Theoretical analysis. Geotechnique, 2001, 51(4): 323-334
    [35] Collins I F, Stimpson J R. Similarity solutions for drained and undrained cavity expansions in soils. Geotechnique, 1994, 44(1): 21-34
    [36] Collins I F, Yu H S. Undrained cavity expansion in critical state soils. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 20(7): 489-516
    [37] Schnaid F, Mantaras F M. Cavity expansion in cemented materials: structure degradation effects. Geotechnique, 2003, 53(9): 797-807
    [38] Zheng J J, Peng H, Nie C J. Analytical solutions to expansion of cylindrical cavity in linear softening soil. Acta Mechanica Solida Sinica, 2004, 17(4): 353-360
    [39] Zhao J D, Sheng D C, Sloan S W. Cavity expansion of a gradient-dependent solid cylinder. International Journal of Solids and Structures, 2007, 44(13): 4342-4368
    [40] Butterfield R, Banerjee P K. Application of electroosmosis to soils, Part 2. Civil Engineering Research Report, Department of Civil Engineering, Southkampton University, U.K., 1968: 709-715
    [41] Sagaseta C. Analysis of undrained soil deformation due to ground loss. Geotechnique, 1987,37(3):301-320
    [42] Chow Y K,Teh C I.A theoretical study of pile heave.G(?)otechnique,1990,40(1):1-14
    [43] Mabsout M E,Sadek S M,Smayra T.Pile driving by numerical cavity expansion.International Journal for Numerical and Analytical Methods in Geomechanics,1999,23(11):1121-1140
    [44] Zhou F,Zai J,Mei G,et al.Analysis of soil heave due to pile-sinking in soft clay.Foundation Analysis and Design:Innovative Methods(GSP 153),2006:271-276
    [45] Sagaseta C,Whittle A J.Prediction of ground movements due to pile driving in clay.International Journal for Numerical and Analytical Methods in Geomechanics,2001,25(1):55-66
    [46]黄院雄,许青侠,胡中雄.饱和土中打桩引起桩周围土体的位移,工业建筑,2000,30(7):15-19
    [47]李月健.土体内球形空穴扩张及挤土桩沉桩机理研究[博士学位论文].杭州:浙江大学,2001
    [48]罗战友.静压桩挤土效应及施工措施研究[博士学位论文].杭州:浙江大学,2004
    [49]汪鹏程.软化剪胀土中孔扩张理论及沉桩挤土性状研究[博士学位论文].杭州:浙江大学,2005
    [50]阿姆巴尔楚米扬著.邬瑞锋,张允真译校.不同模量弹性理论.北京:中国铁道出版社,1986
    [51]欧阳华江.不同模量弹性理论及其应用.强度与环境,1990,(3):34-37
    [52]王启铜,龚晓南,曾国熙.考虑土体拉压模量不同时静压桩的沉桩过程.浙江大学学报(工学报),1992,26(6):678-687
    [53]王启铜,龚晓南,曾国熙.拉压模量不同材料的球孔扩张问题.上海力学,1993,14(2):55-63
    [54]龚晓南,王启铜,罗晓.拉压模量不同材料的圆孔扩张问题.应用力学学报,1994,11(4):128-132
    [55]罗战友,杨晓军,龚晓南.考虑材料的拉压模量不同及应变软化特性的柱形孔扩张问题.工程力学,2004,21(2):40-45
    [56]罗战友,夏建中,龚晓南.不同拉压模量及软化特性材料的球形孔扩张问题的统 一解.工程力学,2006,23(4):22-27
    [57] Orrje O,Broms B.Effect of pile driving on soil properties.Journal of the Soil Mechanics and Foundations Division,ASCE,1967,93(SM5):59-73
    [58] Flaate K.Effect of pile driving in clay.Canadian Geotechnical Journal,1972,9(1):81-88.
    [59] Fellenius B H,Samson L.Testing of drivability of concrete piles and disturbance to sensitive clay.Canadian Geotechnical Journal,1976,13(2):139-160
    [60] Bozozuk M,Fellenius B H,Samson L.Soil disturbance from pile driving in sensitive clay.Canadian Geotechnical Journal,1978,15(3):346-361
    [61] Seed H B,Reese L C.The action of soft clay along friction piles.Transactions,ASCE,1957,122:731-754
    [62] Konard J M,Roy M.Bearing capacity of friction piles in marine clay.G(?)otechnique,1987,37(2):163-175
    [63] Lukas R G,Bushell T D.Contribution of pile freeze to pile capacity.In:Proceedings ofthe Congress,Foundation Engineering:Current Principles and Practices,1989,991-1001
    [64] Bullock P J.Pile Friction Freeze:A Field and Laboratory Study[Ph.D.Dissertation].University of Florida,1999
    [65] Hajduk E L.Full Scale Field Testing Examination of Pile Capacity Gain with Time[Ph.D.Dissertation].University of Massachusetts Lowell,2006
    [66]张明义,时伟,王崇革,等.静压桩极限承载力的时效性.岩石力学与工程学报,2002,21(增2):2601-2604
    [67]王戍平.深厚软土中PHC长桩的时效性试验研究.岩土工程学报,2003,25(2):239-241
    [68] Titi H H.The Increase in Shaft Capacity with Time for Friction Piles Driven into Saturated Clay[Ph.D.Dissertation].Louisiana State University,1996
    [69]马海龙.开口桩与闭口桩承载力时效的试验研究.岩石力学与工程学报,2008,27(增2):3349-3353
    [70] Ali F H.Generation and dissipation of excess pore pressure during pressuremeter tests.Soils and Foundation,1989,29(1):173-179
    [71] Song C R,Voyiadjis G Z.Pore pressure response of saturated soils around a penetrating object.Computers and Geotechnics,2005,32(1):37-46
    [72] Kim Y S,Lee S R.Prediction of long-term pore pressure dissipation behavior by short term piezocone dissipation test.Computers and Geotechnics,2000,27(4):273-287
    [73] Mynarnpaty R N.Pore Pressure Build-Up and Dissipation around Piles Penetrating Clay[Master Thesis].University of Massachusetts Lowell,1993
    [74] Soderberg L G.Consolidation theory applied to foundation pile time effects.G(?)otechnique,1962,12(3):217-225
    [75] Guo W D.Visco-elastic consolidation subsequent to pile installation.Computers and Geotechnics,2000,26(2):113-144
    [76]董光辉,张明义,郑丽.静压桩极限承载力的时效分析.岩土工程技术,2005,19(4):170-172
    [77]李广信.高等土力学.北京:清华大学出版社,2004
    [78] Davis E H,Raymond G P.A non-linear theory of consolidation.G(?)otechnique,1965,15(2):161-173
    [79] Mersi G,Rokhsar A.Consolidation of normally consolidation clay.Journal of Soil Mechanics and Foundation Division,ASCE,1974,100(GT8):889-903
    [80] Lekha K R,Krishnaswamy N R,Basak P.Consolidation of clays for variable permeability and compressibility.Journal of Geotechnical and Geoenvironmental Engineering,2003,129(11):1001-1009
    [81] Indraratna B,Rujikiatkamjorn C,Sathananthan L.Radial consolidation of clay using compressibility indices and varying horizontal permeability.Canadian Geotechnical Journal,2005,42(5):1330-1341
    [82] Zhuang Y C,Xie K H,Li X B.Nonlinear analysis of consolidation with variable compressibility and permeability.Journal of Zhejiang University(Science),2006,6A(3):181-187.
    [83] Abbasi N,Rahimi H,Javadi A A,et al.Finite difference approach for consolidation with variable compressibility and permeability.Computers and Geotechnics,2007, 34(1):41-52.
    [84] White D J.Field measurements of CPT and pile base resistance in sand.Research Report:CUED/D-SOILS/TR327,2003
    [85] Mahler A.Use of cone penetration test in pile design.Periodica Polytechnica,2003,47(2):189-197
    [86] Abu-Farsakh M Y,Titi H H.Assessment of direct cone penetration test methods for predicting the ultimate capacity of friction driven piles.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2004,130(9):935-944
    [87]叶建忠,周健.关于桩端阻力问题的分析与研究现状.建筑科学,2006,22(2):64-68
    [88] Terzaghi K.Theoretical Soil Mechanics.New York:Wiley.1943
    [89] Meyerhof G G.The ultimate bearing capacity of foundations.G(?)otechnique,1951,2(4):301-332
    [90] Berezantzev V G,Khristoforov V,Golubkov V.Load bearing capacity and deformation of piled foundations.In:Proceedings of the 5th International Conference Soil Mechanics and Foundation Engineering,Paris,1961,2:11-15
    [91] Vesic A S.Bearing capacity of shallow foundations.In:Foundation Engineering Handbook,1975:121-147
    [92]刘剑宇.结构塑性变形观察试验与双剪滑移理论及应用[硕士学位论文].西安:西安交通大学,1990
    [93]刘春阳.结构极限分析的一个新理论及其应用[硕士学位论文].西安:西安交通大学,1993
    [94]俞茂宏,刘剑宇,刘春阳,等.双剪正交和非正交滑移线场理论.西安交通大学学报,1994,28(2):122-126
    [95]俞茂宏.双剪理论及其应用.北京:科学出版社,1998
    [96] Houlsby G T,Nutt N R F,Sweeney M.End bearing capacity of piles in carbonate soils.In:Proceedings of the 13th International Conference on Soil Mechanics and Foundation Engineering,New Delhi,India,1994,2:635-638
    [97] Lee J H,Salgado R.Determination of pile base resistance in sands.Journal of Geotechnical and Geoenvironmental Engineering,1999,125(8):673-683
    [98] Nicola A D E,Randolph M F.Centrifuge modeling of pipe piles in sand under axial loads.G(?)otechnique,1999,49(3):295-318
    [99] Yasufuku N,Ochiai H,Ohno S.Pile end-bearing capacity of sand related to soil compressibility.Soils and Foundation,2001,41(4):59-71
    [100] Serrano A,Olalla C.Ultimate bearing capacity at the tip of a pile in rock-partl:theory.International Journal of Rock Mechanics and Mining Sciences,2002,39(7):833-846
    [101] Serrano A,Olalla C.Ultimate bearing capacity at the tip of a pile in rock-part2:application.International Journal of Rock Mechanics and Mining Sciences,2002,39(7):847-866.
    [102]王浩.砂土中桩端阻力随位移发挥的内在机理研究.岩土工程学报,2006,28(5):587-593
    [103]周健,邓益兵,叶建忠,等.砂土中静压桩沉桩过程试验研究与颗粒流模拟.岩土工程学报,2009,31(4):502-507
    [104]俞振全.钢管桩的设计与施工.北京:地震出版社,1993
    [105] McCammon N R,Golder H Q.Some Loading tests on long pipe piles.G(?)otechnique,1970,20(2):171-187
    [106] Kishida H,Isemoto N.Behavior of sand plugs in open-ended steel pipe piles.In:Proceedings of the 9th International Conference on Soil Mechanics,Tokyo,1977,1:601-604
    [107] Paikowsky S G,Whitman R V.The effects of plugging on pile performance and design.Canadian Geotechnical Journal,1990,27(4):429-440
    [108] Miller G A,Lutenegger A J.Influence of pile plugging on skin friction in overconsolidated clay.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1997,123(6):525-533
    [109] Lehane B M,Gavin K G.Base resistance of jacked pipe piles in sand.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2001,127(6):473-480
    [110] Gavin K G,Lehane B M.The shaft capacity of pipe piles in sand.Canadian Geotechnical Journal,2003,40(1):36-45
    [111] Paik K,Salgado R.Determination of bearing capacity of open-ended piles in sand.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2003,129(1):46-57
    [112] Paik K,Salgado R,Lee J,et al.Behavior of open-and closed-ended piles driven intosands.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2003,129(4):296-306
    [113]陈国祝,郑国芳.两类土层中复打桩承载力的剖析.水运工程,1995,(4):11-18
    [114]陆昭球,高倚山,宋铭栋.关于开口钢管桩工作性状的几点认识.岩土工程学报,1999,21(1):11 1-114
    [115]朱合华,谢永健,王怀忠.上海软土地基超长打入PHC桩工程性质研究.岩土工程学报,2004,26(6):745-749
    [116] Smith I M,To P,Wilson S M.Plugging of pipe piles.In:Proceedings of 3rd International Conference on Numerical Methods in Offshore Piling,Nantes,France,1986:53-73
    [117] Randolph M F,May M,Leong E C,et al.Soil plug response in open-ended pipe piles.Journal of Geotechnical Engineering,1992,118(5):743-759
    [118] Heerema E P,de Jong A.An advanced wave equation computer program which simulates dynamic pile plugging through a coupled mass-spring system.In:Proceedings of the International Conference on Numerical Methods in Offshore Piling,London,1979:37-42
    [119] Matsumoto T,Takei M.Effects of soil plug on behavior of driven pipe piles.Soils and Foundation,1991,31(2):14-34
    [120] Randolph M F,Leong E C,Houlsby G T.One-dimensional analysis of soil plugs in pipe piles.G(?)otechnique,1991,41(4):587-598
    [121] Liyanapathirana D S,Deek A J,Randolph M F.Numerical analysis of soil plug behaviour inside open-ended piles during driving.International Journal for Numerical and Analytical Methods in Geomechanics,1998,22(4):303-322
    [122] Perry M G,Handley M F.The dynamic arch in free-glowing granular material discharging from a model hopper.Transactions of the Institution of Chemical Engineers,1967,45:367-371
    [123] Paikowsky S G.The mechanism of pile plugging in sand.In:Proceedings of the 22nd Offshore Technology Conference,Houston,1990:593-604
    [124] Mayne P W,Kulhawy F H,Trautmann C H.Laboratory modeling of laterally-loaded drilled shafts in clay.Journal of Geotechnical Engineering,1995,121(12):827-835
    [125] Ruesta P F,Townsend F C.Evaluation of laterally loaded pile group at Roosevelt bridge.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1997,123(12):1153-1161
    [126] Pan J L,Goh A T C,Wong K S,et al.Model tests on single piles in soft clay.Canadian Geotechnical Journal,2000,37(4):890-897
    [127] Huang A B,Hsueh C K,O'Neill M W,et al.Effects of construction on laterally loaded pile groups.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2001,127(5):385-397
    [128] Dyson G J,Randolph M F.Monotonic lateral loading of piles in calcareous sand.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2001,127(4):346-352
    [129] Ozden G,Akdag C T.Lateral load response of steel fiber reinforced concrete model piles in cohesionless soil.Construction and Building Materials,2009,23(2):785-794
    [130]龚健,陈仁朋,陈云敏,等.微型桩原型水平荷载试验研究.岩石力学与工程学报,2004,23(20):3541-3546
    [131]叶俊能,朱向荣,谢庆道.沉管灌注筒桩在处理高速公路桥头软基的应用.2005,27(1):100-104
    [132]王钰,林军,陈锦剑.软土地基中PHC管桩水平受荷性状的试验研究.岩土力学,2005,26(增):39-42
    [133]王建华,陈锦剑,柯学.水平荷载下大直径嵌岩桩的承载力特性研究.岩土工程学报,2007,29(8):1194-1198
    [134]刘汉龙,张建伟,彭劼.PCC桩水平承载特性足尺模型试验研究.岩土工程学报,2009,31(2):161-165
    [135]刘金砺.桩基础设计与计算.北京:中国建筑工业出版社,1990
    [136] Hsiung Y M.Theoretical elastic-plastic solution for laterally loaded piles.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2003,129(6):475-480
    [137]中华人民共和国行业标准(JGJ94-2008).建筑桩基技术规范.北京:中国建筑工业出版社,2008
    [138] Ashford S A,Juimarongit T.Evaluation of pile diameter effect on initial modulus of subgrade reaction.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2003,129(3):234-242
    [139] Kobayashi N,Shibata T,Kikuchi Y,et al.Estimation of horizontal subgrade reaction coefficient by inverse analysis.Computers and Geotechnics,2008,35(4):616-626
    [140]马志涛.现浇混凝土薄壁管桩水平受力特性试验研究与分析[博士学位论文].南京:河海大学,2007
    [141] Zhang L Y,Silva F,Grismala R.Ultimate lateral resistance to piles in cohesionless soils.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2005,131(1):78-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700