压力敏感性材料球形孔洞膨胀问题的弹塑性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压力敏感性材料(包括岩石、土壤、泡沫金属、聚合物材料、橡胶等)是自然界中应用最广泛的材料。由于材料中存在微结构(孔洞、微缺陷、微裂纹等),在外载荷作用下材料变形和破坏机理复杂,因而对压力敏感性材料的变形和破坏机理进行深入的力学研究已成为当前固体力学中的一个重要研究课题。
     在压力敏感性材料变形和破坏机理的研究中,球形孔洞膨胀模型因其具有良好的对称性、简便明确并易于通过理论推导给出应力和应变场解,该研究结果具有明确物理意义,从而可以揭示材料的变形本质,因而无论是固体力学、材料科学、固体物理,还是爆炸力学等学科,研究人员都十分重视球形孔洞膨胀弹塑性分析问题的研究。
     本文在阐述了有限变形弹塑性理论的基础上,指出对于次弹-塑性理论,解决问题的关键在于屈服函数的选择。讨论了三类压力敏感性材料的双独立参数屈服准则。由于采用椭圆型方程很好地保持了从弹性变形到塑性变形的连续性,论文中采用椭圆型屈服函数,对压力敏感性材料球形孔洞膨胀问题进行了弹塑性分析。本文的主要工作如下:
     1、在次-弹塑性有限变形理论的框架下,建立了材料的本构模型。在球坐标系下推导出球形孔洞膨胀有限弹塑性变形问题的本构方程及平衡方程的表达式。并利用对数应变,得出几何方程及协调方程和边界条件。通过数值计算,给出在内压作用下,压力敏感性材料中球形孔洞应力和应变的分布,讨论了压力敏感性系数对应力和应变场的影响。
     2、研究了理想弹塑性材料有限变形弹塑性球形孔洞膨胀问题。对于应力场,在Euler坐标系中,求解的问题是“静定问题”,即可以用屈服条件和平衡方程求解球形孔洞的膨胀问题。由变形前后Lagrange坐标向Euler坐标的转换规律,利用对数应变,通过数值计算,给出在内压作用下理想弹塑性压力敏感性材料中球形孔洞应变的分布,讨论了压力敏感性系数对应力和应变场的影响。
     3、采用椭圆型压力敏感性材料屈服准则和自相似假设,采用三区模型,研究球形孔洞动态扩展问题。通过对弹性区的推导得出应力的分布和弹塑性交界处连续条件;在塑性区给出求解问题的关于∑r和∑θ非线性微分方程,给出基本物理量(∑θ,∑r,V,ρ/ρ0)数值结果并讨论了材料参数对场量的影响。
     4、研究了理想压力敏感性弹塑性材料孔洞动态扩展问题。
     将工程中的实际问题抽象出理论模型,研究其变形的普遍规律,用以设计实验和建立数值计算的模型,将理论研究、数值计算和实验紧密结合,互相渗透、互相补充,深刻理解工程的物理本质找出一般性规律并指导实践,是力学学科发展的必然趋势。随着新材料的涌现,科学技术的发展,在军事工程、建筑工程和航天航空工程中提出许多有待于解决的复杂问题,需要从微观、细观以及宏观等不同层次上深入认识材料和结构的力学行为。因此压力敏感性材料中球形孔洞膨胀的深入研究更具有理论意义和广泛的工程应用价值。
The pressure-sensitive dilatant materials, such as rock, soil, foam metal, polymeric material, rubber and so on, are the most widely applied materials in nature. As these materials contain micro-structures (such as micro-voids, defects, inclusions and cracks), the deformation and failure mechanism are complicated. Thus, in-depth study on the deformation and failure mechanism of the pressure-sensitive dilatant material is an important research subject in solid mechanics at present.
     During the study on the deformation and failure mechanism of the pressure-sensitive dilatant material, researchers paid great attention to spherical cavity inflation model for its symmetry, simplicity, and convenience to get the stress and strain field solutions by theoretical deduction and reveal the deformation law. So investigation on spherical cavity inflation through elastoplastic analysis was devoted much attention by researchers from no matter solid mechanics, materials science, solid state physics, explosion mechanics etc.
     In this paper, based on expatiation of the finite deformation elastic-plastic theory, for the hypoelastoplastic problem, the key to solve it is how to choose the yield functions, so three kinds of two-independent-parameters yield functions were discussed. Then the elliptic-equation yield function was chosen to make elastoplastic analysis on spherical cavity inflation problem in pressure-sensitive dilatant materials, owing to it can maintain the continuity from the elastic deformation to the plastic deformation. In this paper, the main jobs are as follows:
     1. The constitutive model of the pressure-sensitive dilatant materials was established based on the frame of the hypoelastoplastic finite deformation theory. The expressions of the constitutive equations and the equilibrium equations were deduced in spherical coordinate system. Then the geometry equations, the compatibility equations and the boundary conditions were obtained by the use of the logarithmic strain. Accordingly, through the numerical calculation, the stress distribution and the strain distribution of the spherical cavity were given in the pressure-sensitive dilatant materials under internal pressure. The influence of the pressure sensitive coefficient on the stress field and the strain field were also discussed.
     2. The problems on the spherical cavity inflation with finite elastoplastic deformation in the elastic-perfectly plastic materials were studied. It is the statically indeterminate problem for the stress fields in the Euler coordinate system, which can be solved by using the yield functions and the equilibrium equations. Via the transforming rules from the Lagrange coordinate system to the Euler coordinate system pre-and post-deformation, the logarithmic strain and the numerical calculation, the stress distribution and the strain distribution of the spherical cavity are given in the elastic-perfectly plastic pressure-sensitive dilatant materials under internal pressure. The influence of the pressure sensitive coefficient on the stress field and the strain field are also discussed.
     3. The problem on the spherical cavity dynamic expansion was studied, through the use of the elliptic-equation yield function, the self-similarity hypothesis and the three region model. Then the stress distribution and the continuous conditions in the intersection of plastic and elastic areas were deduced in the elastic region; the nonlinear differential equations on∑r and∑θare also given in the plastic region. The numerical calculation results on the basic physical quantities (∑θ,∑r,V,ρ/ρ0) are obtained, at last, the effects of the material parameters on the stress and strain fields are discussed.
     4. The problem on the spherical cavity dynamic expansion was studied in the perfectly pressure-sensitive dilatant materials.
     Drawing out the theoretical model from the practical problems in engineering to investigate the general deformation law for the experiment design and the numerical calculation model, combining the theoretical research, numerical calculation with the experiment closely and permeating each other to understand the physical essence of the engineering problem deeply and find the general law for guiding practice, all of these things above are inevitable trends in the development of mechanics. With the emergence of the new materials as well as the development of science and technology, there are many complex problems to solve in aviation, navigation, national defense, textile industry, which demand profound comprehension on the mechanical behavior of the materials and structure at microcosmic, microscopic and macroscopic level respectively. Therefore, further study on the spherical cavity inflation by elasto-plastic analysis in the pressure-sensitive dilatant materials has theoretical significance and practical value.
引文
[1]Taylor G I. The formation and enlargement of a circular hole in a thin plastic sheet. Quarterly. J. Mech. and Appl. Math.,1948, 1:103-124P
    [2]Bishop R F, Hill R and Mott N F. The Theory of indentation and hardness tests. Proc. Phys. Soc.,1945,57(3):147-159P
    [3]Hopkins H G. Dynamic expansion of spherical cavities in metal. In Progress in Solid Mechanics, Edited by Sneddon I N, Hill R. North-Holland, Amsterdam.1960.
    [4]Hill R. The Mathematical Theory of Plasticity. London:Oxford University Press,1950.
    [5]李翼祺,马素贞.爆炸力学.北京:科学出版社,1992,356-417页
    [6]Lawn B R, Wilshaw R. Review indentation fracture:principles and application. J. Mate. Sci.,1975,10:1049-1081P
    [7]Kogat I, Eslion I. Elastic-plastic contact analysis of a sphere and a rigid flat. J. Appl. Mech.,2002,69(5):657-662 P
    [8]Fischer-Cripps A C. Elastic-plastic behavior in materials loaded with a spherical indenter. J. Mater. Sci.,1997,32(3):727-736 P
    [9]Mata M, Alcala J. Mechanical property evaluation through sharp indentations in elastoplastic and fully plastic contact regimes. J. Mater. Res., 2003,18(9):1705-1709P
    [10]Mata M, Anglada M and Alcala J. A hardness equation for sharp indentation of elastic-power-law strain-hardening materials. Philos. Mag.2002,82(10): 1831-1839P
    [11]Mesarovic S D, Fleck N A. Spherical indentation of elastic-plastic solids. Proc. R. Soc. Lond.,1999,455:2707-2728P
    [12]Park Y J, Pharr G M. Nanoindentation with spherical indenters:finite element studies of deformation in the elastic-plastic transition regime. Thin Solid Films,2004,447-448(30):246-250P
    [13]Johnson K L. The correlation of indentation experiments. J. Mech. Phys. Solids,1970,18(2):115-126P
    [14]Johnson K L. Contact Mechanics. Cambridge:Cambridge University Press, 1985:175P
    [15]Chadwick P. The quasi-static expansion of a spherical cavity in metals and ideal soils. Quart. J. Mech. Appl. Math.,1959,12(1):52-71P
    [16]Durban D, Baruch M. On the problem of a spherical cavity in an infinite elasto-plastic medium. J. Appl. Mech.,1976,43:633-638P
    [17]Durban D, Kubi M. A general solution for the pressurized elastoplastic tube. J. Appl. Mech.,1992,59:20-26P
    [18]Durban D, Papanastasiou P. Cylindrical cavity expansion and contraction in pressure sensitive geomaterials. Acta Mech.,1997,122(1-4):99-122P
    [19]Brignoni D, Ludiero F. The quasi-static finite cavity expansion in a non-standard elasto-plastic medium. Int. J. Mech. Sic.,1989,31(11-12): 825-837P
    [20]Gao X L et al. Two new expanding cavity models for indentation deformations of elastic strain-hardening materials. International Journal of Solids and Structures,2006,43:2193-2208P
    [21]Gao X L. Strain gradient plasticity solution for an internally pressurized thick-walled spherical shell of an elastic-plastic material. Mech. Res. Comm,2003,30(5):411-420P
    [22]黄筑平,杨黎明,潘客麟.材料的动态损伤和失效.力学进展,1993,23(4):433-467页
    [23]Meyers M A, Aimone C T. Dynamic fracture of metals. Progress in Material Science,1983,28(1):1-96P
    [24]Carroll M M and Holt A C. Static and dynamic pore-collapse relation for ductile porous materials. Journal of Applies Physics,1972,43(4):1626-16 36P
    [25]Johnson J N. Dynamic fracture and speciation in ductile solids. J. Applied physics,1981,52:2812-2825P
    [26]郭坚,王泽平.高应变率下延性多孔介质中孔洞的动态演化.固体力学学报,1994,15(3):189-198页
    [27]郭坚,王泽平,孙成友.韧性材料在强动载作用下的损伤演化.固体力学学报,1995,16(4):336-342页
    [28]Jin ming, Huang kefu and Jike wu. A study of the cafastrophe and the caritation for a spherical cavity in Hook's material with 1/2 poision'ratio. Applied. Math,1999,20(8):928-935P
    [29]周清强.延性材料动态损伤断裂研究.北京:中国工程物理研究院,2002,1-32页
    [30]程昌钧,聂波.幂硬化材料和超弹性材料含球体中空穴的动态生成.固体力学学报,2005,26(3):273-279页
    [31]倪天生,程昌钧.超弹性材料中空穴的动态生成.固体力学学报,2004,25(1):42-46页
    [32]周清强,孙锦山,王天书.动载荷下延性材料中微孔洞的增长模型.爆炸与冲击,2003,23(5):415-419页
    [33]张风国,崔亚平,秦承森,李勇.动载作用下材料的孔洞增长和成模.兵工学报,2004(6):730-733页
    [34]Gurson A L. Continuum theory of ductile rupture by the void nucleation and growth. J. Eng. Mater. Technology.1977,99(1):2-15P
    [35]Mcclintock F A. A criterion for ductile fracture by the growth of holes. J. Appl. Mech.,1968,35:363-371P
    [36]Rice I R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids.,1969,17(3):201-227P
    [37]杨卫.宏微观断裂力学.北京:国防工业出版社,1995:134-288页
    [38]Wei yueguang, Hutchinson J W. Hardness trends in micron scale indentation. J. Mech. Phys. Solids.,2003,51:2037-2056P
    [39]Zhang W, Subhash G. An elastic-plastic-cracking model for finite element analysis of indentation cracking in brittle materials. Int. J. Solids Struct., 2001,38(34-35):5893-5913P
    [40]Vesic A S. Expansion of cavities in infinite soil mass. Journal of the Soil Mechanics and Foundation Division, ASCE,1972,98(3):203-208P
    [41]Randolph M F, Carter J P and Wroth C P. Driven piles in clay-the effects of installation and subsequent consolidation. Geotechnique,1979, 29(4): 111-116P
    [42]钱德玲.变截面桩与土的相互作用机理.合肥:合肥工业大学出版社,2003:31-39页
    [43]李月健,陈云敏等.土体内空穴球形扩张问题的一般解及应用.土木工程学报,2002,5(1):93-98页
    [44]张明义等.静压桩贯入地基的球孔扩张-滑动摩擦计算模式.岩土力学,2003,24(5):701-709页
    [45]Satapathy S. Dynamic spherical cavity expansion in brittle ceramics. International Journal of Solids and Structures,2001,38(32-33):5833-5845P
    [46]Satapathy S and Blss S J. Cavity expansion resistance of in brittle materials obeying a two curve pressure-shear behavior. J. Appl Phys.2000,88(7): 4004-4012P
    [47]郭仲衡著.非线性弹性理论.北京:北京科学出版社,1987:160-164页
    [48]王仁,黄文彬,黄筑平.塑性力学引论.北京:北京犬学出版社,1992
    [49]高玉臣.裂纹起始扩展的弹塑性场.固体力学学报,1980,1(1):69-76页
    [50]唐立强,何水清.MVM材料中轴对称平面问题的弹塑性解.固体力学学报.1992,12(4):313-321页
    [51]He S Q and Tang L Q. Elastic-plastic solution for an axisymmetrical problem of MVM material, Hong Kong:AEPA'92,1993.223-228P
    [52]Chen H J and Tang L Q. Crack-tip asymptotic field in porous materials, China:Mesomechanics 2000,2000,1:305-311P
    [53]Durban D, Masri R. Dynamic spherical cavity expansion in a pressure sensitive elastoplastic medium. Int. J. Solids Struct., 2004,41(20):5697- 5716P
    [54]Luk V K, Amos D E. Dynamic cylindrical cavity expansion of compressible strain-hardening materials. J. Appl. Mech.,1991,58(2):334-340P
    [55]Deshpande V S, Fleck N A. Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids,2000,48(6-7):1253-1283P
    [56]Gibson L J, Ashby M F. Cellular Solids:Structure and Properties. Oxford: Pergamon Press,1997
    [57]Collins I F. Elastic/plastic models for soils and sands. Int.J. of Mechanical Sciences,2005,47(4-5):493-508P
    [58]Collins I F, Kelly P A. A phermo mechanics analysis of a family of Soil models. Geotechnique,2002,26:1313-1347P
    [59]Collins I F, Hilder T A. A theoretical framework for constructing elastic/ plastic constitutive models of triaxial tests. Int. J. of Numerical and Analytical Methods in Geomechanics.2002,26(13):1313-1347P
    [60]王仁,黄克智,朱兆祥.塑性力学进展.北京:中国铁道出版社,1988
    [61]陈惠发.土木工程材料的本构关系-塑性与建模.武汉:华中科技大学出版社,2001
    [62]Krajcinovic D. Continuum damage mechanics. J. Appl. Mech. Reviews. 1884,37(1):1-6P
    [63]余寿文,冯西桥.损伤力学.北京:清华大学出版社.1997
    [64]Duva J M, Hutchinson J W. Constitutive potentials for dilutely voided nonlinear materials. Mech Mater,1984(3):41-54P
    [65]Mura T. Miero mechanics of Defects in Solids, Martinus Nijhoff Publishers, 1987
    [66]Leblond J B, Perrin G. Theoretical models for void coalescence in porous ductile solids. Int J Solids Struct,2001(32):5581-5604P
    [67]俞茂宏.强度理论百年总结.力学进展.2004,34(4):529-560P
    [68]Srinirasa A R. Large deformation plasticity and the poynting effect. Int. J. Plasticity.,2001,17(9):1189-1214P
    [69]Ishikawa H. Constitutive model of plasticity in finite deformation. Int. J. Plasticity.1999,15(3):299-317P
    [70]Piccolroza A, Bigoni D and Gajo A. An elastoplantic framework for granular materials becoming cohesive through mechanical densification. Part Ⅱ:the formation of elastoplantic coupling at large strain. Euro. J mech. solid.2006,25:358-369P
    [71]Lee E H. Elastic-plastic deformation at finite strains. J. Appl. Mech.1969, 36():1-6P
    [72]Neale K W. Phenomenological constitutive laws in finite plasticity. Solid Mech. Arch.,1981,6(1):79-128P
    [73]Simo J C, Pister K S. Remarks on rate constitutive equations for finite deformation problem:computational implications. Compt. Meth. Appl. Mech. Engng.,1984,46(2):201-215P
    [74]Dienes J K. On the analysis of rotation and stress state in deforming bodies. Acta Mechanica,1979,32(4):217-232P
    [75]Dafalias Y F. Corotational rates for kinematic hardening at large plastic deformations. J. Appl. Mech.,1983,50(3):561-565P
    [76]Simo J C, Ortiz M. A unified approach of finite deformation elastoplastic and based on the use of hyperelastic equations. Remarks on rate constitutive equations for finite deformation problem:computational implications. Compt. Meth. Appl. Mech. Engng.,1985,49:221-245P.
    [77]Dienes J K. A discussion of material rotation and stress rate. Acta Mech. 1987,65(1-4):1-11P
    [78]Hughes T J R and Winget J. Finite rotation effects in numerical integration of rate-constitutive equations arising in large-deformation analysis. Int. J. Numerical Methods in Eng.1980,15:1862-1867 P
    [79]Xia Z, Ellyin F. A stress rate measure for finite elastic plastic deformation. Acta Mech.,1993,98(1-4):1-14P
    [80]黄克智,程莉.大变形弹塑性本构理论的几个基本问题.力学学报(增 刊),1989,21:7-17页
    [81]Yang W, Cheng L, Hwang K C. Objective corotational rates and shear oscillation. Int. J. plasticity,1992,8(6):643-656P
    [82]Bridgman P W. The thermodynamics of plastic deformation and generalized entropy. Rev. Phys.1950,22(1).56-60P.
    [83]Truesdell C, Toupin R A. The classical field theories. In:Flugge, S. (Ed.), Handbuch der Physik, Vol. Ⅲ/1, Springer-Verlag, Berlin.,1960
    [84]Casey J. On elastic-thermo-plastic materials at finite deformations. International Journal of plasticity.1998,14(1-3):173-191P
    [85]Narasimhan R. Analysis of indentation of pressure sensitive plastic solids using the expanding cavity model. Mech. Mater.,2004,36(7),633-645P
    [86]Yu H S and Houlsby G T. Finite cavity expansion in dilitant soils:loading analysis. Geotechnique,1991,41(2):173-183P
    [87]Durban D and Fleck N. A spherical cavity expansion in a drucker-prager solid. Journal of Applied Mechanics,1997,64(4):743-750P
    [88]Durban D. Finite straining of pressurized compressible elastic-plastic tubes. International Journal of Engineering Science,1988,26(9):939-950P
    [89]Durban D, Kubi M. Large strain analysis for plastic-orthotropic tubes. Int. J. Solids Struct.,1990,26:483-495P
    [90]Masri R, Durban D. Quasi-static cylindrical cavity expansion in an elastoplastic compressible Mises solid.International Journal of Solids and Structures,2006,43(25-26):7518-7533P
    [91]Forrestal M J, Luk V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid. J. Appl. Mech.,1988,55(2):275-279P
    [92]Luk V K, Forrestal M J, Amos D E. Dynamic spherical cavity expansion of strain-hardening materials. J. Appl. Mech.,1991.58(1):1-6P
    [93]Forrestal M J, Okajima K, and Luk V K. Penetration of 6061-T651 aluminum targets with rigid long rods. J. Appl. Mech.,1988,55(4): 755-760P
    [94]Forrestal M J, Brar N S, Luk V K. Penetration of strain-hardening targets with rigid spherical-nose rods. J. Appl. Mech.,1991,58:7-10P
    [95]Forrestal M J, Tzou D Y, Askari E, Longcope D B. Penetration into ductile metal targets with rigid spherical-nose rods. Int. J. Impact Eng.,1995, 16(5-6):699-710P
    [96]Forrestal M J and Tzou D Y. A spherical cavity expansion penetration model for concrete targets. International Journal of Plasticity,1998, 14(1-3):173-191P
    [97]Macek R W and Duffey T A. Finite cavity expansion method for near-surface effects and layering during Earth penetration. International Journal of Impact Engineering,2000,24(3):239-258P
    [98]Masri R, Durban D. Dynamic spherical cavity expansion in an elastoplastic compressible mises solid. J. Appl. Mech.,2005,72(6):887-898P
    [99]Masri R, Durban D. Dynamic cylindrical cavity expansion in an incompressible elastoplastic medium. Acta Mech,2006,181(1-2):105-123P
    [100]Masri R, Durban D. Cylindrical cavity expansion in compressible mises and tresca solids. European Journal of Mechanics A/Solids 2007,26(4): 712-727P
    [101]T.Vergaard. Effect of large elastic strains on cavitation instability predictions for elastic-plastic solids. Int. J. Solids and Stracture,1998,36(35): 54543-5466P
    [102]王自强 秦嘉亮.含空洞非线性材料的本构势和空洞扩展率.固体力学学报,1989,10(2):127-141页
    [103]黄筑平 孙立志.韧性材料中的一个新的动态孔洞增长模型.中国科学A辑,1992,15(9):960-969页
    [104]Lee J H and Oung J. Yield functions and flow rules for porous pressure-dependent strain-hardening polymeric materials. J. Appl. Mech., 2000,67(2):288-297P
    [105]王自强.理性力学基础.北京:科学出版社,2000
    [106]黄筑平.连续介质力学基础.北京:高等教育出版社,2003
    [107]Hill R. Aspects of invariance in solids mechanics. Advance In Applied Mechanics,1978,18(1):1-75P
    [108]郭仲衡,Dubey R N.非线性连续介质力学中的“主轴法”.力学进展,1983,13(3):1-17P
    [109]Seth B R. Generalized strain measure with applications to physical problems, in Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics (Haifa 1962),1962:162-172P
    [110]Fitzgerald J E. Tensorial hencky measure of strain and strain rate for finite deformations. J. Appl. Phys.,1980,51(10):5111-5115P
    [111]Hoger A. The material time derivative of logarithmic strain. International Journal of Solids and Structures,1986,22(9):1019-1032P
    [112]Dui G S, Ren Q W and Shen Z J. Time rates of hill's strain tensors. J. Elasticity,1999,54(2):129-140P
    [113]Guo Z H and Man C S. Conjugate stress and tensor equation. Int. J. Solids Struct.,1992,29(16):2063-2076P
    [114]LehmannT H and Liang H Y. The stress conjugate to the logarithmic strain. ZAMM/Math. Mech.,1993,73(12):357-363P
    [115]Heiduschke K. The logarithmic strain space description. Int. J. Solids Struct., 1995,32(8-9):1047-1062P
    [116]Xiao H. Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill's strain. Int. J. Solids Struct.,1995,32(22): 3327-3340P
    [117]Drucker D. A more fundamental approach to plastic stress-strain relations. Proceedings of the first US congress of applied mechanics. American Society of Mechanical Engineers,1952:487-491P
    [118]Harris D. Plasticity models for soil, granular and jointed rock materials. J. Mech. Phys. Solids.,1992,40(2):273-290P
    [119]Wineman A S, Pipkin A C. Arch. Ration. Mech. Analysis.1964, 17:184P
    [120]黄克智,黄永刚.固体本构关系.北京:清华大学出版社,1999
    [121]Rice J R. Inelastic constitutive relations for solids:An internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids,1971, 19(6):433-455P
    [122]Rice J R. Continuum mechanics and thermodynamics of plasticity in relation to micro-scale deformation mechanisms, in Constitutive Equations in Plasticity. Cambridge:MIT Press,1975:23-75P
    [123]Hill R and Rice J R. Elastic potentials and the structure of inelastic constitutive laws. SIAM J. Appl. Math.,1973,25:448-461P
    [124]Valanis K C. On the foundations of the endochronic theory of viscoplasticity. Arch. Mech.,1975,27:857-868P
    [125]Pipkin A C and Rivlin R S. Mechanics of rate-independent materials. Z. angew. Math. Phys.,1965,16:313-327P
    [126]Lubliner J. A maximum dissipation principle in generalized plasticity. Acta Mech.,1984,52:225-237P
    [127]Lubliner J. Normality rules in large-deformation plasticity. Mech. Mater., 1986,5:29-34P
    [128]Murakami H, Read H E. Endochronic plasticity:some basic properties of plastic flow and fracture. Int. J. Solids Struct.,1987,23(1):133-151P
    [129]Huttel C and Matzenmiller A. Extension of generalized plasticity to finite deformations and non-linear hardening. Int. J. Solids Struct.,1999,36(34): 5255-5276P
    [130]Sturmer G S, Schulz A, Wittig S. Life time prediction for ceramic gas turbine components. American Society of Mechanical Engineers, 1993,115(1):70-75P
    [131]Schajer G S. Mohr-Coulomb failure criterion expressed in terms of stress invariants. J. Appl. Mech.1998,65:1066-1068P
    [132]宋建波等.岩体经验强度准则及其在地质工程中的应用.北京:地质出 版社,2002
    [133]张学言.岩土塑性力学基础.天津:天津大学出版社,2004
    [134]Tschoegl N W. Failure surfaces in principal stress space. J. of Polymer Sci. Sym.,1971,32:239-267P
    [135]Raghava R and Caddell R M. A macroscopic yield criterion for crystalline polymers. Int. J. Mech. Sci.,1973,15(12):967-974P
    [136]Lee J H. Upper bound analysis of the upsetting of pressure-sensitive polymeric rings. Int. J. Mech. Sci.,1988,30(8):601-612P
    [137]Lee J H. Some exact and approximate solutions for the modified von Mises yield criterion. J. Appl. Mech.,1988,55(2):260-266P
    [138]Christensen R M. A comparative evaluation of three isotropic two property failure theories. J. Applied Mechanics.2006,73(5):852-859P
    [139]Christensen R M. A two property yield, failure(fracture) criterion for homogeneous, isotropic materials. J. Egn. Mater. Technol.2004, 126(1):45-52P
    [140]Doraivelu S M, Gegel H L, Gunasekera J S, Matas J C, Morgan J T and Thomas J F. A new yield function for compressible P/M materials. Int. J. Mech. Sci.,1984,26(9/10):527-535P
    [141]Lade P V, Nelson R B, Ito Y M. Instability of granular materials with non-associated flow. J. Eng. Mech. ASCE.1988,11(12):2173-2194P
    [142]唐立强,田德谟.一个压力敏感材料的本构方程.哈尔滨船舶工程学院学报,1994,15(1):6-12页
    [143]Chandler H W. Homogeneous and localized deformation in granular materials:A mechanistic model. Int. J. Eng. Sci.,1990,28(8):719-134P
    [144]Gibson L J. Mechanic behavior of metallic、foam. Annual Review of materials Science,2000,30:191-227P
    [145]Gioux G, McCormack T M, Gibson L J. Failure of aluminum foams under multiaxial loads. International Journal of Mechanical Sciences,2000,42(6): 1097-1117P
    [146]Lubarda V A. Elasto-plasticity theory. New york:CRC Press LLC,2002
    [147]Lubarda V A. Deformation theory of plasticity revisited. Proc. Montenegr. Acad. Sci. Arts,2000,13:117-143P
    [148]Budiansky B. A reassessment of deformation theories of plasticity. J. Appl. Mech.,1959,26:259-264P
    [149]Moran B, Ortiz M, Shi C F. Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Int. J. Num. Mech. Eng. 1990,29(3):483-514P
    [150]Besseling J K, Vander F, Giessen E. Mathematical modeling of inelastic deformation.London:Chapman & Hill,2001
    [151]Guohui Wu,Yong Wang, Liqiang Tang, Yong Yang. Cavity dynamic formation and bifurcation of the rubber-like sphere. Key Engineering Materials,2008,385-387:53-56P
    [152]Hollander H, Dueban D. Bifurcation of elastoplastic pressure-sensitive spheres. Int. J. Computers & Mathematics with Applications,2008,5(2): 257-267P
    [153]Dueban D, Papanastasiou P. Plastic bifurcation in the Triaxial Confining pressure test. J. Appl. Mech.,2000,67(3):552-557P
    [154]Dueban D, Papanastasiou P. Singular crack tip fields for pressure-sensitive solids. International Journal of Fracture,2003,119(1):47-63P
    [155]Zairi F, Nait-Abdelaziz M, Gloaguen J M, Lefebvre J M. Modeling of the elasto-viscoplastic damage behavior of glassy Polymers. International Journal of Plasticity,2008,24(6):945-965P
    [156]Kalita P, Schaefer R. Mechanical models of artery walls. Arch. Comput. Methods Eng.2008,15(1):1-36P
    [157]冯元桢.生物力学.北京:科学出版社,1983:168-189页
    [158]Ogden R W Saccomandi G. Introducing mesoscopic information into constitutive equations for arterial walls. Biomechanics and Modeling in Mechanobiology 2007,6(5):333-344P
    [159]Zulliger M A, Fridez P, Hayashi K, Stergiopulos N. A strain energy function for arteries accounting for wall composition and structure. Journal of Biomechanics,2004,37(7):989-1000P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700