Enterobacter cloacae Z0206多糖的制备及其缓解高脂饲喂小鼠脂代谢紊乱的作用及免疫学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题组从自然界分离得到一株高产多糖菌株,经鉴定命名为Enterobacter cloacaeZ0206。前期在实验室环境条件下,初步建立了20206多糖的发酵条件参数,并初步揭示Z0206多糖不仅具有免疫调节、抗氧化功能,而且具有降血糖、特别是降血脂功能。为了建立一套适用于工业化生产的Z0206多糖发酵工艺,并进一步阐明Z0206多糖对高脂日粮诱导下机体脂代谢紊乱的缓解作用及机制,本研究以玉米淀粉、豆粕粉、玉米浆干粉等为发酵原料,采用单因素试验、正交试验及响应面设计对Z0206多糖的工业化发酵条件及培养基组成进行了优化;结合离子交换色谱、凝胶渗透色谱等现代分离技术获得Z0206多糖的主要组分,并通过红外光谱、高效液相色谱、气相色谱、核磁共振、原子力显微镜等现代仪器分析手段初步解析了Z0206多糖主要组分的化学组成及结构;再以高脂诱导的C57BL/6肥胖小鼠和TNF-a刺激的3T3-L1小鼠脂肪细胞为模型,研究了Z0206多糖对高脂诱导肥胖小鼠脂代谢紊乱的缓解作用及初步分子机制。主要结果如下:
     试验一.Z0206多糖产业化发酵条件建立及培养基组成优化
     本试验选择能够进行产业化生产的玉米淀粉、豆粕粉、玉米浆干粉等为主要发酵原料对Z0206多糖的发酵条件和发酵培养基组成进行了筛选和优化。
     在多糖的发酵条件优化方面,采用单因素试验优化了Z0206多糖的发酵温度、发酵转速和初始pH值,结果表明:Z0206多糖发酵的最佳温度为30℃、转速为250rpm、初始pH值为7.0。
     在发酵培养基组成优化方面,首先采用单因素试验对发酵培养基成分进行了筛选,结果表明:以玉米淀粉为Z0206多糖工业化生产的碳源,以豆粕粉、玉米浆干粉和KN03为复合氮源,以CaCl2、K2HPO43H2O及KH2PO4为无机盐组成;采用正交试验设计优化了培养基中无机盐浓度,结果表明:当CaCl2,1g/L; K2HPO43H2O,3g/L; KH2PO4,3g/L时多糖产量最高;根据Box-Benhnken中心组合设计原理,以Z0206多糖产量为响应值,设计三因素三水平的响应面试验,优化了Z0206多糖发酵的最佳碳氮、源浓度为:玉米淀粉,240.95g/L;豆粕粉,22.19g/L;玉米浆干粉,6.61g/L。在以上优化条件下Z0206多糖的产量可达27.75g/L,是前期多糖产量的2倍以上。
     试验二.Z0206多糖的分离纯化、化学组成及结构的初步分析
     在优化了Z0206多糖发酵条件和培养基组成的基础上,进一步对发酵获得的Z0206多糖进行了分离纯化、化学组成及结构分析。在Z0206多糖的分离纯化方面,本试验结合Sevage和酶法脱蛋白,20%H2O2脱色,透析和冷冻干燥获得Z0206脱蛋白多糖(EPS);并采用DEAE-52离子交换柱层析和Superose12凝胶色谱层析对EPS进行分离纯化,获得EPS-1和EPS-3两个主要多糖组分,得率分别为40.8%和26.7%。
     在此基础上,采用凝胶渗透色谱、气相色谱、液相色谱及化学方法对以上两个组分的化学组成进行了分析,结果显示:EPS-1的相对分子质量为2527Da,是仅由葡萄糖组成的中性糖;EPS-3的相对分子质量为1.23x106Da,是由岩澡糖、半乳糖、葡萄糖、丙酮酸和糖醛酸组成的酸性糖,摩尔质量比为1.65:1.83:1:1.62:1.20。采用红外光谱仪、核磁共振仪、原子力显微镜和激光粒度仪对两个组分的结构进行了初步分析,结果表明:EPS-1和EPS-3糖链中均含有-CH2-基团,并存在α和β两种糖苷键构型。除此之外,EPS-3糖链中还存在糖醛酸、丙酮酸和岩澡糖单元;EPS-1的平均粒径为50.75nm,而EPS-3的平均粒径为210.3nm;在空间形貌上,EPS-1和EPS-3糖分子间均相互缠绕,聚集紧密成团,形成无规则排列的球状。
     以上结果综合表明,Z0206多糖由中性糖和酸性糖组分构成,化学组成包括葡萄糖、半乳糖、岩澡糖,以及丙酮酸和糖醛酸单元;Z0206多糖链存在α和β两种糖苷键构型,在空间上呈现无规则排列的球状结构。
     试验三.Z0206多糖缓解高脂诱导肥胖小鼠脂代谢紊乱的作用研究
     在优化了Z0206多糖的发酵条件及培养基组成,并初步分析了Z0206多糖化学组成及结构的基础上,本试验通过建立高脂日粮诱导形成的C57BL/6肥胖小鼠模型,从表型变化、血液生化指标、组织形态等多方面研究了Z0206粗多糖(CEPS)及其脱蛋白多糖(EPS)对高脂诱导肥胖小鼠脂代谢紊乱的缓解作用。试验选取6周龄的雄性C57BL/6小鼠,分为普通日粮组(ND)和高脂日粮组(HFD),分别给与普通饲料(10%脂肪含量,Kca1%)和高脂饲料(45%脂肪含量,Kcal%),连续饲喂12周直至两组的平均体重差异显著。再将饲喂高脂日粮的小鼠随机分为高脂组(HFD)、Z0206粗多糖组(HFD+CEPS)和Z0206脱蛋白多糖组(HFD+EPS),多糖组每天分别灌胃200mg/kg.BW两种多糖溶液(10mg/mL), ND组和HFD组每天灌胃等体积的生理盐水,连续灌胃42d。研究结果显示:与高脂日粮组相比,CEPS和EPS均可减缓小鼠增重,降低空腹血糖浓度和血清胰岛素水平,提高胰岛素敏感指数(ISI)及小鼠口服葡萄糖耐量(P<0.05),并降低肥胖小鼠肝脏指数,皮下脂肪、腹部脂肪及附睾周脂指数,表明CEPS和EPS能抑制高脂诱导的脂肪过度沉积,并提高小鼠的胰岛素敏感性;血清生化指标结果表明:CEPS和EPS能通过降低血清游离脂肪酸(FFA)含量(P<0.05)以及总胆固醇(TC)、甘油三酯(TG)和低密度脂蛋白(LDL-c)的水平(P<0.05),并一定程度提高血清高密度脂蛋白(HDL-c)的水平,从而缓解高脂诱导的脂代谢紊乱现象;组织形态观察结果表明:CEPS和EPS均能通过缓解肥胖小鼠肝脏细胞的变形、肿胀、抑制脂滴形成,从而维护肝脏组织的结构完整性,缓解高脂诱导的肝脏脂肪变性;CEPS和EPS也能通过抑制肥胖小鼠附睾脂肪细胞过度增大,从而缓解高脂日粮导致的脂肪细胞肥大的现象;基因和蛋白检测结果显示:CEPS和EPS均能通过促进肥胖小鼠脂肪组织脂联素(Adiponectin)、内脏脂肪特异性丝氨酸蛋白酶抑制剂(Vaspin)、Visftin等胰岛素敏感性因子的mRNA表达,降低瘦素(Leptin)、抵抗素(Resistin)等胰岛素抵抗因子的mRNA表达,同时激活过氧化物酶体增生物激活受体γ (PPARγ)表达,并提高胰岛素作用通路中Aktl的磷酸化水平、胰岛素受体底物1(IRS-1)和葡萄糖转运蛋白4(Glut4)的基因表达,从而增强肥胖小鼠脂肪组织的胰岛素敏感性,调节机体能量代谢水平。
     以上结果综合表明Z0206多糖能通过增强高脂诱导肥胖小鼠的葡萄糖摄取能力,缓解肝脏组织脂肪变性和脂肪组织过度肥大,从而缓解胰岛素抵抗;并通过调控脂肪因子表达和血脂平衡,维护机体脂代谢平衡,从而起到改善脂代谢紊乱的作用。
     试验四.Z0206多糖缓解脂代谢紊乱的免疫学机制研究
     在研究了Z0206多糖缓解高脂诱导的肥胖小鼠脂代谢紊乱作用的基础上,进一步从脂肪炎症的角度,采用免疫组化、流式细胞仪、荧光定量、Western blotting等技术探究了Z0206多糖缓解脂代谢紊乱的免疫学机制。脂肪组织巨噬细胞研究结果表明:CEPS和EPS均能通过减少附睾前脂肪组织中F4/80阳性细胞数量,降低CDllc+阳性细胞比例,同时减少巨噬细胞形成的"Crown like structure"数量,从而减少高脂诱导的脂肪组织巨噬细胞浸润;同时,CEPS和EPS均能通过上调M2型巨噬细胞标记基因CD209、CD163和Mg12的表达和下调M1型巨噬细胞标记基因F4/80、CD11c和单核细胞趋化蛋白-1(MCP-1)的表达,从而促进脂肪组织巨噬细胞由M1型向M2型分化;脂肪炎症因子表达方面,体内试验结果显示:CEPS和EPS均能提高附睾脂肪组织中抑炎细胞因子IL-10的表达,降低促炎细胞因子TNF-α、IL-6的表达;体外试验结果显示:Z0206多糖组分EPS-3同样能降低TNF-α刺激下3T3-L1小鼠脂肪细胞NO产生和促炎细胞因子TNF-α、IL-6、IL-1β的基因表达,并提高抑炎细胞因子IL-10的基因表达,由此表明Z0206多糖通过调控炎症因子的表达缓解了高脂诱导的脂肪炎症反应;基因及蛋白检测结果揭示:Z0206多糖可能通过下调脂肪细胞TLR4表达,降低IKBα磷酸化,抑制NF-κB活性,同时降低c-Jun氨基端激酶的磷酸化水平,从而缓解肥胖小鼠脂肪组织慢性低度炎症。
     以上结果综合表明Z0206多糖一方面可以通过减少高脂诱导肥胖小鼠脂肪组织巨噬细胞浸润,并促进巨噬细胞由M1型向M2型分化;另一方面,Z0206多糖可能通过抑制脂肪细胞TLR4/IκBαa/NF-κB途径和c-Jun途径,降低促炎细胞因子生成,从而缓解高脂诱导下的脂肪组织炎症,有效防止脂代谢紊乱的发生。
In our previous study, Enterobacter cloacae Z0206, a bacterial strain, can produce large amounts of exopolysaccharides (EPS), was isolated from nature. The culture medium was optimized under laboratory conditions and EPS was found to have antioxidant, immunomodulatory, antiviral, hypoglycemic and especially hypolipidemic bioactivities. In order to establish a set of fermentation process for industrialized production and further clarify the effect of Z0206polysaccharide on lipid metabolism disorder induced by high fat diet. In the present study, we firstly optimized the industrial fermentation conditions and medium composition of EPS produce by Enterobacter cloacae Z0206with corn starch, soybean meal and corn steep power as substrates. The exopolysaccharide was purified with iron exchange chromatography and gel column chromatography, after that the chemical composition and structure of the main components were analyzed by a combination of Infrared Spectroscopy (IR), high Performance Liquid Chromatography (HPLC) and gas chromatography (GC) as well as nuclear magnetic resonance (NMR) and atomic force microscope (AFM). On the base of this, the effects of EPS produced by Enterobacter cloacae Z0206on lipid metabolism disorder in high fat diet induced C57BL/6mice and TNF-a induced3T3-L1were studied. The main results are as bellows:
     1. Medium composition Optimization of EPS produced by E. cloacae Z0206
     The industrial fermentation conditions and medium composition of EPS produce by Enterobacter cloacae Z0206were optimized with corn starch, soybean meal and corn steep power as substrates.
     The optimization of fermentation conditions and the culture medium for the production of EPS from Enterobacter cloacae Z0206was studied using one-factor-at-a-time method, orthogonal matrix method and response surface methodology (RSM) with agroindustrial by-products as the main fermentation substrate. The results of one-factor-at-a-time test showed that the best conditions for title bacterial growth and EPS production were: fermentation temperature30℃, speed250rpm and initial pH7.0. The suitable carbon and complex nitrogen sources were corn starch and soy bean meal, corn steep powder and KNO3respectively. The concentration of inorganic salts and complex nitrogen sources were optimized by orthogonal matrix design. At last a three level, three factor Box-Behnken factorial design was used to optimize the level of three factors significantly affecting the yield of EPS. The optimal medium composition was determined as follows:240.95g/L cornstarch,22.19g/L soybean meal,6.61g/L corn steep powder,3g/L K2HPO43H2O,3g/L KH2PO4and1g/L CaCl2, with a corresponding yield of27.75g/L, which was approximately two times higher than that in the basal medium.
     2. Purification, chemical composition and structure analysis of EPS
     On the basis of optimization of fermentation conditions and culture medium, Z0206polysaccharide was further purified and its chemical composition and structure was analyzed. Crude exopolysaccharides (CEPS) were obtained from the fermentation broth by ethanol precipitation, EPS was obtained through deproteinization, decolorization and dialysis. The deproteinized exopolysaccharides were further purified through a DEAE-52iron exchange chromatography column and a Suprose12gel column. Two main components (EPS-1and EPS-3) were isolated by eluting with distilled water and a gradient of0-0.5mol/L NaCl solution, their yield was40.8%and26.7%respectively.
     The gel permeation chromatography (GPC) analysis showed that the average molecular weights of EPS-1and EPS-3was2527Da and1.23×106Da respevtively. The neutral sugars, pyruvyl groups and glucuronic acid were analyzed using GC, reversed-phase high-performance liquid chromatography (RP-HPLC) and the carbazole-sulfuric acid method. EPS-1was found to be composed of glucose, and EPS-3was composed of fucose, galactose, glucose, pyruvic acid and glucuronic acid with the relative molar ratio of1.65:1.83:1:1.62:1.20. IR analysis showed that both EPS-1and EPS-3contained-CH2-groups. NMR analysis indicated that EPS-1and EPS-3contained a and β type glycosidic linkages and EPS-3also showed uronic acid carboxyl resonance, methyl groups of the ketal-substituted pyruvate residue and methyl groups of fucose. The average particle size distribution of EPS-1was50.57nm and EPS-3was210.3nm. The photograph of EPS-1and EPS-3fraction were obtained by atomic force microscope and showed that molecules of EPS-1and EPS-3are gathered up with each other in a tight manner.
     3. Effect of Z0206polysaccharide on the lipid metabolism disorder in obese mice
     On the base of structure analysis of EPS produced by Enterobacter cloacae Z0206, the effects of CEPS and EPS on the lipid metabolism disorder as well as insulin resistance in high fat induced C57BL/6mice were studied. C57BL/6mice were divided into two groups at the age of6weeks, normal diet (ND) group and high fat diet (HFD) group, feeding normal diet (10%fat kcal%) and high fat diet (45%fat kcal%) respectively for12weeks. Mice in HFD group were then allocated to HFD group, Z0206crude polysaccharide group (HFD+CEPS) and Z0206deproteinization polysaccharide group (HFD+EPS). CEPS and EPS were administered to C57BL/6mice for a period of42days, and the same volume of saline solution were administered to mice in ND and HFD groups. The results showed that administration of CEPS and EPS could significantly decrease the body weight gain, fasting glucose concentration and serum insulin levels, whereas improved the insulin sensitivity index (ISI) and OGTT compared with the HFD group. In addition, CEPS and EPS significantly decreased the liver index, adipose tissue index of subcutaneous fat, retroperitoneal fat and epididymal fat, indicating that CEPS and EPS can inhibit the excessive fat deposition and improve the insulin sensitivity. At the same time, serum free fatty acid (FFA) content, cholesterol (TC), triglyceride (TG) and low density lipoprotein (LDL-c) levels were significantly decreased in CEPS and EPS treated mice. Morphology observation shows that CEPS had significant protective effects in the integrity of the organizational structure of liver and the size of adipocyte in epididymal adipose tissue were significantly decreased in CEPS treated mice, which indicated that CEPS ameliorated adipocyte hypertrophy phenomenon in epididymal fat. The results of RT-PCR and western blotting showed that CEPS and EPS could significantly increase the gene expression of insulin-sensitizing factors like adiponectin, vaspin and visftin, while reduce the gene expression of insulin resistance factors like leptin and resistin. At the same time, the expression of PPARy and its target genes, glucose transport protein4(Glut4), insulin receptor substrate1(IRS-1) and Aktl were upregulated in the groups supplemented with CEPS and EPS, which indicated that CEPS and EPS increased the insulin sensitivity of high fat diet induced mice, sequentially regulated the energy metabolism.
     The above results suggested that CEPS and EPS could enhance the capacity of glucose uptake, relieve fatty degeneration and adipocyte hypertrophy in high fat diet induced mice, thus alleviate insulin resistance. They maintained the lipid metabolism metabolic balance and improved the lipid metabolism disorder by regulating the expression of adipokines and blood lipid.
     4. The immune mechanism of alleviation effect of Z0206polysaccharide on lipid metabolism disorder.
     On the basis of the above experiments, the insulin-sensitizing mechanism of Z0206polysaccharide was further studied from the aspect of adipose inflammation using immunohistochemistry, flow cytometry, RT-PCR and Western blotting. The results showed that CEPS and EPS could reduce the F4/80positive macrophages and the ratio of CD11positive cells, and as well as the numbers of crown like structure (CLS) in epididymal adipose tissue compared with the high fat diet induced mice. We also found that treatment with CEPS and EPS markedly reduced the M1macrophages markers, such as F4/80, CDllc and MCP-1, whereas increased the M2macrophages markers, such as CD209, CD163and Mgl2, which suggested that CEPS and EPS induced reduction in the number of adipose tissue macrophages (ATM) as well as the shift toward M2polarity. A gene expression study showed that CEPS and EPS could improve the adipose tissue inflammation via decreasing the expression of TNF-α IL-6and increasing the expression of IL-10. In vitro, the inflammation response in TNF-a induced3T3-L1adipocytes was also attenuated by CEPS and EPS through down-regulating the production of NO and expression of TNF-α、IL-6、IL-1β, while up-regulating the expression of IL-10. CEPS and EPS probably alleviated chronic inflammation in adipose tissue through down-regulation of TLR4expression, suppression of IκBcα phosphorylation, subsequent NF-κB activation, as well as phosphorylation of c-Jun.
     The above results suggested that Z0206polysaccharide reduced the macrophages infiltration and modulated adipose tissue macrophage polarization. On the other hand, Z0206polysaccharide improved adipose inflammation and prevented the lipid metabolism disorder by inhibiting the TLR4/IκBα/NF-κB pathway and c-Jun pathway
引文
Altman, E., Smirnova, N., Li, J.J., Aubry, A., Logan, S.M. Occurrence of a nontypable Helicobacter pylori strain lacking Lewis blood group 0 antigens and DD-heptoglycan: evidence for the role of the core a 1,6-glucan chain in colonization. Glycobiology, 2003,13(11):777-783.
    Anders, H. B., Terry, P. C., Philipp, E. S. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends in Endocrinology and Metabolism, 2003, 13:84-89.
    Baks, T., Kappen, F. H. J., Janssen, A. E. M., Boom, R. M. Towards an optimal process for gelatinisation and hydrolysis of highly con-centrated starch-water mixtures with alpha- amylase from B.licheniformis. Journal of Cereal Science,2008,47,214-225.
    Bandyopadhyay, G. K., Yu, J. G., Ofrecio, J., Olefsky, J. M. Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes, 2005,54,2351-59.
    Box, G. E. P., Norman, R. D. A basis for the selection fo a Response Surface Design. Journal of the American Statistical Association,1959,54, 622-654.
    Cancel, F., Novel, G. Exoplysaecharide production by streptococcus salivarins ssp. Thermophilus cultures condition of production. Journal of Daiiy Science, 1994,77,685-688.
    Cava, A. L & Matarese, G. The weight of leptin in immunity. Nature Rev. Immunol,2004,4,371-379.
    Cescutti, P., Kallioinen, A., Impallomeni, G., Toffanin, R., Pollesello, P., Leisola, M., et al. Structure of the exopolysaccharide produced by Enterobacter amnigenus. Carbohydrate Research, 2005,340(3), 439-447.
    Chaldakov, G. N., Stankulov, I. S., Hristova, M., Ghenev, P. I. Adipobiology of disease: adipokines and adipokine-targeted pharmacology. Current Pharmaceutical Design, 2003,9,1023-1031.
    Chang, S. C., Hsu, B. Y., Chen, B. H. Structural Characterization of Polysaccharides from Zizyphus jujuba and Evaluation of Antioxidant Activity. International Journal of Biological Macromolecules, 2010,47,445-453.
    Chardonnet, C. O., Sams, C. E., Conway, W. S. alcium effect on the mycelial cell walls of Botrytis cinerea. Phytochemistry, 1999, 52,967-973.
    Charriere, G., Cousin, B., Arnaud, E., Andre, M., Bacou, F., Penicaud, L., Casteilla, L. Preadipocyte conversion to macrophage. Evidence of plasticity, Journal of Biological Chemistry, 2003,278: 9850-9855.
    Chen, H. X., Zhang, M., Qu, Z. S., Xie, B. J., Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia Sinensis). Food chemistry, 2008,106, 559-563.
    Chen, W., Zhao, Z., Chen, S. F., Li, Y. Q. Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro. Bioresource Technology, 2008,99,3187-3194.
    Chiovitti, A., Bacic, A., Craik, D. J., et al. Cell-wall polysaccharides from Australian red algae of the family Solieriaceae (Gigartinales, Rhodophyta):novel, highly pyruvated carrageenans from the genus Callophycus. Carbohydrate Research, 1997,299,229-243.
    Chouly, C., Colquhoun, L. J., Jodelet, A. NMR studies of succinoglycan repeating-unit octasaccharides from Rhizohbium meliloti and Agrobacterium radiobacter. International Journal of Biological Macromolecules,1995,17,357-363.
    Cho, E. J., Hwang, H. J., Kim, S. W., Oh, J. Y., Baek, Y. M., Choi, J. W., Bae, S. H., Yun, J. W. Hypoglycemic effects of exopolysaccharides produced by mycelial cultures of two different mushrooms Tremella fuciformis and Phellinus baumii in ob/ob mice. Biotechnological products and process engineering, 2007, 75,1257-1265.
    Choe, J., Yoo, Y. J. Effect of ammonium ion concentration and application to fed-batch culture for overproduction of citric acid. Journal of fermentation and bioengineering, 1991,72,106-109.
    Cinti, S., Mitchell, G., Barbatelli, G., Murano, I., Ceresi, E., Faloia, E., Wang, S., Fortier, M., Greenberg, A. S., Obin, M. S. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. Journal of Lipid Research, 2005, 46, 2347-2355.
    Combs, T. P., Wagner, J. A., Berger, J., Doebber, T., Wang, W. J., Zhang, B. B., Tanen, M., Berg, A. H., O'Rahilly, S., Savage, D. B., Chatterjee, K., Weiss, S., Larson, P. J., Gottesdiener, K. M., Gertz, B. J., Charron, M. J., Scherer, P. E., Moller, D. E. Induction of adipocyte complement-related protein of 30 kilodaltons by PPAR gamma agonists: a potential mechanism of insulin sensitization. Endocrinology, 2002,143,998-1007.
    Cottam, D. R., Mattar, S. G., Barinas-Mitchell, E., Eid, G., Kuller, L., Kelley, D. E., Schauer, P. R. The chronic inflammatory hypothesis for the morbidity associated with morbid obesity: implications and effects of weight loss. Obesity Surgery, 2004, 14:589-600.
    Dandona, P., Aljada, A; Bandyopadhya, A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol,2004,25,4-7.
    Defronzo, R. A., Ferrannnini, E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care, 1991, 14,173-194.
    Dermlim, W., Prasertsan, P., Doelle, H. W. Screening and characterization of bioflocculant produced by isolated Klebsiella sp. Applied Microbiology and Biotechnology, 1999,52:698-703.
    Dische, Z. A new specific color reaction of hexuronic acids. Journal of biological chemistry, 1947,167: 189-198.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. Colorimetric Method for Determination of Sugars and related substances. Analytical chemistry, 1956, 28,350-356.
    Ejaz, A., Wu, D. Y., Kwan, P., Meydani, M. Curcumin Inhibits Adipogenesis in 3T3-L1 Adipocytes and Angiogenesis and Obesityin C57BL/6 Mice. The Journal of nutrition, 2009, 139,919-925.
    Farres, J., Caminal, G., Lopez-Santin, J. Influence of phosphate on rhamnose-containing exopolysaccharide rheology and production by Klebsiella 1-714. Applied Microbiology and Biotechnology, 1997, 48,522-527.
    Feinstein, R., Kanety, H., Papa, M. Z., Lunenfeid, B., Karasik, A. Tumor necrosis factor-a suppresses insulin induced tyrosine phosphorylation of insulin receptor and its substrates. Journal of Biological Chemistry, 1993,268,26055-26058.
    Fett, W. F. Bacterial exopolysaccharides:Their nature, regulation and role in host-pathogen interactions. Current Topics in Botanical Research, 1993,1,367-390.
    Feuerer, M., Herrero, L., Cipolletta, D., Naaz, A., Wong, J., et al. 2009. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Medicine, 2009, 15,930-39.
    Fried, S. K, Bunkin, D. A, Greenberg, A. S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. Journal of clinical endocrinology and metabolism, 1998,83,847.
    Fujisaka, S., Usui, I., Kanatani, Y., Ikutani, M., Takasaki, I., et al. Telmisartan improves insulin resistance and modulates adipose tisse macrophage polarization in high-fat-fed mice. Diabetes, 2011,152, 1789-1799.
    Fujisaka, S., Usui, I., Bukhari, A., Ikutani, M., Oya, T., Kanatani, Y., Tsuneyama, K., Nagai, Y, Takatsu, K., Urakaze, M., Kobayashi, M., Tobe, K. Regulatory mechanisms for adipose tissueM1landM2 macrophages in diet-induced obese mice. Diabetes,2009,58,2574-2582.
    Fukuhara, A., Matsuda, M., Nishizawa, M., Segawa, K., Tanaka, M et al. Visfatin: A Protein Secreted by Visceral Fat That Mimics the Effects of Insulin. Science,2004,307,426-430.
    Gao, C. J., Wang, Z. Y, Su, T. T., Zhang, J., Yang, X. H. Optimisation of exopolysaccharide produntion by Gomphidius rutilus and its antioxidant activities in vitro. Carbohydrate polymers, 2012, 87, 2299-2305.
    Gao, Y, Yang, M. F., Su, Y. P., Jiang, H. M., You, X. J., Yang, Y. J., Zhang, H. L. Ginsenoside Re reduces insulin resistance through activation of PPAR-y pathway and inhibition of TNF-a production. Journal of Ethnopharmacology, 2013,147,509-516.
    Gordon, S. Alternative activation of macrophages. Nature Reviews Immunology, 2003,3:23-35.
    Gordon, S, Taylor, P. R. Monocyte and macrophage heterogeneity. Nature Reviews Immunology, 2005,5, 953-964.
    Grible, R. F. Inflammatory status and insulin resistance. Current Opinion in clinical nutrition & Metabolic Care,2002,5,551-559.
    Grobben, G. J., Smith, M. R., Sikkema, J., et al. Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metablism and the synthesis of sugar nucleotides in Lactococcus delbruckii subsp. bulgaricus NCFB 2772. Applied Microbiology and Biotechnology, 1996, 46, 279-284.
    Guiherme, A., Virbasius, J. V., Puri, V., Czech, M. P. Adiposity dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature reviews molecular cell biology, 9, 367-377.
    Hallstrom, A., Carlsson, A., Hillered, L., Ungerstedt, U. Simultaneous determination of lactate, pyruvate, and ascorbate in microdialysis samples from rat brain, blood, fat, and muscle using high-performance liquid chromatography. Journal of pharmacological methods, 1989,22 (2): 113-124.
    Han, Y. W., Clarke, M. A. Porduction and characterization of microbial levan. Journal of Agricultural and Food Chemistry, 1990, 38,393-396.
    Henriquesm, A. W. S., Jessouron, E., Lima, E. L., Alves, T. L. M. Capsular polysaccharide production by Neisseria meningitidis serogroup C:Optimization of process variables using response surface methodology. Process Biochemistry, 2006, 41,1822-1828.
    Hida, K., Wada, J., Zhang, H., et al. Identification of genes specifically expressed in the accumulated visceral adipose tissue of OLETF rat. Journal of Lipid research, 2000, 41,1615-1622.
    Hida, K., Wada, J., Eguchi, J., Zhang, H., Baba, M., Seida, A et al. Visceral adipose tissue-derived serine protease inhibitor: A unique insulin-sensitizing adipocytokine in obesity. PNAS, 2005,102, 10610-10615.
    Hirosumi, J., Tuncman, G., Chang, L., Gorgun, C. Z, Uysal, K. T, et al. A central role for JNK in obesity and insulin resistance. Nature,2002,420:333-36.
    Hotamisligil, G. S, Shargill, N. S, Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993, 259, 87-91.
    Hotamisligil, G. S., Spiegeiman, B. M. Tumor necrosis factor a: a key component of the obesity-diabetes link. Diabetes,1994,143,1271-1278.
    Hotamisligil, G. S, Arner, P., Caro, J. F, Atkinson, R. L, Spiegelman, B. M. Increased adipose tissue expression of tumor necrosis factor-a in human obesity and insulin resistance. Journal of clinical investigation, 1995,95,2409-2415.
    Hotamisligil, G. S. Inflammation and metabolic disorders. Nature, 2006, 444,860-867.
    Houng, J. Y., Hsu, H. F., Liu, Y. H., & Wu, J. Y. (2003). Applying the Taguchi robust design to the optimization of the asymmetric reduction of ethyl4-chloro acetoacetate by bakers'yeast. Journal of biotechnology, 100, 239-250.
    Hrosumi, J., Tuncman, G., Chang, L., Gorgun, C. Z., Uysal, K. T., Maeda, K., Karin, M., Hotamisligil, G. S. A central role for JNK in obesity and insulin resistance. Nature, 2002, 420,333-336.
    Hsihe, C., Tsai, M. J., Hsu, T. H., Chang, D. M., Lo, C. T. Medium optimization for polysaccharide production of Cordyceps sinensis. Applied Biochemistry and Biotechnology, 2005,120,145-157.
    Imberty, A., Perez, S. Flexibility in a tetrasaccharide fragment from the high mannose type of N-linked oligosaccharides. International Journal of Biological Macromolecules,1993,15(2),17-23.
    Itani, S. I, Ruderman, N. B, Schmieder, F., Boden, G. Lipid-induced insulin resistance in human muscle is associated with changes in diaclglycerol, protein kinase C, and Iκβ α. Diabetes ,2002, 51, 2005-2011.
    Jiang, C. H., Yao, N., Wang, Q. Q., Zhang, J. H., et al. Cyclocarya paliurus extract modulates adipokine expression and improves insulin sensitivity by inhibition of inflammation in mice. Journal of Ethnopharmacology, 2014, 153,344-351.
    Jiao, Y. C., Chen, Q. H., Zhou, J. S., Zhang, H. F., Chen, H. Y. Improvement of exo-polysaccharides production and modeling kinetics by Armillaria luteo-virens Sacc. in submerged cultivation. LWT -Food Science and Technology, 2008,41,1694-1700.
    Jin, M. L., Wang, Y. M., Huang, M., Lu, Z. Q., & Wang, Y. Z. (2011). Optimization of culture medium for exopolysaccharide production by Enterobacter cloacae Z0206 using response surface methodology. Asian Journal of Chemistry, 23,3799-3802.
    Jin, M. L., Lu, Z. Q., Huang, M., Wang, Y. M., Wang, Y. Z. Effects of Se-enriched polysaccharides produced by Enterobacter cloacae Z0206 on alloxan-induced diabetic mice. International Journal of Biological Macromolecules, 2012,50,348-352.
    Jonathan, S. G, Fasidi, I. O. Eε Effect of carbon, nitrogen and mineral sources on growth of Psathyerella atroumbonata (Pegler), a Nigerian edible mushroom. Food Chemistry, 2001,72,479-483.
    Joo, J. H., Lim, J. M., Kim, H. O., Kim, S. W., Hwang, H. J., Choi, J. W., Yun, J. W. Optimization of submerged culture conditons for exopolysaccharide production in Sarcodon aspratus (Berk) S. ItoTG-3. World journal of microbiol biotechnology, 2004, 20, 767-773.
    Jung, H. S. et al. Resistin is secreted from macrophages in atheromas and promotes atherosclerosis. Cardiovasc. Res, 2006, 69,76-85.
    Kalogiannis, S., Iakovidou, G., Liakopoulou-Kyriakides, M., Kyriakidis, D. A., & Skaracis, G. N. Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochemistry, 2003,39, 249-256.
    Kasuga, M. Insulin resistance and pancreatic beta cell failure. Journal of clinical investigation, 2006, 116, 1756-1760.
    Kawanami, D. et al. Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells:a new insight into adipocytokine-endothelial cell interactions. Biochem. Biophys. Res. Commun, 2004,314,415-419.
    Kim, H. J., et al. Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes,2004,53,1060-1067.
    Kim, H. O., Lim, J. M., Joo, J. H., Kim, S. W., Hwang, H. J., Choi, J. W., Yun, J. W., Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybecylindracea. Bioresource Technology, 2005,96,1175-1182.
    Kim, H. M., Paik, S. Y., Ra, K. S., Koo, K. B., Yun, J. W., and Choi, J., W. Enhanced Production of Exopolysaccharides by Fed-batch Culture of Ganoderma resinaceum DG-6556. The Journal of Microbiology, 2006,44,233-242.
    Kim, K. J., Lee, B. Y. Fucoidan from the sporophyll of Undaria pinnatifida suppresses adipocyte differentiation by inhibition of inflammation-related cytokines in 3T3-L1 cells. Sciverse sciencedirect, 2012,32,439-447.
    Kohno, M., Suzuki, S., Kanaya, T., Yoshino, T., Matsuura, Y., Asada, M., Kitamura, S. Structural characterization of the extracellular polysaccharide produced by Bifidobacterium longum JBL05. Carbohydrate polymers, 2009, 77(2):351-357.
    Kondakova, A. N., Novototskaya-Vlasova, K. A., Shashkov, A. S., Drutskaya, M. S., Senchenkova, S. N., Shcherbakova, V. A., Gilichinsky, D. A., Nedospasov, S. A., & Knirel, Y. A. Structure of an acidic polysaccharide isolated from Psychrobacter maritimus 3pS containing a bacillosamine derivative. Carbohydrate Research, 2012, 359, 7-10.
    Kumar, S. G., Rahman, M. A., Lee, S. H., Hwang, H. S., Kim, H. A., Yun, J. W. Plasma proteome analysis for anti-obesity and anti-diabetic potentials of chitosan oligosaccharides in ob/ob mice. Proteomics, 2009,9,2149-2162.
    Kumari M, Survase SA, Singhal RS (2008) Production of schizophyllan using Schizophyllum commune NRCM. Bioresource Technology, 2008,99,1036-1043.
    Kusminski, C. M., McTernan, P. G. & Kumar, S. Role of resistin in obesity, insulin resistance and Type II diabetes. Clin. Sci. (Lond),2005,109,243-256.
    Kwak, D. H., Lee, J. H., Song, K. H. Inhibitory effects of baicalin in the early stage of 3T3-L1 preadipocytes differentiation by down-regulation of PDKl/Akt phosphorylation. Molecular and cellular biochemistry, 2014,385,257-264.
    Lee, I. Y., Seo, W. T., Kim, G. J., et al. Optimizatin of fermentation conditions for production of exopolysaccahride by Bacillus polymyxa. Bioprocess Engineering, 1997, 16, 71-75.
    Lee, J. Y., Sohn, K. H., Rhee, S. H., Hwang, D. Satureted fatty acids, but not unsaturated fatty acids, induce the expression of cclooxygenase-2 mediated through Toll-like receptor 4. Journal of Biological Chemistry, 2001,276, 16683-16689.
    Li, X., Jia. O. Y., Xu, Y. Optimization of culture conditions for production of yeast biomass using bamboo wastewater by respone surface methodology. Bioresouce Technology, 2009,100,3613-3617.
    Li, B., Xie, B. J., Kennedy, J. F. RETRACTED:Studies on the molecular chain morphology of konjac glucomannan. Carbohydrate Polymers, 2006, 64, 510-515.
    Li, Y. C., Wang, Y., Li, Z. W. Optimization of Extraction Process of Water-Soluble Polysaccharides from Porphyra by Response Surface Methodology. Advanced Materials Research, 2014, 526-530.
    Ling, P. R., Bistrian, B. R., Mendez, B., Istfan, N. W. Effects of systemic infusions of endotoxin, tumor necrosis factor, and interleukin-1 on glucose metabolism in the rat: relationship to endogenous glucose production and peripheral tissue glucose uptake. Metabolism, 1994, 43,279,284.
    Liu, W., Wang, H. Y., Pang, X. B., Yao, W. B. Gao, X. D. Characterization and antioxidant activity of two low-molecular-weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum. International Journal of Biological Macromolucules, 2010, 46, 451-457.
    Liu, G. Q., Wang, X. L. Optimization of critical medium components using response surface methodology for biomass and extracelluar polydaccharide produntion by Agaricus blazei. Applied Microbiol Biotechnology, 2007, 74, 78-83.
    Long, Y., Zhang, X. X., Chen, T., Gao, Y., Tian, H. M. Radix astragali improves dysregulated triglyceride metablism and attenuates macrophage infiltration in adipose tissue in high-fat diet-induced obese male rats through activating Mtorcl-PPAR signaling pathway. PPAR research, 2014.
    Lu, R., Yoshida, T. Structure and molecular weight of Asian lacquer polysaccharides. Carbohydrate Polymers,2003,54,419-424.
    Lumeng, C. N., Bodzin, J. L., Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. Journal of clinical investigation, 2007, 117:175-184.
    Lumeng, C. N., Deyoung, S. M., Bodzin, J. L, Saltiel, A. R. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes, 2007, 56, 16-23.
    Lumeng, C. N., DelProposto, J. B., Westcott, D. J., et al. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes,2008,57,3239-3246.
    Maeda, N. Shimomura, I., Kishida, K., et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nature medicine, 2002, 8,731-737.
    Mahfouz, M. M., Kummerow, F. A. Cholesterol-rich diets have different effects on lipid peroxidation, cholesterol oxides, and antioxidant enzymes in rats and rabbits. Journal of Nutritional Biochemistry, 2000,11,293-302.
    Makowski, L., Boord, J. B., Maeda, K., Babaev, V. R., Uysal, K. T., Morgan, M. A., Parker, R. A., Suttles, J. F., Hotamisligil, G. S., Linton, M. F. Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nature Medicine, 2001,7,699-705.
    Min, S. Y., Yang, H., Seo, S. G., Shin, S. H., Chung, M. Y., Kin, J., et al. Cocoa polyphenols suppress adipogenesis in vitro and obesity in vivo by targeting insulin receptor. International Journal of Obestiy, 2014,64,10-19.
    Monroy, A., Kamath, S., Chavez, A. O., Centonze, V. E. et al., Impaired regulation of the TNF-alpha converting enzyme/ tissue inhibitor of metalloproteinase 3 proteolytic system in skeletal muscle of obese type 2 diabetic patients:a new mechanism of insulin resistance in humans. Diabetologia, 2009, 52,2169-2181.
    Montgomery, D. C. Response surface methods and other approaches to process optimization. In D. C. Montgomery (Ed.), Design and analysis of experiments (pp. 427e510). New York: John Wiley and Sons, 1997.
    Mozzi, F., Giori, G. S. D., Oliver, G, & Valdez, G. F. D. Exopolysaccharide production by Lactobacillus casei. I. Influence of salts. Milchwissenschaft-Milk Science International,1995,50,186-188.
    Muzzarelli, R. A. A. Human enzymatic activities related to the therapeutic administration of chitin derivatives Cellular and Molecular Life Sciences,1997,53,131-140.
    Myers, R. H., Montgomery, D. C., Vining, G. G. Response surface methodology: a retropective and literature survey. Journal of Quality Technology, 2004,36,53-77.
    Nampoothiri, K. M., Singhania, R. R., Sabarinath, C., & Pandey, A. Fermentative production of gellan using Sphingomonas paucimobilis. Process Biochemistry, 2003,38,1513-1519.
    Neels, J. G., and Olefsky, J. M. Inflamed fat: what starts the fire? Journal of Clinical Investigation, 2006, 116,33-45.
    Nguyen, M. T., Favelyukis, S., Nguyen, A. K., Reichart, D., Scott, P. A., et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. Journal of Biological chemistry, 2007, 282, 35279-92.
    Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation, 2003,112, 1821-1830.
    Niehols, C. M., Bowman, J. P., Guezennee, J. Effects of incubation temperature on growth and production of exopolysaccharides by anantaretic sea ice baeterium grown in bath culture. Applied and environmental microbiology, 2005,71(7), 3519-3523.
    Nishimura, S., Manab,e I., Nagasaki, M., Eto, K., Yamashit, H., et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature Medicine, 2009, 15, 914-20.
    Nomiyama, T., Igarashi, Y., Taka, H., Mineki, R., Uchida, T., Ogihara, T., Choi, J. B., Uchino, H., Tanaka, Y., Maegawa, H., Kashiwagi, A., Murayama, K., Kawamori, R., Watada, H.,2004. Reduction of insulin-stimulated glucose uptake by perox-ynitrite is concurrent with tyrosine nitration of insulin receptor substrate-1. Biochemical and Biophysical Research Communications, 2004, 320, 639-647.
    Odegaard, J. I., Chavla, A. Pleiotropic Actions of Insulin Resistance and Inflammation in Metabolic Homeostasis. Science,2013,339,172-177.
    Okba, A. K., Ogata, T., Matsubara, H., Matsuo, S., Doi, K., Ogata, S. Effects of bacitracin and excess Mg2+ on submerged mycelial growth of Streptomyces azureus. Journal of Fermentation and Bioengineering, 1998, 86, 28-33.
    Olefsky, J. M., Courtney, C. H. Type 2 diabetes mellitus: etiology, pathogenesis, and natural history. In DeGroot Textbook of Endocrinology, 5th ed, ed. LJ DeGroot, JL Jameson, D deKrestser, AB Grossman, JC Marshall, et al., ch, 2005,56, pp. 1093-117. Philadelphia: WB Saunders and Co.
    Ouchi, N. et al. Novel modulator for endothelial adhesion molecules:adipocyte-derived plasma protein adiponectin. Circulation, 1999, 100, 2473-2476.
    Pajvani, U. B., Seherer, P. E. Adiponectin:systemic contrubutor to insulin sensitivity. Current diabetes reports,2003,3,207-213.
    Pajvani, U. B., Du, X. L., Combs, T. P., Berg, A. H., et al. Structure-Function Studies of the Adipocyte-secreted Hormone Acrp30/Adiponectin implications for metabolic regulation and bioactivity. The journal of biological chemistry, 2003,278,9073-9085.
    Papagianni, M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnology advances, 2004, 22, 189-259.
    Park, K. S. Aucubin, a naturally occurring iridoid glycoside inhibits TNF-a-induced inflammatory responses through suppression of NF-jB activation in 3T3-L1 adipocytes. Cytokine, 2013,62, 407-412.
    Park, J. P., Kim, S. W., Hwang, H. J., Yun, J. W. Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordyceps militaris. Letters in Applied Microbiology, 2001,33,76-81.
    Patsouris, D., Li, P. P., Thapar, D., Chapman, J., Olefsky, J. M., Neels, J. G. Ablation of CDllc-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell metabolism, 2008,8, 301-309.
    Poitout, V., Hagman, D., Stein, R., Artner, I., Robertson, R. P., Harmon, J. S. Regulation of the insulin gene by glucose and fatty acids. The Journal of Nutrition, 2006,136, 873-876.
    Prasertsan, P., Wichienchot, S., Doelle, H., & Kennedy, J. F. Optimization for biopolymer production by Enterobacter cloacae WD7. Carbohydrate Polymers, 2008,71,468-475.
    Qatanani, M., Lazar, M. A. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes and Development, 2007,21,1443-1455.
    Rau, U., Kuenz, A., Wray, V., Nimtz, M., Wrenger, J., Cicek, H. Production and structural analysis of the polysaccharide secreted by Trametes (Coriolus) versicolor ATCC 200801. Applied microbiology and biotechnology, 2009, 81:827-837.
    Reaven, G. M. Role of insulin resistance in human disease. Diabetes 1988,37,1595-1607.
    Rocha, V. Z., Folco, E. J., Sukhova, G., Shimizu, K., Gotsman, I., et al. Interferon-y, a Thl cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circulation Research, 2008,103, 467-76.
    Roseman, S. Refleetions on Glycobiology. Journal of Biological Chemistry, 2001,276(45), 41527-4154.
    Rosem, E. D., Spiegelman, B. M. Adipoeytes as regulators of enengy balance and glucose homeostasis. Nature,2006,444,847-853.
    Saberi, M., Woods, N. B., Luca, C., Schnek, S., Chin, J., et al. Hematopoeitic cell specific deletion of Toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high fat-fed mice. Cell Metabolism,2009,10,419-429.
    Saltiel, A. R., Kahn, C. R. Insulin signaling and the regulation of glucose and lipid metabolism. Nature, 2001,414,799-806.
    Samuel, V. T., Shulman, G. I. Mechanisms for Insulin Resistance: Common Threads and Missing Links. Cell,2012,852-871.
    Sartipy, P., Loskutoff, D. J. Monocyte chemoattractant protein 1 in obesity and insulin resistance. PNAS, 2003,100,7265-7270.
    Schenk S, Saberi M, Olefsky JM. Insulin sensitivity: modulation by nutrients and inflammation. Journal of Clinical Investigation, 2008, 118,2992-3002.
    Segal, K. R., L. M. Relationship between insulin sensitivity and plasma leptin concentration in lean and obese men. Diabetes,1996,45,988-991.
    Shi, H., Kokoeva, M. V., Inouye, K., Tzameli, I. et al., TLR4 links innate immunity and fatty acid-induced insulin resistance. Journal of Clinical Investigation, 2006, 116,3015-3025.
    Shklyaev, S., Aslanidi, G et al. Sustained peripheral expression of transgene adiponectin offsets the development of diet-induced obesity in rats. PNAS, 2003,100,14217-14222.
    Shoelson, S. E., Lee, J., and Goldfine, A. B. Inflammation and insulin resistance. Journal of Clinical Investigation, 2006, 116, 1793-1801.
    Shoelson, S. E., Herrero, L., Naaz, A. Obesity, Inflammation, and Insulin Resistance. Gastroenterology, 2007,132,2169-2180.
    Shulman, G. I. Cellular mechanisms of insulin resistance. Journal of Clinical Investigation, 2000,106, 171-176.
    Soltero, F. V., Johnson, M. J. Continuous addition of glucose for evaluation of penicillin-producing cultures. Applied Microbiology, 1954, 2:41-44.
    Song, M. J; Kim, K. H; Yoon, J. M; Kim, J. B. Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochemical and biophysical Research Communications, 2006, 346, 739-745.
    Soukas, A., Cohen, P., Socci, N. D., Friedman, J. M. Leptin-specific patterns of gene expression in white adipose tissue. Genes and Development, 2000, 14, 963-980.
    Steppan, C. M. et al. The hormone resistin links obesity to diabetes. Nature, 2001,409,307-312.
    Suleymanoglu, S., Tascilar, E., Pirgon, O., Tapan, S., et al., Vaspin and its correlation with insulin sensitiviy indices in obese children. Diabetes research and clinical practice, 2009, 84, 325-328.
    Sultan A, Strodthoff D, Robertson AK, Paulsson-Berne G, Fauconnier J, et al. T cell-mediated inflammation in adipose tissue does not cause insulin resistance in hyperlipidemic mice. Circulation Research, 2009,104,961-68.
    Sutherland, I. W. Ellwood, D. C. Microbial exopolysaccharides, 1990, New York: Cambridge University Press (pp. 1-163).
    Tajiri, Y., Mimura, K., Umeda, F. High-sensitivity C-reactive protein in Japanese patients with type 2 diabetes. Obesity Research, 2005,13,1810-1816.
    Takahashi, K., Mizuarai, S., Araki, H., et al. Adiposity elevates plasma MCP-1 levels leading to the increased CD11b-positive monocytes in mice. Journal of Biological Chemistry, 2003,278, 46654-46660.
    Tang, Z. H., Gao, H. W., Wang, S., Wen, S. H., Qin, S. Hypolipidemic and antioxidant properties of a polysaccharide fraction from Enteromorpha prolifera. International Journal of Biological Macromolecules,2013,58,186-189.
    Tong, H. B., Liang, Z. Y., Wang, G. Y. Structural characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Physalis alkekengi L. Carbohydrate polymers, 2008,71: 316-323.
    Tsukumo, D. M., Carvalho-Filho, M. A., Carvalheira, J. B., Prada, P. O., Hirabara, S. M., et al. Loss-offunction mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes, 2007,56,1986-98.
    Uysal, K. T., Wiesbrock, S. M., Marion, M., W., Hotamisligil, G. S. Protection from obesity-induced insulin resistance in mice lacking TNF- function. Nature, 389, 610-614.
    Virkamaki, A., Yki-Jarvinen, H. Role of prostaglandins in mediating alterations in glucose metabolism during acute endotoxemia in the rat. Endocrinology, 1995, 126, 1701-1706.
    Wachenheim, D. E., Patterson, J. A. Anaerobic production of exopolysaccharide by Butyrivibrio fibrisolvens nyx. Applied and Environmental Microbiology, 1992, 58,385-391.
    Wang, Y. X., Lu, Z. X. Statistical optimization of media for extracellular polysaccharide by Pholiota squarrosa (Pers. ex Fr.) Quel. AS 5.245 under submerged cultivation. Biochemical engineering journal, 2004, 20, 39-47.
    Wang, Y. X., Lu, Z. X. Optimization of processing parameters for the mycelial growth and extracellular polysaccharide production by Boletus spp. ACCC 50328. Process Biochemistry, 2005,40, 1043-1051.
    Wang, H. Y., Jiang, X. L., Mu, H. J., Liang, X. T., & Guan, H. S. Structure and protective effect of exopolysaccharide from P. Agglomerans strain KFS-9 against UV radiation. Microbiological research,2007,162,124-129.
    Wang, P., Edwin Mariman, Johan Renes, Jaap Keijer. The Secretory Function of Adipocytes in the Physiology of White Adipose Tissue. Journal of Cellular Physiology, 2008,216:3-13.
    Wang, Y. M., Wang, W. P., Wang, L. P. Calorie control increased vaspin levels of serum and periepidi dymal adipose tissue in diet-induced obese rats in association with serum free fatty acid and tumor necrosis factor alpha. Chinese Medical Journal, 2010, 123,936-941.
    Wang, L. Y., Wang, Y., Xu, D. S., Ruan, K. F., Feng, Y, Wang, S. MDG-1, apolysaccharidefrom Ophiopogon japonicus exerts hypoglycemic effects through the PI3K/Akt pathway in a diabetic KKAy mouse model. Journal of Ethnopharmacology, 2012, 143, 347-354.
    Wang, F. Q., Yang, H. X., Wang, Y. Z. Structure characterization of a fucose-containing exopolysaccharide produced by Enterobacter cloacae Z0206. Carbohydrate polymers, 2013,92, 503-509.
    Wasser, S. Medicinal mushrooms as a source of antitumor and immuonmodulating Polysaccharides. Applied Microbiology and Biotechnology, 2002, 60(3), 258-274.
    Weisberg, S. P., Hunter, D., Huber, R., Lemieux, J., Slaymaker, S., et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Investig, 2006, 116, 115-24.
    Weisberg, S. P., McCann, D., Desai, M., et al. Obesity is associated with macrophage accumulation in adipose tissue. Journal of Clinical Investigation, 2003,112,1796-1808.
    Wellen KE, Hotamisligil GS.2005. Inflammation, stress, and diabetes. Journal of Clinical Investigation, 2005,115,1111-1119.
    Wellen, K. E., Hotamisligil, G. S. Obesity-induced inflammatory changes in adipose tissue. Journal of Clinical Investigation, 2003,112,1785-1788.
    Winer S, Chan Y, Paltser G, Truong D, Tsui H, et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nature Medicine, 2009, 15,921-29.
    Wolf, A. M., Wolf, D., Rumpold, H., Enrich, B. & Tilg, H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochemical and Biophysical Research Communications, 2004,323,630-635.
    Wu, T., Qi, X. M., Liu, Y., Guo, J., Zhu, R., Chen, W., Zheng, X. D., Yu, T. Dietary supplementation with purified mulberry (Morus australis Poir) anthocyanins suppresses body weight gain in high-fat diet fed C57BL/6 mice. Food Chemistry, 2013,141,482-487.
    Xiao, J. H., Chen, D. X., Wan, W. H., Hu, X. J., Qi, Y., Liang, Z. Q. Enhanced simultaneous production of mycelia and intracellular polysaccharide in submerged cultivation of Cordyceps jiangxiensis using desirability functions. Process Biochemistry, 2006, 41,1887-1893.
    Xiao, Z. J., Liu, P. H., Qin, J. Y., & Xu, P. Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate. Applied microbiology and biotechnology, 2007, 74,61-68.
    Xu, C. P., Kim, S. W., Hwang, H. J., Choi, J. W., Yun, J. W. Optimization of submerged culture conditions for mycelial growth and exo-biopolymer production by Paecilomyces tenuipes C240. Process Biochem,2003,38,1025-1030.
    Xu, H., Barnes, G. T., Yang, Q; Tan, G., et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation, 2003,112, 1821-1830.
    Xu, H., Sun, L. P., Shi, Y. Z., Wu, Y. H., Zhang, Bin., and Zhao, D. Q. Optimization of cultivation conditions for extracellular polysaccharide and mycelium biomass by Morchella esculenta As51620. Biochemical Engineering Journal, 2008,39,66-73.
    Xu, C. L., Wang, Y. Z., Jin, M. L., Yang, X. Q. Preparation, characterization and immunomodulatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206. Bioresource Technology, 2009,100, 2095-2097.
    Xu, J., Wang, Y., Xu, D. S., Ruan, K. F., Feng, Y., Wang, S. Hypoglycemic effects of MDG-1, a polysaccharide derived from Ophiopogon japonicas, in the ob/ob mouse model of type 2 diabetes mellitus. International Journal of Biological Macromolecules,2011,49,657-662.
    Xue, S. X., Chen, X. M., Lu, J. X., J, L. Q. Protective effect of sulfated Achyranthes bidentata polysaccharides on streptozotocin-induced oxidative stress in rats. Carbohydrate Polymers, 2009,75, 415-419.
    Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y, Waki, H., Uchida, S., Yamashita, S et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature medicine,2002,8,1288-1295.
    Yang, F. C., and Liau, C. B. The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures. Process Biochemistry, 1998,33,547-553.
    Yoon, Y. D., Kang, J. S., Han, S. B., Park, S. K. Activation of mitogen-activated protein kinases and AP-1 by polysaccharide isolated from the radix of Platycodon grandiflorum in RAW 264.7 cells. International Immunopharmacology, 2004, 4, 1477-1487.
    You, Q. H., Y, X. L., Zhang, S. N., J, Z. H. Extraction, purification, and antioxidant activities of polysaccharides from Tricholoma mongolicum Imai. Carbohydrate Polymers, 2014,99,1-10.
    Zhang, Z. G., Li, X. Y., Lv, W. S., Yang, Y. S., Gao, H., Yang, J., Shen, J., Ning, G. Ginsenoside Re reduces insulin resistance through inhibition of c-Jun NH2-terminal kinase and nuclear factor-KB. Molecular Endocrinology, 2008,22,186-195.
    Zhang, H., Wang, Z.Y., Zhang, Z., Wang, X. Purified Auricularia auricular-judae polysaccharide (AAP I-a) prevents oxidative stress in an ageing mouse model. Carbohydrate Polymers, 2011,84,638-648.
    Zhao, H. Z., Wang, J., Lu, Z. X. Optimization of process parameters of the Pholiota squarrosa extracellular. Carbohydrate polymers, 2009, 77, 677-680.
    Zhou, X. H., Wang, F. Q., Yang, H. X., Chen, J. Q., Ren, Yuan, Z. Q., Wang, X. X., Wang, Y. Z. Selenium-enriched exopolysaccharides produced by Enterobacter cloacae Z0206 alleviate adipose inflammation in diabetic KKAy mice through the AMPK/SirTl pathway. Molecular Medicine Reports, 2013,683-688.
    Zhu, K. X., Nie, S. P., Li, C., Lin, S. L., Xing, M. M., Li, W. J., Gong, D. M., Xie, M. Y. A newly identified polysaccharide from Ganoderma atrum attenuates hyperglycemia and hyperlipidemia. International Journal of Biological Macromolecules,2013,57,142-150.
    Zick, Y. Ser/Thr phosphorylation of IRS proteins:a molucular basis for insulin resistance. Science Signaling, 2005,268, pe4.
    陈若雯,李里,段家彩,卢琪,高丽,潘思轶.乳酸乳杆菌胞外多糖的发酵条件优化[J].食品与生物技术学报,2010,29,770-776.
    段伟伟,张兴夫,敖长金.沙葱都统昂除蛋白方法的研究[J].饲料工业,2011,32,26-28.
    方积年.多糖的研究现状[J].药学学报,1986,21(12):944-950.
    管炜,屠庆年,陆付耳.游离脂肪酸诱导胰岛p细胞损伤的分子机制[J].中华全科医学,2012,10(1):86—87.
    干懿洁,丁树哲.丙酮酸的抗氧化作用[J].中国临床康复,2006,10,141-143.
    孔祥辉,张介驰,戴肖东,李景鹏.黑木耳多糖的提取与纯化[J].生物技术,2005,15,81-82.
    黄汉武,曾伟,陈桂光.微生物多糖工业化研究进展[J].轻工科技,5,19-20.
    李宏燕,樊君.大枣多糖的提取分离及纯化研究[J].宁夏工程技术,2006,5(2),145-147.
    李建武,萧能,余瑞元,等.生物化学实验原理和方法[M].北京:北京大学出版社,2004.
    李才国,刘睿.木瓜中多糖的提取、分离与鉴定[J].现代商贸工业,2007,19,172-174.
    刘翠林,董群,方积年.一种判定多糖中有无糖醛酸残疾的简易新方法[J].中草药,2001,32,404-407.
    刘美琴.灵芝多糖的研究进展[J].微生物学通报,1998,25(3),173.
    刘如林,李志明,施贻君,衡斌.黄原胶中丙酮酸含量的研究[J].微生物学杂志,1989,4,1-6.
    牛艳芬,李玲.游离脂肪酸与2型糖尿病[J].昆明医学院学报,2007.(3),102—105.
    任永娥,刘洪灿,徐钝锡,淡家林.发酵法生产小核菌多糖[J].微生物学通报,1992,19,142-145.
    孙虹云.调脂治疗对改善胰岛B细胞功能的临床观察[J].实用全科医学,2006,4(2):174—175.
    申明月,聂少平,谢明勇,罗珍.茶叶多糖的糖醛酸含量测定及抗氧化活性研究[J].天然产物研究与开发,2007,19,830-833.
    单俊杰,王易,王顺春等.当归多糖对小鼠脾淋巴细胞增殖及诱生IFN-γ的影响[J].药学学报,2002,37 (7):497-500.
    王凤芹.Z0206细菌多糖的结构分析及其对小鼠糖脂代谢的影响研究.2013,浙江大学.
    王涛.多糖研究进展[J].《现代食品科技》,23,103-106.
    徐龙江.发酵工程原理与技术应用[M].北京:化学工业出版社,2006,9.
    徐韧博,邹潘,杨鑫,蒙琪,黄微薇,胡兴龙,董爱军,王静.红松松塔多糖三氯乙酸法脱蛋白工艺的研究[J].中国甜菜糖业,2013,1,5-8.
    杨西江,徐田华,徐玲,张春宇.普鲁兰多糖的应用及研究生产现状[J].发酵科技通讯,2010,39,25-28.
    杨建,姚笛,王颖,于长青,王长远,高玉荣.产黄原胶发酵培养基的优化工艺研究[J].现代食品科技,27,935-937.
    俞丹,马龙,赵军,刘涛,张琳.琐琐葡萄多糖中糖醛酸含量的测定[J].新疆医科大学学报,2009,32,533-535.
    邹大进,吴鸿.腹型肥胖致胰岛素抵抗的机制及治疗展望[J].中国糖尿病杂志,2006,14:309-312.
    邹大进,陈月.脂肪细胞分化异常:肥胖致胰岛素抵抗的重要机制[J].中华医学杂志,2007,87,1-3.
    周文化,唐冰,钟秋平.短梗霉多糖的微生物发酵及其在食品工业中的应用[J].食品与机械,2004,20,56-59.
    赵永芳.生物化学技术原理及其应用(第二版)[M].武汉大学出版社,1994:78-235.
    赵曦.四大怀药的研究与应用[M].陕西师范大学出版社,1992.
    臧丽,母义明.国际内分泌代谢杂志[J],2009,29,150-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700