基于地震资料低频信息的储层流体识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油气勘探开发的不断深入,使得储层预测的精度要求也越来越高。储层预测的最终目的除了判别储层是否存在外,同时也需要判定储层中所包含流体的类型和性质。因此必须开展储层流体识别的新技术研究,以提高有效储层预测精度。地震反射波低频部分的变化和异常记载了反映地下岩石孔隙中包含流体成分的丰富信息。随着采集设备、技术的改进,处理技术的逐步完善,在利用地震低频信息检测储层及识别油气方面出现了一些新的技术和应用成果,使地震反射波低频信息的潜在意义和应用价值越来越受到地球物理勘探界的重视。
     本文以前人研究的理论和应用成果为基础,研究地震波低频信息的形成机制、地震低频信息用于流体识别的有效性、研究储层的岩石在不同物性参数及含流体情况下地震响应中不同频率成分(尤其是低频端的信号分量)的特征参数(如振幅、衰减等)的变化规律、确定对于流体反映敏感的频率或频带、提取低频信息的有效方法、基于低频信息表征储层和流体的方法、以及保持有效地震低频信息的关键处理方法,进而指导地震低频信息在流体识别中的有效应用,为地震波低频信息应用于流体识别奠定基础。主要研究工作和进展如下:
     (1)与油气储层有关的地震反射波低频信息的形成机制。①以Biot’s理论、中观机制和White’s周期成层非饱和模型为基础,分析在地震频带范围内,吸收和相速度随频率的变化特征,以及其变化对纵波从非频散介质法向入射至频散介质时反射系数和相位角的影响,设计具有不同岩石物性参数(流体饱和度、渗透率、流体粘滞性等)的模型,研究反射系数、相速度和衰减随着频率的变化规律。针对当前储层地震响应数值模拟及频率特征信息分析方法的基础上;②根据包含孔隙介质中流体的弥散性、粘滞性和储层Q引起的速度频散的弥散-粘滞-速度频散波动方程,对储层岩石在不同物性参数(弥散系数、粘滞系数、品质因子Q)情况下的地震响应特征进行数值模拟,研究表明流体的弥散系数主要影响反射波的振幅幅度;流体的粘滞系数主要引起反射波频率降低,品质因子导致的速度频散主要影响地震反射波的时间延迟和相位变化,频率降低量与粘滞系数和厚度乘积成三次方的关系。③以渗流理论和多孔弹性介质理论为基础,研究了饱和含流体多孔介质中低频地震反射系数与流体的粘滞系数和渗透率的关系。以上述理论研究和分析结果为基础,建立起岩石物理与储层地震响应特征的直接联系,为利用地震波的振幅、衰减等特征信息随频率变化的规律和趋势,确定对于流体敏感的频率或频带,为应用地震波低频信息进行流体识别奠定理论基础。
     (2)地震反射波低频信息的提取方法。①以时频分析方法为基础,对比和分析短时傅里叶变换、小波变换、时频连续小波变换、S变换、各种改进的S变换等现有时频分析方法的差异及优缺点。对比分析发现,对某一个频率或者小范围频率内的信息进行提取时,短时傅里叶变换仍然是一种有效的方法,在控制时频分析的参数调整合理的前提下,时频连续小波变换与S变换及各种改进S变换能够获得相同的时频分析效果,而差异性主要表现在S变换和各种改进S变换的计算实现能够调用现有的快速傅里叶变换计算方法,能够适应地震数据的大规模处理和分析;②针对匹配追踪算法的优点及分解算法效率低,难以满足实际资料处理的问题,构造出以符合地震子波特点的五参数时频小波基函数集和粒子群与BFGS的混合优化算法为基础的自适应快速匹配投影分解,该方法能够通过参数控制,将地震反射波有效信号的时频谱与具有噪声特性的时频谱分离,且没有边界效应,使得在对信号进行处理和分析时,不需要专门考虑边界的处理方法。
     (3)应用地震波低频信息识别油气储层的方法。以选取或者构建的高精度地震时频分析方法为基础,研究地震低频信息在流体识别中的应用和表征方法:①根据速度频散和吸收对反射系数的振幅和相位的影响,将储层分为三类,建立了应用速度频散和吸收特性产生的异常特征进行流体识别的准则、步骤;②通过不同频率的瞬时谱剖面,识别与油气储层有关的,位于储层下方的低频伴影。当储层下方高频能量明显减弱、低频能量强,具有明显的低频伴影特征,且地震波随着传播时间,其主频连续向低频方向移动时,利用统计回归方法实现低频半影的自动检测;③根据物理实验证明瞬时子波振幅谱低频部分的高吸收预示着岩石孔隙中含油(水)饱和度的现象,应用相位反演反褶积技术求取地震道的瞬时子波,拟合瞬时子波低频段的吸收系数,实现了包括弱振幅特征储层的流体识别;④根据低频振幅与流体流度存在关系,利用地震数据低频端信息构建了依赖频率的成像属性和流体流度属性,用于对油气储层进行直接成像,并结合达西定律,实现了应用低频信息直接计算油气井生产率。
     (4)保持地震反射波低频信息的噪声压制技术。①根据地震数据本身的时频特性和时频分解方法的特点,仿照频率切片滤波的思想,结合时频分析方法的优点,提出以广义S变换和经验模态分解相结合的滤波器对地震数据进行噪声压制,理论模型和实际资料的应用表明该方法能够同时压制相干噪声和随机噪声,且每一频率信息失真少。②针对扩散方程理论和噪声在不同频带的地震数据中的分布特征,提出基于多频带的各向异性扩散结构方向自适应滤波方法。实际资料的应用表明该方法在提高信噪比的同时,又能较好地保留地震波的低频信息。
With the development of oil and gas exploration, reservoir prediction accuracyincreased greatly as well. The ultimate goal of reservoir prediction is not onlydiscriminant reservoir if there is, but also need to determine the type and property ofthe fluid contained in the reservoir. It is necessary to carry out new technologies forreservoir fluid identification to improve the accuracy of reservoir prediction. Changesand anomalies in the low frequency part of seismic reflection wave recorded wealth ofinformation in the pores of underground rock containing fluid composition. With theimprovement of the acquisition device, technology, processing technology have beengradually improved, there have been some new techniques and applications in thelow-frequency seismic wave for detecting the reservoir and identifying oil and gas,which make the potential significance and application value of low-frequency seismicreflection wave more and more subject to the attention of the geophysical explorationindustry.
     Based on the theoretical and application achievement which predecessors studied,this article researches the mechanism of forming low-frequency seismic waves, thevalidity of the low-frequency information for fluid identification, the change patternof the characteristic parameters (such as amplitude, attenuation, etc.) of differentfrequency components (especially the signal component at low frequent end) whichare obtained from seismic effects made on reservoir rock under different physicalparameters and fluid conditions. Furthermore, this article found out the frequency orfrequency band that is sensitive to fluid, effective methods of extractinglow-frequency information and characterizing reservoir and fluid, and the keyprocessing approach of retaining effective seismic wave. The achievement of thisarticle is able to guide the effective use of seismic information for fluid identification,laid a solid foundation for the application of seismic information to fluid identification. In this paper, the main research work and progress is as follows:
     (1) Mechanism of forming low-frequency seismic waves that has relation to oil andgas reservoir. Based on Biot’s theoretical model that predicts the attenuation, themesoscopic mechanism and dispersion in a poroelastic medium and White’spatchy-saturation model, and assumed that the overburden medium is non-dispersive,we designed all kinds of models with different petrophysical parameters, includingfluid saturation, permeability, fluid viscosity, and so on, and analyzed the changecharacteristics of attenuation and phase velocity versus angular frequency in seismicfrequency range, and researched the law of reflection coefficient and phase angleversus angular frequency, when P-wave propagates normal to an interface between anon-dispersive overburden and a dispersive reservoir rock. For numerical modeling ofreservoir seismic response and analytic method of frequency response at present, weemployed the viscous-diffusive-velocity dispersion wave equation to simulate seismicresponse characteristics for different petrophysical parameters, such as viscouscoefficient, diffusive coefficient, and quality factor, and analyze and conclude thechange characteristic and law of seismic wave field in medium filled with fluid whichchanges versus the change of viscous coefficient and diffusive coefficient and qualityfactor. The results of the study showed that diffusive coefficient mainly effects onamplitude of seismic reflection wave, and fluid viscous coefficient mainly causes thedominant frequency to move to lower frequency, and velocity dispersion that causedby quality factor mainly effects on time delay and phase distortion of seismicreflection wave, and what’s more important, the quantity of frequency diminution isas a three powers function of the product both fluid viscous coefficient and reservoirthickness. According to both filtration theory and the theory of poroelasticity, westudied the relation of between the low-frequency seismic reflection coefficient andfluid viscous and permeability in a macroscopically homogeneous elasticfluid-saturated porous medium. We established the direct link between petrophysicalproperty and seismic response characteristic of reservoir from the above theoreticalresearch and analysis, and we employed the law and tendency of amplitude andattenuation of seismic wave versus frequency to determine frequency or frequencyband that is sensitive to reservoir fluid, providing the theoretical basis for theapplication of low-frequency seismic reflection wave to identify the fluid.
     (2) Methods of extracting low-frequency seismic wave. Firstly deep researched andexplored the advantages and disadvantages of Short-time Fourier transform, wavelettransform, time-frequency continuous wavelet transform, S transform, and various modified S transform. By comparison and analysis, we found that Short-time Fouriertransform is still an effective method for information extraction in individual orlimit-band frequency, and under the premise that the adjustment parameters thatcontrol time-frequency analysis is reasonable, both time-frequency continuouswavelet transform and S transform can obtain the same result, whereas the significantdifference is that the calculation of S transform and various modified S transform canuse the existing fast Fourier transform calculation method, and can meet thelarge-scale seismic data processing and analysis. Compared with otherstime-frequency decomposition, the matching pursuit decomposition has significantadvantages, but due to its too low computing efficiency, it is difficult to apply in theactual seismic data processing. To overcome this problem, an adaptive fast matchingpursuit decomposition is introduced, which construct time-frequency basis functionset by employing the wavelets bases with five parameters that can better comply withseismic signal, and in which utilizes a hybrid optimization algorithm that is composedof particle swarm optimization and BFGS. This method can separate thetime-frequency spectrum of the effective signal of the seismic reflection from thetime-frequency spectrum of nose, and has no boundary effect, making it is no need tospecifically consider the boundary problem and processing method in the course ofsignal processing and analysis.
     (3) Methods of the fluid identification using low-frequency seismic wave. Themethods of the fluid identification and characterization were explored fromlow-frequency seismic wave based on the selective or constructive high-precisiontime-frequency spectral decomposition methods.①On the basis of velocitydispersion and attenuation effect on amplitude and phase of reflection coefficient, theamplitude-versus-frequency curves might be divided loosely into three classes, andthe criteria and steps of the fluid identification using the abnormal characteristics thatare caused by velocity dispersion and attenuation were established.②Through thecomparative analysis of different frequency instantaneous spectral profile, it ispossible to identify the low-frequency shadow that has relation to hydrocarbonreservoir, in the reservoir below. When high-frequency energy is obviously decreased,and low-frequency energy is still intense, and its dominant frequency continuouslymoves to the end of lower frequency with the propagation time of seismic wave,automatic detection of low-frequency shadow can be carry out by utilizing statisticalregression methods.③The physics experiments have proved the high absorption inthe low frequency part may predict the water (oil) saturation. According to this phenomenon, fluid identification can be achieved. This method is still effective forreservoir with weak amplitude.④According to the linking between low-frequencyamplitude and fluid mobility, depend-frequency imaging and fluid mobility attributeswere constructed from the low-frequency seismic wave. These attributes can be usedfor oil and gas reservoir of direct imaging. Combined with darcy’s law, oil and gasproduction rate can be calculated from low-frequency seismic wave.
     (4) Noise suppression for preserving low-frequency seismic wave.①Accordingto time-frequency property of seismic data and feature of time-frequencydecomposition methods, following the thinking of the frequency slice filtering, andcombining with the advantages of all kinds of time-frequency analysis, a new filteringmethod is proposed, which use generalized S transform that has good time-frequencyconcentration criterion to transform seismic data from time-spatial domain totime-frequency-spatial domain (T-f-x), then in T-f-x domain apply EMD (EmpiricalMode Decomposition) on each frequency slice, and clear those IMFs(Intrinsic ModeFunction) that noise dominant, so as to suppress coherent noise and random noise.The theoretical model and real data processing proved that The EMD filtering methodin T-f-x domain after generalized S transform can effectively suppress random noiseand coherent noise of steep dip. What’s more important, and the distortion of eachfrequency component is less.②For the diffusion equation theory and thedistribution characteristics of noise in different frequency band of seismic data, anadaptive filter method is introduced, which considers multi-band and anisotropicstructure orientation of seismic data. The application of the actual data shows that themethod improves signal-to-noise ratio, at the same time, can effectively preserve thelow-frequency seismic waves.
引文
[1] Andrle M,Rebollo N.L,and Sagianos E.Backward-optimized orthogonal matching pursuitapproach [J].IEEE Signal Process Letters,2004,11(3):705-708
    [2] Andrle M,and Rebollo N.L.A swapping-based refinement of orthogonal matching pursuitstrategies[J].Signal Processing,2006,86(2):480-495
    [3] Battista B.M,Knapp C,McGee T and Goebel V.Application of the empirical modedecomposition and Hilbert-Huang transform to seismic reflection data[J].Geophysics,2007,72(2):H29-H37
    [4] Bekara M,and Van der Baan M.Rando and coherent noise attenuation by empiricalmode decomposition[J].Geophysics,2009,74(5):v89-v97
    [5] Bekara M,and Van der Baan M.Local Singular value decomposition for signal enhancementof seismic data[J].Geophysics,2007,72(2):V59-V65
    [6] Barnes A.E.A tutorial on complex seismic trace analysis[J].Geophysics,2007,72(6):W33-W43
    [7] Cai H.P,He Z.H,and Huang D.J.Seismic Data Denoising Based on MixedTime-Frequency Methods[J].Applied Geophysics,2011,8(4):319-327
    [8] Castagna J.P,Sun S.J,and Siegfried R.W.Instantaneous spectral analysis:Detectionof low-frequency shadows associated with hydrocarbons [J].The Leading Edge,2003,22(6):124-127
    [9] Canales L.Random noise reduction[C].54thAnnual International Meeting[C],SEG,Expanded Abstracts,1984,25-527
    [10] Capobianco E. Independent multi-resolution component analysis and matchingpursuit[J].Computational Statistics&Data Analysis,2003,42(3):385-402
    [11] Chopra S, Marfurt K. J. eismic attributes for prospect identification and reservoircharacterization[M].Tulsa Society of Exploration Geophysicists,2007
    [12] Chakraborty A,Okaya D.Frequency-time decomposition of seismic data using wavelet-based methods[J].Geophysics,1995,60(6):1906-1916
    [13] Chapman M,Liu E,Li X.The influence of abnormally high reservoir attenuation on theAVO signature[J].The Leading Edge,2005,24(11):1120-1125
    [14] Choon B.P,Richard D.M,and Xia J.H.Detection of Near-Surface Voids Using SurfaceWave[J].SAGEEP,1999,12(5):281-286
    [15] Choon B.P,Nils R,Richard M,and Peter U.Time Break Correction in MultichannelSimulation with One Receiver (MSOR)[J].SAGEEP,2002,15(2):3-4
    [16] Chopra S,Marfurt K.J.Coherence and curvature attributes on preconditioned seismicdata[J].The leading edge,2011,30(4):386-393
    [17] Chen K.Adaptive smoothing via contextual and local discontinuities[J].IEEE Transactionson Pattern Analysis ans Machine Intelligence,2005,27(10):1552-1567
    [18] Chen G,Matteucci G,Fahmy B,et al.Spectral-decomposition response to reservoir fluidsfrom a deepwater West Africa reservoir[J].Geophysics,2008,73(6):C23-C30
    [19] Dossary S.A,Marfurt K.J.Lineament-preserving filtering[J].geophysics,2007,72(1):p1-p6
    [20] Davis G,Mallat S,Avellaneda M.Adaptive greedy approximations [J].Constr.Approx.,1997,13(1):57-98
    [21] Ebrom D.The low-frequency gas shadow on seismic sections[J].The Leading Edge,2004,23(8):772-724
    [22] Fehmers G, and Hocker C. Fast structural interpretation with structure-orientedfiltering[J].Geophysics,2003,68(4):1286-1293
    [23] Flandrin P,Rilling G,and Goncalves P.Empirical mode decomposition as a filterbank[J].IEEE Signal Processing Letters,2005,11:112-114
    [24] Gribonval R.Fast matching pursuit with a multiscale dictionary of Gaussian Chirps[J].IEEETransactions on Signal Processing,2001,49(5):994-1001
    [25] Gabor D.Theory of communication[J].Journal of IEEE,1946,93(3):429-457
    [26] Galbraith M.Random noise attenuation by f-x prediction:A tutorial[C].61st AnnualInternational Meeting,SEG,Expanded Abstracts,1991,1428-1431
    [27] Ghosh D.Geophysical issues and challenges in Southeast Asia with emphasis on MalayBasin[C].SEG Honorary Lecturer-South&East Asia symposium,2010
    [28] Goloshubin G.M,Korneev V.A.Seismic low-frequency effects from fluid-saturatedreservoir[C].SEG Expanded Abstracts,2000,19:1671-1674
    [29] Goloshubin G.M,Daley T.M,Korneev V.A.Seismic low-frequency effects in gas reservoirmonitoring VSP data[C].SEG Expanded Abstracts,2001,20:1693-1696
    [30] Goloshubin G.M,Korneev V.A,Vingalov V.M.Seismic low-frequency effects fromoil-saturated reservoir zones[C].SEG Expanded Abstracts,2002,21:1813-1816
    [31] Goloshubin G.M,Connie V.A,Korneev V.A,et al.Reservoir imaging using lowfrequencies of seismic reflections[J].The Leading Edge,2006,25(5):527-531
    [32] Goloshubin G.M,Connie V.A,Korneev V.A,et al.Reservoir imaging using lowfrequencies of seismic reflections.The Leading Edge,2006,25(5):527-531
    [33] Hilterman F.J,Patzek T.W,Goloshubin G.M,et al.Advanced reservoir imaging usingfrequency-dependent seismic attributes[EB/OL].free resource from the web
    [34] Harris P.E,White R.E.Improving the performance of f-x prediction at low signal-to-noiseratios[J].Geophysical Prospecting,1997,45(1):269-302
    [35] Huang N.E,Shen Z,Long S.R,Wu M.L,Shih H.H,Zheng Q,Yen N.C,TungC C, and Liu H H.The empirical mode decomposition and Hilbert Spectrum for nonlinearand non-stationary time series analysis[J].Proceedings of the Royal Society of London SeriesA-Mathematical Physical and Engineering Sciences,1998,45(4):903-995
    [36] Hasan H.Empirical mode decomposition EMD of potential field data:Airborne gravitydata as an example[C].75th Annual International Meeting,SEG,Expanded Abstracts,2005:704-707
    [37] H¨ocker C,Fehmers G.Fast structural interpretation with structure-oriented filtering[J].TheLeading Edge,2002,21(8):238-243
    [38] Hall M.Resolution and uncertainty in spectral decomposition[J].First Break,2006,24(12):43-47
    [39] Hoeber H.C,Brandwood S,Whitcombe D.N.Structurally Consistent Filtering,EAGE2006Extended Abstracts,2006,20-24
    [40] Hilterman F.J.地震振幅解释(中文版)[M].北京:石油工业出版社,2006
    [41] Igor Djurovi′ca,Ervin Sejdi′cb,Jin Jiang.Frequency-based window width optimization forS transform[J].International Journal AEU of electronics and communications,2007,3(1):1-6
    [42] Jones D.L,Parks T.A high resolution data-adaptive time-frequency representation[J].IEEETrans.Signal Process,1990,38(12):2127-2135
    [43] Kennedy J and Eberhart R.Particle Swarm optimization[C]. Proceedings of IEEEInternational Conference on Neural Network,1995:1942-1948
    [44] Korneev V.A,Silin D,Goloshubin G.M,et al.Seismic imaging of oil productionrate[C].SEG Expanded Abstracts,2005,24:1-4
    [45] Korneev V.A,Goloshubin G.M,Daley T.M,et al.Seismic low frequency effects inmonitoring fluid-saturated reservoirs[J].Geophysics,2004,69(2):522-532
    [46] Liu J,and Marfurt K.J.Matching pursuit decomposition using Morlet wavelet:75th AnnualInternational Meeting[C].SEG,Expanded Abstracts,2005:786-789
    [47] Liu J.L,Marfurt K.J.Instantaneous spectral attributes to detect channel[J].Geophysics,2007,72(2):P23-P31
    [48] Liu Y.Seismic―low frequency shadows‖for gas sand reflection[C].SEG ExpandedAbstracts,2004,23:1563-1566
    [49] Liu J,Wu Y,Han D,and Li X.Time-frequency decomposition based on Ricker wavelet:74th Annual International Meeting[C].SEG,Expanded Abstracts,2004:1937-1940
    [50] Luo Y,Marhoon M, Al-Dossary S,and Alfaraj M.Edge-preserving smoothing andapplications[J].The Leading Edge,2002,21,136-158
    [51] Mallat S,Zhang Z.Matching pursuit with time-frequency dictionaries[J].IEEE Trans.SignalProcess,1993,41(12):3397-3421
    [52] Marfurt K.J,Kirlin R.L.Narrow-band spectral analysis and thin-bed tuning[J].Geophysics,2001,60(4):1274-1283
    [53] Mitchell J.T,Derzhi N,Lichman E,et al.Energy absorption analysis:a case study[C].SEGExpanded Abstracts,USA Tulsa,1996:1785-1788
    [54] Mallat S.信号处理的小波导引(英文·第2版)[M].北京:机械工业出版社,2002
    [55] Morlet J,Arens G,Fourgeau E, and Giard D.Wave propagation and sampling theory:Part I,Complex signal and scattering in multilayered media [J].Geophysics,1982(a),47:203-221
    [56] Morlet J,Arens G,Fourgeau E, and Giard D.Wave propagation and sampling theory:Part II,Sampling theory and complex waves [J].Geophysics,1982(b),47:222-236
    [57] Odebeatu E,Zhang J,Chapman M.Application of spectral decomposition to detection ofdispersion anomalies associated with gas saturation[J].The Leading Edge,2006,25(2):206-210
    [58] Peyton L,Bottjer R,Partyka G.Interpretation of incised valleys using new3D seismictechniques:a case history using spectral decomposition and coherency[J].The LeadingEdge,1998,17(9):1294-1298
    [59] Partyka G,Gridley J,Lopez J.Interpretational applications of spectral decomposition inreservoir characterization[J].The Leading Edge,1999,18(3):353-360
    [60] Qian S, and Chen D. Signal representation via adaptive normalized Gaussianfunctions[J].Signal Processing,1994,36:1-11
    [61] RebolloN.L,and Lowe D.Optimized orthogonal matching pursuit approach[J].IEEE SignalProcess Letters,2002,9:137-140
    [62] Robert G.K, Xu S.An approximation for the Xu-White velocity model[J].Geophysics,2002,67(5):1406-1414
    [63] René-E.P,Guido B,Jan Willem de Maag etc.Application of acoustic full waveforminversion to a low-frequency large-offset land data set[J].SEG Denver2010AnnualMeeting,2010,930-934
    [64] Russell B.H,Hedlin K,Hilterman F.J,et al.Fluid-property discrimination with AVO:A Biot-Gassmann perspective[J].Geophysics,2003,68(1):29-39
    [65] Rilling G, and Flandrin P. Sampling effects on the empirical modedecomposition[J].Advanced adaptive data analysis,2009,1:43-59
    [66] Ren H.T,Goloshubin G,Hilterman F.J.Poroelastic analysis of amplitude-versus-frequencyvariations[J].Geophysics,2009,74(6):N41-N48
    [67] Ren H.T,Goloshubin G,Hilterman F.J.Poroelastic analysis of permeability effects in thinlylayered porous media[J].Geophysics,2009,74(6):N49-N54
    [68] Roohollah A and Siahkoohi H. R. Ground roll attenuation using s and x-f-ktranforms[J].Geophysical propecting,2008,56:105-114
    [69] Silin D.B, Korneev V.A,Goloshubin G.M,Patzek T.W.A hydrologic view on Biot’stheory of poroelasticity[EB/OL].free resource from the web
    [70] Sun J and Xu W.B.Particle swarm optimization with particles having quantum behavior[J].IEEE proceedings of Congress on Evolutionary Computation,2004:325-331
    [71] Sun S, Castagna J.P,Siegfried R.W.Examples of enhanced spectral processing in directhydrocarbon detection[C].AAPG Annual Meeting,March10-13,2002,Houston,Texas
    [72] Sinha S,Routh P.S,Anno P.D, Castagna J P.Spectral decomposition of seismic datawith continuous-wavelet transform[J].Geophysics,2005,70(6):P19-P25
    [73] Stockwell R.G,Mansinha L,Lowe R.P.Localization of the complex spectrum:the Stransform[J].IEEE Transactions on Signal Processing,1996,44(4):998-1001
    [74] Sheriff R.E.Encyclopedic Dictionary of Applied Geophysics (Fourth Edition)[M].Houston:The Society of Exploration Geophysicists,USA,2002
    [75] Stockwell R.G,Mansinha L,Lowe R.P.Localization of the complex spectrum:the Stransform[J].IEEE Transactions on signal Processing,1996,44(4):998-1001
    [76] Taner M.T,Koehler F,Sheriff R.E.Complex seismic trace analysis[J].Geophysics,1979,44(6):1041-1063
    [77] Trapeznikova N. A. Prognosis and interpretation of seismic wave dynamics inRussian_:Nauka,1985,Paper16
    [78] Wang Y H. Seismic time-frequency spectral decomposition by matching pursuit[J].Geophysics,2007,72(1):v13-v20
    [79] Wang B,and Pann K.Kirchhoff migration of seismic data compressed by matching pursuitdecomposition [C].66th Annual International meeting,SEG,Expanded Abstracts,1996:1642–1645
    [80] Whitcombe D.N,Aberdeen B.P,Hodgson L.Frequency dependent structurally conformablefiltering[J].SEG Las Vegas2008Annual Meeting,2008,2617-2620
    [81] Whitcombe D.N,Hodgson L.Stabilizing the low frequencies[J].The Leading Edge,2007,26:66-72
    [82] Xu S,Michael A.P.Modeling elastic properties in carbonate rocks[J].The Leading Edge,2009,8(1):66-74
    [83] Zhou y,Whitcombe D.N,Hodgson L.Dip-adaptive structurally conformable filtering using2D complex wavelet transform[J].SEG Denver2010Annual Meeting,2010,3534-3538
    [84]巴晶,卢明辉,杨慧珠.基于小波分析的过零点滤波器与地震降噪[J].清华大学学报(自然科学版),2007,47(2):284-287
    [85]边立恩.全频带地震信息挖掘与油气识别[D].成都:成都理工大学信息工程学院,2009
    [86]蔡涵鹏,贺振华,黄德济,等.基于时频谱熵的储层分布检测[J].石油天然气学报,2010,32(2):66-69
    [87]蔡涵鹏,贺振华,黄德济.基于粒子群优化算法波阻抗反演的研究与应用[J].石油地球物理勘探,2008,43(5):535-538
    [88]蔡涵鹏,贺振华,黄德济.礁滩相油气储层预测方法研究[J].石油地球物理勘探,2008,43(6):685-689
    [89]陈学华,贺振华,文晓涛,黄德济.低频阴影的数值模拟与检测[J].石油地球物理勘探,2009,44(3):298-303
    [90]陈学华,贺振华,黄德济等.时频域油气储层低频阴影检测[J].地球物理学报,2009,52(1):215-221
    [91]陈学华,贺振华,黄德济.广义S变换及其时频滤波[J].信号处理,2008,24(1):28-31
    [92]陈学华.时频分布与地震信号谱分析研究[D].成都:成都理工大学信息工程学院,2006
    [93]贺振华.反射地震资料偏移处理与反演方法[M].重庆:重庆大学出版社,1989
    [94]贺振华,黄德济.挑战极值频率--论截频或限频以外地震信息的利用[C].中国地球物理.成都:四川科学技术出版社.2006:1
    [95]贺振华,熊晓军,边立恩.地震低频伴影的数值模拟与应用(英文)[J].Applied Geophyscis,2008,5(4):301-306
    [96]沈鸿雁,李庆春.频域奇异值分解(SVD)地震波场去噪[J].石油地球物理勘探,2010,45(2):187-189
    [97]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,2003,219-234
    [98]杨培杰,穆星,张景涛.方向性边界保持断层增强技术[J].地球物理学报,2010,58(12):2992-2997
    [99]杨威,贺振华,陈学华.结构方位滤波在体曲率属性中的应用[J].石油物探,2011,50(1):27-32
    [100]杨威.曲率属性分析及其应用[M].成都:成都理工大学地球物理学院,2011
    [101]张繁昌,李传辉,印兴耀.基于动态匹配子波库的地震数据快速匹配追踪[J].石油地球物理勘探,2010,45(5):667-673
    [102]张显文,韩立国,王宇等.地震信号谱分解匹配追踪快速算法及应用[J].石油物探,2010,49(1):1-6
    [103]尹陈.地震波衰减与流体预测研究[D].成都:成都理工大学信息工程学院,2008
    [104]尹陈,贺振华,黄德济.基于二维粘滞性波动方程的地震波衰减理论研究[J].物探化探计算技术,2008,30(5):353-356
    [105]尹陈,贺振华,黄德济.基于弥散-黏滞型波动方程的地震波衰减及延迟分析[J].地球物理学报,2009,52(1):187-192
    [106]周金保.沉积微相研究成果在濮诚油气田滚动勘探中的应用[J].石油勘探与开发,2004,31(4):68-70
    [107]邹文.基于地震资料的流体识别技术研究[D].成都:成都理工大学信息工程学院,2008
    [108]张贤达.现代信号处理[M].北京:清华大学出版社,2002
    [109]赵岩.时频域储层流体识别方法研究及应用[D].成都:成都理工大学地球物理学院,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700