生物质焦油均相转化及其在焦炭中异相脱除的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国农村具有丰富的秸秆资源。随着经济的发展,农村对能源的需求不断提高,开发以村为单位的小型生物质气化发电系统是解决这一矛盾的有效途径。当前焦油含量过高是制约生物质气化技术商业应用的瓶颈,二段式下吸气化炉具有气化效率高、焦油含量低的特点,但是,焦油在该炉内的转化及脱除机理仍不清楚,缺乏科学的设计理论和方法。因此,本文将针对二段式气化炉中焦油的转化和脱除机理展开深入研究,构建焦油均相转化路线图和焦油异相催化脱除机理。以揭示二段式气化炉焦油含量低的根本原因,为二段式气化炉工艺优化和运行提供理论依据和实践指导。
     二段式气化炉采用部分氧化和炭层转化相分离的工艺来实现焦油的分步转化和脱除,但焦油的脱除是一个系统工程,其脱除不仅受焦油自身生成、转化规律的影响,同时还与转化气氛和起催化脱除作用的焦炭的化学活性密切相关。因此,为了研究热解段及喉口处焦油的生成及均相转化规律,本文针对气化炉内运行条件,在改进的固定床反应器中研究了热解段焦油的生成规律,以及喉口处不同气氛及含量对焦油的均相转化规律。结果表明热解温度及生物质种类是影响热解焦油成分的主要因素,热解焦油一般在500℃之前析出,其焦油成分以酚类、醛类、酮类、呋喃类等含氧类为主。与稻秆相比,松木所产生的焦油中含有较高比例的大分子量初级焦油,而稻秆所产生的焦油中含有较高比例的三级焦油,其原因是稻秆原料中含有更多的碱金属,对初级焦油具有催化转化作用。热解焦油在喉口处的均相转化中,热裂解是最基本的影响因素,而气氛对热解焦油的均相转化具有促进作用。苯、甲苯、苯乙烯、苯酚、萘是典型的均相转化产物,在热解焦油的均相转化产物中占有重要比例(35~80%)。热裂解转化中取代基及杂原子官能团转化的主要温度区间在700~900℃,温度的升高会促进多环芳烃含量的提高,其中萘占主要成分。喉口处喷入O_2、H_2O和CO_2有利于活性自由基O、OH、OH_2等形成,促进焦油的裂解转化,H_2O对焦油转化受H_2O/C比值的影响,浓度过量后效果增长不明显。CO_2对焦油的脱除效果则随浓度的升高而增强,对多环芳烃的脱除作用也越明显。基于实验结果及现有的理论,构建了热解焦油生成及其均相转化路线图。
     为了探索生物质焦反应活性在炉内的演变规律,本文在大热重实验台中对影响生物质焦反应活性的三个主要因素即微观物理结构、微观化学结构以及灰分组成及含量演变规律进行了针对性研究。结果表明温度的升高有利于稻秆焦中比表面积的增大,这一变化在500~600℃范围内尤其显著,并在700℃左右达到最大值,随着温度的进一步升高,稻秆焦由于收缩作用比表面积逐渐下降。高温条件下生物质焦微孔占主导地位。喉口对已热解焦炭的影响主要是微孔含量明显增长,孔隙分形维数与比表面积变化规律基本一致,且温度的升高有利于稻秆焦孔隙空间复杂程度的增大,但超过700℃后其分形维数逐渐下降,且过高的温度会降低孔隙表面不规则度。温度的升高使生物质焦中含氧、含氮等活性官能团逐步转化和消失,而含C=C的芳香结构增多,焦炭微观化学结构向芳香化转化,反应活性下降。生物质焦中的碱金属含量和生物质种类密切相关,稻秆具有比松木高得多的K、Na等碱金属含量。随着热解温度的升高,挥发份集中在中前期析出,而碱金属则更多的在中后期析出,因此前期挥发份析出速率较高,整体表现为碱金属相对浓度的不断增大,并在500℃时达到最大,随后碱金属析出速率增大,而焦炭析出逐步停滞,从而碱金属相对浓度逐渐下降。
     为了揭示生物质焦催化脱除焦油的作用机理,利用自行搭建的微反应器固定床实验台深入研究了生物质焦对焦油模型化合物萘的脱除规律。结果表明,萘的热裂解产物主要包括甲苯、二甲苯(包含临、间、对)及苯乙烷几种成分。萘在800℃逐渐有炭黑生成,900℃时积炭已很严重。稻秆焦由于积炭失活,对萘的转化率随反应时间的延长而逐渐下降。反应温度和萘浓度的升高会促进催化剂表面的积炭过程。生物质焦积炭主要发生在微孔区域,中、大孔积炭不太明显,新生成的积炭具有比普通生物质焦更高的气化反应特性,且随着积炭含量的增长,气化反应活性也增大,但一旦积炭使微孔堵塞,气化反应活性迅速下降。在有氧化性或重整性气氛存在时,焦炭中催化剂可促进炭的气化反应,进而抑制其结焦过程。根据实验结果及现有的文献理论,构建了生物质焦催化脱除焦油的作用机理。
     生物质焦脱除焦油效率随温度的升高而迅速增强,全焦油经焦炭脱除后成分以甲苯为主,二甲苯、苯乙烷及萘其次,其它成分较少。焦炭对多环芳烃类焦油的脱除具有选择性,对多环芳烃类(除萘外)可实现完全脱除。焦炭粒径对焦油转化有明显影响,颗粒越小,对焦油的脱除效率越高,提高炭层高度有利于提高焦油转化率。焦炭对焦油的催化转化随焦炭碱金属含量及比表面积的升高而增大。揭示了二段式气化炉焦油含量低的根本原因在于有效分离了对焦油的脱除具有互补性的均相转化与异相脱除过程。最后提出了二段式气化炉的工艺优化方法。
There is a large number of agriculture residue as crop straw resources in China, alarge parts of them are abandoned without effectively utilizing, on the other side, witheconomic development, rural energy requirement growth continuous. Developing asmall-scale biomass gasification power generation based on distributed energysupplying system is an effective way to resolve this contradiction due to its flexibilityand efficiency. However, high tar content in the syngas is the bottle neck in restrictingthe commercial application of biomass gasification power generation technology. Incurrently, two-stage downdraft gasifier is one of the best gasifier which with higherefficiency, lower tar content than others. However, tar conversion mechanism underhomogeneous and heterogeneous catalytic decomposition remains unclear in the gasifier,which limits its further improvement and utilization.
     Tar decomposition processes in the gasifier are interrelated, tar removal is not onlyaffected by the tar formation and conversion properties, but also related to theconversion conditions such as atmosphere and the catalytics. Therefore, the aim of thispaper is to investigate tar conversion and removal mechanism in two-stage downdraftgasifier, by means of constructing the probable road map of tar formation, homogeneousconversion and heterogeneous decomposition, and reveal the catalytic mechanism ofbiomass char decompose tar, provide a theoretical guideline for optimizing tarconversion and removal processes, and optimize the design of the two-stage gasifier.
     Pyrolysis tar formation and homogeneous conversion properties wereexperimentally investigated in an improved two-stage fixed bed reactor, includingpyrolysis tar formation factors as pyrolysis temperature, biomass species, particle size,as well as carrying gas flow rate, combined with the feasibility study of throat injectingreforming gas for the tar removal process, and explored the different atmosphere withreforming agents such as H_2O, CO_2and O_2on tar homogeneous conversion properties.There are three kinds of tar analysis methods including qualitative analysis, GC/MScomponent analysis and typical tar component of the GC/MS quantitative analysis. Tarcompounds vary in the formation, conversion process have been studied intensively, and results show that the pyrolysis temperature and the biomass species are the main factorsinfluence of pyrolysis tar composition,400-500℃is a reasonable pyrolysis temperaturerange for tar release. Phenols, aldehydes, ketones and furans consist a major proportionof the pyrolysis tar. In pyrolysis tar homogeneous conversion process, temperature playa significant role, O_2can promote tar cracking by forming active free radicals, thepresence of H_2O can contribute a significant reduction both in tar species and in total.Meanwhile, high concentration of CO_2atmosphere is almost completely transformedpyrolysis tar. Organic mass spectrometry analytical method can effectively analyze thetar thermal cracking pathes. By synthesis analyzing of experimental results and currenttheories, a possible roadmap of pyrolysis tar formation and conversion was constructed.
     Three main aspects effect the char reactivity have been investigated in this paper,including micro-physical structure, micro-chemical structure, as well as metallic speciesand content. Evolution properties of micro-physical structure in biomass char vary insurface area, pore size and pore volume with different conditions. The result shows thattemperature has a strong effect in promoting the formation of char porosity, but highertemperature will induce char shrinking and reduce pore content. In porous biomass char,micro pore accounts for the main component, moreover, the fractal dimension values ofchar can be more effective in reflect the complexity of matrix structure than surface area,and the char activity. Micro-chemical structure of oxygen, nitrogen, sugar and aliphaticfunctional groups gradually transformed with preparation temperature increasing, andthe aromatic hydrocarbon structure-containing C=C gradually increased, formingdifferent kinds of aromatic, char chemical reactivity decreased. Alkali metal and alkaliearth metal(AAEM) content depends on biomass species and preparation temperature,the alkali metal concentration in the char has a first increase and then drop, with amaximum value at500℃. Along with the pyrolysis temperature increasing, the totalalkali metal monotonically decrease.
     In order to reveal the mechanism and conversion property of biomass char catalyticremoval of tar, an intensive study have been made with biomass char reduce the tarmodel compound as naphthalene in a self-designed bench scale fixed bed micro-reactor.The results show that naphthalene began to yield coke at800℃, and carbon depositionsignificantly improved at900℃. Rice straw char on naphthalene conversion rategradually decreased with time on stream. Increase reaction temperature or naphthaleneconcentration will promote the carbon deposition process on the char active site whichmeans catalyst surface. Low naphthalene concentration8.25g/Nm~3and with charpyrolysis temperature in the600-900℃, rice straw char in the deactivation process can removal naphthalene rate of0.036g/grice straw. Biomass char coke formation occursmainly in the microspore region, less obvious on the macropore region. Coke formedchar with CO_2gasification will be more active than those without coke formed char, butgasification reactivity will be rapidly decreased or even inactivated for char continuescoking exceeds a certain range. Char catalytic mechanism in decomposition tar wasrevealed based on experimental results and exiting theories.
     Biomass char catalytic removal of homogeneous converted raw tar compoundshave been concerned. The results indicate that tar species was selectively decomposedin biomass char, such as PAHs species almost completely converted, but parts of onering aromatic tar removal property is less effective. Biomass char can removal the rawtar and the composition of yields tar dominated by toluene, xylene, ethylbenzene andnaphthalene, few other components at900℃. With the same temperature conditions,biomass char can be7~12%higher than thermal cracking in gravimetric tar removalefficiency. Tar removal efficiency will be further improved with higher alkali and alkaliearth metal content in char, smaller particle and longer residence time. Temperature isone of the most significant factors in promoting biomass char removal tar. Toluene is animportant converted product between tar and biomass char interaction. Oxidation orreforming atmosphere exist, biomass char catalyst can also promote the carbongasification reaction, and thus inhibit the coking process. The results reveal the primarycause of low tar contents of syngas in a two-stage downdraft gasifier is the effectivelysegregation and coupling of tar homogeneous conversion process and heterogeneousdecomposition process, which are converted the tar into aromatic one and selectivelydecomposed the aromatic tar, especially PAHs(Polycyclic Aromatic Hydrocarbons).Finally, some suggestions in optimizing process for two-stage downdraft gasifier havebeen proposed.
引文
[1] Peidong Z, Yanli Y, Yongsheng T, Xutong Y, Yongkai Z, Yonghong Z, et al. Bioenergy industriesdevelopment in China: Dilemma and solution. Renewable and Sustainable Energy Reviews.2009;13(9):2571‐9.
    [2] Lv PM, Xiong ZH, Chang J, Wu CZ, Chen Y, Zhu JX. An experimental study on biomass air‐steamgasification in a fluidized bed. Bioresource Technology.2004;95(1):95‐101.
    [3] Sutton D KB, Ross J R H. Review of Literature on Catalysts for Biomass Gasification. Fuel ProcessingTechnology.2001;73:155‐73.
    [4]郭秀兰,黄鹤,周强,赵月春.生物质焦油裂解催化剂研究进展.可再生能源.2004;1:9‐13.
    [5] PO M. Secondary reactions of tar during thermochemical biomass conversion. Swiss FederalInstitute of Technology Zurich, PhD,2001.
    [6] Han J, Kim H. The reduction and control technology of tar during biomass gasification/pyrolysis: Anoverview. Renewable and Sustainable Energy Reviews.2008;12(2):397‐416.
    [7] Henriksen U, Ahrenfeldt J, Jensen TK, G bel B, Bentzen JD, Hindsgaul C, et al. The design,construction and operation of a75kW two‐stage gasifier. Energy.2006;31(10‐11):1542‐53.
    [8] Brandt P, Larsen E, Henriksen U. High Tar Reduction in a Two‐Stage Gasifier. Energy&Fuels.2000;14(4):816‐9.
    [9] Henriksen U, Christensen O. Gasification of straw in a two‐stage50kW gasifier. In Proceedings ofthe8th European Conference on Biomass for Energy, Environment. Oxford; p.1568‐78.
    [10] Houben MP, de Lange HC, van Steenhoven AA. Tar reduction through partial combustion of fuel gas.Fuel.2005;84(7–8):817‐24.
    [11] Morf P, Hasler P, Nussbaumer T. Mechanisms and kinetics of homogeneous secondary reactions oftar from continuous pyrolysis of wood chips. Fuel.2002;81(7):843‐53.
    [12] Morf P. Secondary reactions of tar during thermochemical biomass conversion. Swiss FederalInstitute of Technology, PhD,2001.
    [13] Dabai F, Paterson N, Millan M, Fennell P, Kandiyoti R. Tar Formation and Destruction in a Fixed‐BedReactor Simulating Downdraft Gasification: Equipment Development and Characterization ofTar‐Cracking Products. Energy&Fuels.2010;24(8):4560‐70.
    [14] Nunes SM, Paterson N, Herod AA, Dugwell DR, Kandiyoti R. Tar Formation and Destruction in aFixed Bed Reactor Simulating Downdraft Gasification: Optimization of Conditions. Energy&Fuels.2008;22(3):1955‐64.
    [15]陈祎.生物质热解焦油的生成及部分氧化机理的实验研究.上海交通大学,博士,2010.
    [16] Abu El‐Rub Z. Biomass char as an in‐situ catalyst for tar removal in gasification systems. TwenteUniversity, PhD,2008.
    [17] Devi L, Ptasinski KJ, Janssen FJJG. A review of the primary measures for tar elimination in biomassgasification processes. Biomass and Bioenergy.2003;24(2):125‐40.
    [18] Moersch O, Spliethoff H, Hein KRG. Tar quantification with a new online analyzing method. Biomassand Bioenergy.2000;18(1):79‐86.
    [19] Milne TA, Evans RJ, Abatzaglou N. Biomass Gasifier ''Tars'': Their Nature, Formation, and Conversion;1998. Report No.: NREL/TP‐570‐25357.
    [20] Taralas G KMG. Numerical Modeling of Tar Species/VOC Dissociation for Clean and IntelligentEnergy Production. Energy&Fuels.2005;19:87‐93.
    [21] Milne T A ERJ, Abatzoglou N. Biomass Gasifier “Tars”: Their Nature, Formation, and Conversion:National Renewable Energy Laboratory, NREL/TP‐570‐25357;1998.
    [22] Chen Y, Luo Y‐h, Wu W‐g, Su Y. Experimental Investigation on Tar Formation and Destruction in aLab‐Scale Two‐Stage Reactor. Energy&Fuels.2009;23(9):4659‐67.
    [23] Dufour A, Masson E, Girods P, Rogaume Y, Zoulalian A. Evolution of Aromatic Tar Composition inRelation to Methane and Ethylene from Biomass Pyrolysis‐Gasification. Energy&Fuels.2011:null‐null.
    [24] Zhang R‐Z, Liu C‐Y, Yin R‐H, Duan J, Luo Y‐H. Experimental and kinetic study of the NO‐reduction bytar formed from biomass gasification, using benzene as a tar model component. Fuel ProcessingTechnology.2011;92(1):132‐8.
    [25] Park HJ, Park SH, Sohn JM, Park J, Jeon J‐K, Kim S‐S, et al. Steam reforming of biomass gasificationtar using benzene as a model compound over various Ni supported metal oxide catalysts. BioresourceTechnology.2010;101(1, Supplement1):S101‐S3.
    [26] Furusawa T, Miura Y, Kori Y, Sato M, Suzuki N. The cycle usage test of Ni/MgO catalyst for the steamreforming of naphthalene/benzene as model tar compounds of biomass gasification. CatalysisCommunications.2009;10(5):552‐6.
    [27] Evans RJ, Milne, T.A. Molecular Characterization of the Pyrolysis of Biomass.1. Fundamentals.Energy&Fuels.1987;1(2):123–38.
    [28] Evans RJM, T.A. Molecular Characterization of the Pyrolysis of Biomass.2. Applications. Energy&Fuels.1987;1(4):311–9.
    [29] Phuphuakrat T, Namioka T, Yoshikawa K. Tar removal from biomass pyrolysis gas in two‐stepfunction of decomposition and adsorption. Applied Energy.2010;87(7):2203‐11.
    [30] Jesper Ahrenfeldt BG, Ulrik Henriksen, Jan Fjellerupz. EXPERIMENTAL CHARACTERISATION OFRESIDUAL‐TAR IN WOOD CHAR: DTU;2005.
    [31] Reed TBG, S. Survey of Biomass Gasification—1998. Golden: The National Renewable EnergyLaboratory and The Biomass Energy Foundation, Inc;1998.
    [32] Li XT, Grace, J.R., Lima, C.J., et al. Biomass gasification in a circulating fluidized bed. Biomass andBioenergy.2004;26:171–93.
    [33] Baldwin RM, Magrini‐Bair KA, Nimlos MR, Pepiot P, Donohoe BS, Hensley JE, et al. Current researchon thermochemical conversion of biomass at the National Renewable Energy Laboratory. AppliedCatalysis B: Environmental.2012;115–116(0):320‐9.
    [34] Hosokai S, Kishimoto K, Norinaga K, Li C‐Z, Hayashi J‐i. Characteristics of Gas‐Phase Partial Oxidationof Nascent Tar from the Rapid Pyrolysis of Cedar Sawdust at700800°C. Energy&Fuels.2010;24(5):2900‐9.
    [35] Houben MP, de Lange HC, van Steenhoven AA. Tar reduction through partial combustion of fuel gas.Fuel.2005;84(7‐8):817‐24.
    [36] Boroson ML, Howard JB, Peters WA. Product yields and kinetics from the vapor phase cracking ofwood pyrolysis tars. Journal Name: AIChE J;(United States); Journal Volume:35:11989, p. Medium: X;Size: Pages:120‐8.
    [37] Gray MR, Corcoran WH, Gavalas GR. PYROLYSIS OF A WOOD‐DERIVED MATERIAL. EFFECTS OFMOISTURE AND ASH CONTENT. Industrial&Engineering Chemistry, Process Design and Development.1985;24(3):646‐51.
    [38] Wang Y, Namioka T, Yoshikawa K. Effects of the reforming reagents and fuel species on tar reformingreaction. Bioresource Technology.2009;100(24):6610‐4.
    [39] Onozaki M, Watanabe K, Hashimoto T, Saegusa H, Katayama Y. Hydrogen production by the partialoxidation and steam reforming of tar from hot coke oven gas. Fuel.2006;85(2):143‐9.
    [40] Mendiara T, Johansen JM, Utrilla R, Jensen AD, Glarborg P. Evaluation of different oxygen carriersfor biomass tar reforming (II): Carbon deposition in experiments with methane and other gases. Fuel.2011;90(4):1370‐82.
    [41] Kong M, Fei J, Wang S, Lu W, Zheng X. Influence of supports on catalytic behavior of nickel catalystsin carbon dioxide reforming of toluene as a model compound of tar from biomass gasification.Bioresource Technology.2011;102(2):2004‐8.
    [42] Yue B, Wang X, Ai X, Yang J, Li L, Lu X, et al. Catalytic reforming of model tar compounds from hotcoke oven gas with low steam/carbon ratio over Ni/MgO‐Al2O3catalysts. Fuel Processing Technology.2010;91(9):1098‐104.
    [43] Abu El‐Rub Z, Bramer EA, Brem G. Review of Catalysts for Tar Elimination in Biomass GasificationProcesses. Industrial&Engineering Chemistry Research.2004;43(22):6911‐9.
    [44] Gómez‐Barea A, Ollero P, Leckner B. Optimization of char and tar conversion in fluidized bedbiomass gasifiers. Fuel.(0).
    [45] Demirbas A, Arin G. An overview of biomass pyrolysis. Energy Sources.2002;24(5):471‐82.
    [46] Demirbas A. Effects of temperature and particle size on bio‐char yield from pyrolysis of agriculturalresidues. Journal of Analytical and Applied Pyrolysis.2004;72(2):243‐8.
    [47] Higuchi T, Chang HM, Kirk TK. Recent advances in lignin biodegradation research;1983.
    [48] Sharma RK, Wooten JB, Baliga VL, Lin X, Geoffrey Chan W, Hajaligol MR. Characterization of charsfrom pyrolysis of lignin. Fuel.2004;83(11‐12):1469‐82.
    [49] Haynes BS. A turnover model for carbon reactivity I. development. Combustion and Flame.2001;126(1‐2):1421‐32.
    [50] Klose W, Wolki M. On the intrinsic reaction rate of biomass char gasification with carbon dioxideand steam. Fuel.2005;84(7‐8):885‐92.
    [51] Henriksen U, Hindsgaul C, Qvale B, Fjellerup J, Jensen AD. Investigation of the Anisotropic Behaviorof Wood Char Particles during Gasification.2006, p.2233‐8.
    [52] Chen G, Yu Q, Sj tr m K. Reactivity of char from pyrolysis of birch wood. Journal of Analytical andApplied Pyrolysis.1997;40‐41:491‐9.
    [53] Cetin E, Moghtaderi B, Gupta R, Wall TF. Influence of pyrolysis conditions on the structure andgasification reactivity of biomass chars. Fuel.2004;83(16):2139‐50.
    [54] Feng B, Bhatia SK. Variation of the pore structure of coal chars during gasification. Carbon.2003;41(3):507‐23.
    [55] Gong G‐z, Xie Q, Zheng Y‐f, Ye S‐f, Chen Y‐f. Regulation of pore size distribution in coal‐basedactivated carbon. New Carbon Materials.2009;24(2):141‐6.
    [56] Minkova V, Marinov SP, Zanzi R, Bjornbom E, Budinova T, Stefanova M, et al. Thermochemicaltreatment of biomass in a flow of steam or in a mixture of steam and carbon dioxide. Fuel ProcessingTechnology.2000;62(1):45‐52.
    [57] D A Della Rocca GIH, P R Boneli, M C Cassanelo, A L Cukierman. Olive stones pyrolysis: chemical,textural and kinetic characterization. London: Blackie Press;1997.
    [58] A Sakakibara HMC, T K Kirk. Recent advances in lignin biodegradation research. tokyo: UNIpublisher;1983.
    [59] Vigouroux RZ. Pyrolysis of biomass. Royal Institute of Technology,2001.
    [60] Raveendran K, Ganesh A, Khilar KC. Influence of mineral matter on biomass pyrolysis characteristics.Fuel.1995;74(12):1812‐22.
    [61] Keown DM, Hayashi J‐I, Li C‐Z. Drastic changes in biomass char structure and reactivity uponcontact with steam. Fuel.2008;87(7):1127‐32.
    [62] Xu C, Donald J, Ohtsuka Y. Recent advances in catalysts for hot‐gas removal of tar and NH3frombiomass gasification. Fuel.2010;In Press, Uncorrected Proof.
    [63] Laurendeau NM. Heterogeneous kinetics of coal char gasification and combustion;1978.
    [64] Xu Q, Pang S, Levi T. Reaction kinetics and producer gas compositions of steam gasification of coaland biomass blend chars, part2: Mathematical modelling and model validation. Chemical EngineeringScience.2011;66(10):2232‐40.
    [65] Raveendran K, Ganesh A. Adsorption characteristics and pore‐development of biomass‐pyrolysischar. Fuel.1998;77(7):769‐81.
    [66] Boehm HP. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon.1994;32(5):759‐69.
    [67] Senneca O, Salatino P, Masi S. Microstructural changes and loss of gasification reactivity of charsupon heat treatment. Fuel.1998;77(13):1483‐93.
    [68] Pindoria RV, Megaritis A, Messenb ck RC, Dugwell DR, Kandiyoti R. Comparison of the pyrolysis andgasification of biomass: effect of reacting gas atmosphere and pressure on Eucalyptus wood. Fuel.1998;77(11):1247‐51.
    [69] Liu W‐J, Zeng F‐X, Jiang H, Zhang X‐S. Preparation of high adsorption capacity bio‐chars from wastebiomass. Bioresource Technology.2011;102(17):8247‐52.
    [70] Asadullah M, Zhang S, Min Z, Yimsiri P, Li C‐Z. Effects of biomass char structure on its gasificationreactivity. Bioresource Technology.2010;101(20):7935‐43.
    [71] Li X, Hayashi J‐i, Li C‐Z. FT‐Raman spectroscopic study of the evolution of char structure during thepyrolysis of a Victorian brown coal. Fuel.2006;85(12–13):1700‐7.
    [72] Lin‐Vien D. The Handbook of infrared and raman characteristic frequencies of organic molecules:Academic Press;1991.
    [73] Arvelakis S, Jensen PA, Dam‐Johansen K. Simultaneous thermal analysis (STA) on ash fromhigh‐alkali biomass. Energy and Fuels.2004;18(4):1066‐76.
    [74] Li X, Wu H, Hayashi J‐i, Li C‐Z. Volatilisation and catalytic effects of alkali and alkaline earth metallicspecies during the pyrolysis and gasification of Victorian brown coal. Part VI. Further investigation intothe effects of volatile‐char interactions. Fuel.2004;83(10):1273‐9.
    [75] Hindiyarti L, Frandsen F, Livbjerg H, Glarborg P, Marshall P. An exploratory study of alkali sulfateaerosol formation during biomass combustion. Fuel.2008;87(8‐9):1591‐600.
    [76] Jiménez S, Ballester J. Formation of alkali sulphate aerosols in biomass combustion. Fuel.2007;86(4):486‐93.
    [77] Hindiyarti L, Frandsen F, Livbjerg H, Glarborg P, Marshall P. An exploratory study of alkali sulfateaerosol formation during biomass combustion. Fuel.2008;87(8–9):1591‐600.
    [78] Jensen PA, Sander B, Dam‐Johansen K. Removal of K and Cl by leaching of straw char. Biomass andBioenergy.2001;20(6):447‐57.
    [79] Jensen PA, Frandsen FJ, Dam‐Johansen K, Sander B. Experimental Investigation of theTransformation and Release to Gas Phase of Potassium and Chlorine during Straw Pyrolysis. Energy&Fuels.2000;14(6):1280‐5.
    [80] Wei X, Schnell U, Hein KRG. Behaviour of gaseous chlorine and alkali metals during biomass thermalutilisation. Fuel.2005;84(7–8):841‐8.
    [81] D D. A review of the literature on catalytic biomass tar destruction. Colarado: National RenewableEnergy Laboratory;2002. Report No.: NREL/TP‐510‐32815.
    [82] Srinakruang J, Sato K, Vitidsant T, Fujimoto K. A highly efficient catalyst for tar gasification withsteam. Catalysis Communications.2005;6(6):437‐40.
    [83] Alarcón N, Garc a X, Centeno MA, Ruiz P, Gordon A. New effects during steam gasification ofnaphthalene: the synergy between CaO and MgO during the catalytic reaction. Applied Catalysis A:General.2004;267(1‐2):251‐65.
    [84] Abu El‐Rub Z, Bramer EA, Brem G. Experimental comparison of biomass chars with other catalystsfor tar reduction. Fuel.2008;87(10‐11):2243‐52.
    [85] Su Y, Yonghao L. Experiment on rice straw gasification in a two‐stage gasifier. Wuhan, China: Inst. ofElec. and Elec. Eng. Computer Society; p. Wuhan University; IEEE Power and Energy Society; ChineseSociety for Electrical Engineering; Scientific Research Publishing.
    [86] Dufour A, Celzard A, Fierro V, Martin E, Broust F, Zoulalian A. Catalytic decomposition of methaneover a wood char concurrently activated by a pyrolysis gas. Applied Catalysis A: General.2008;346(1‐2):164‐73.
    [87] Boroson ML, Howard JB, Longwell JP, Peters WA. Heterogeneous cracking of wood pyrolysis tarsover fresh wood char surfaces. Energy&Fuels.1989;3(6):735‐40.
    [88] Gilbert P, Ryu C, Sharifi V, Swithenbank J. Tar reduction in pyrolysis vapours from biomass over a hotchar bed. Bioresource Technology.2009;100(23):6045‐51.
    [89] Henriksen U, Ahrenfeldt J, Jensen TK, G bel B, Bentzen JD, Hindsgaul C, et al. The design,construction and operation of a75kW two‐stage gasifier. Energy.2006;31(10‐11):1542‐53.
    [90] Chembukulam SK, Dandge AS, Rao NLK, Seshagiri K, Vaidyeswaran R. Smokeless fuel fromcarbonized sawdust. Industrial&Engineering Chemistry Product Research and Development.1981;20(4):714‐9.
    [91] Lu J, Yue G. Catalytic cracking reactions of tar components over circulating ash of CFBB. QinghuaDaxue Xuebao/Journal of Tsinghua University.1998;38(7):66‐9.
    [92] Drift Avd, Carbo MC, Meijden CMvd. The TREC‐module: integration of tar reduction and high‐temperature filtration. Proceedings of the14th European Biomass Conference and Exhibition. Paris,France; p.17‐21.
    [93] Yang C, Yao J, Lu X, Yang X, Lin W. Influence of K+and Ca2+on the mechanism of biomass pyrolysis.Taiyangneng Xuebao/Acta Energiae Solaris Sinica.2006;27(5):496‐502.
    [94] Floess JK, Longwell JP, Sarofim AF. Intrinsic reaction kinetics of microporous carbons.2. Catalyzedchars. Energy&Fuels.2002;2(6):756‐64.
    [95] Meijer R, Sibeijn M, Van Dillen MRB, Kapteijn F, Moulijn JA. Kinetics of thealkali‐metal‐carbonate‐catalyzed gasification of carbon.2. The water‐gas‐shift reaction. Industrial&Engineering Chemistry Research.2002;30(8):1760‐70.
    [96] Chen SG, Yang RT. Unified Mechanism of Alkali and Alkaline Earth Catalyzed Gasification Reactionsof Carbon by CO2and H2O. Energy&Fuels.1997;11(2):421‐7.
    [97] Juneja A, Mani S, Kastner J. Catalytic Cracking of Tar using BioChar as a Catalyst.2010ASABE AnnualInternational Meeting. Pittsburgh, Pennsylvania.
    [98]彭军霞,赵增立,潘守聚,李海滨.生物质焦催化裂解萘和苯酚的实验.农业机械学报.2010;41(5).
    [99]彭军霞,赵增立,李海滨,王小玲.生物质焦制备条件对甲苯裂解特性的影响.农业工程学报.2010;26(6).
    [100] Wang L, Wu C, Zhao Z. Effect of char on catalytic cracking of tar from biomass gasification gaswith toluene as a model compound. Taiyangneng Xuebao/Acta Energiae Solaris Sinica.2006;27(5):514‐8.
    [101] Xu C, Donald J, Byambajav E, Ohtsuka Y. Recent advances in catalysts for hot‐gas removal of tarand NH3from biomass gasification. Fuel.2010;89(8):1784‐95.
    [1] Luik H, Johannes I, Palu V, Luik L, Kruusement K. Transformations of biomass internal oxygen atvaried pyrolysis conditions. Journal of Analytical and Applied Pyrolysis.2007;79(1–2):121‐7.
    [2] Blondeau J, Jeanmart H. Biomass pyrolysis at high temperatures: Prediction of gaseous speciesyields from an anisotropic particle. Biomass and Bioenergy.2012;41(0):107‐21.
    [3] Akhtar J, Saidina Amin N. A review on operating parameters for optimum liquid oil yield in biomasspyrolysis. Renewable and Sustainable Energy Reviews.2012;16(7):5101‐9.
    [4]陈祎.生物质热解焦油的生成及部分氧化机理的实验研究.上海交通大学,博士,2010.
    [5] Yang H, Yan R, Chen H, Lee DH, Liang DT, Zheng C. Mechanism of Palm Oil Waste Pyrolysis in aPacked Bed. Energy&Fuels.2006;20(3):1321‐8.
    [6] Miller RS, Bellan J. Tar Yield and Collection from the Pyrolysis of Large Biomass Particles.Combustion Science and Technology.1997;127(1‐6):97‐118.
    [7] Chen Y, Duan J, Luo Y‐h. Investigation of agricultural residues pyrolysis behavior under inert andoxidative conditions. Journal of Analytical and Applied Pyrolysis.2008;83(2):165‐74.
    [8] Gilbert P, Ryu C, Sharifi V, Swithenbank J. Tar reduction in pyrolysis vapours from biomass over a hotchar bed. Bioresource Technology.2009;100(23):6045‐51.
    [9] Dufour A, Masson E, Girods P, Rogaume Y, Zoulalian A. Evolution of Aromatic Tar Composition inRelation to Methane and Ethylene from Biomass Pyrolysis‐Gasification. Energy&Fuels.2011:null‐null.
    [10] Brandt P, Larsen E, Henriksen U. High Tar Reduction in a Two‐Stage Gasifier. Energy&Fuels.2000;14(4):816‐9.
    [11] Houben MP, de Lange HC, van Steenhoven AA. Tar reduction through partial combustion of fuel gas.Fuel.2005;84(7‐8):817‐24.
    [12] Hosokai S, Kishimoto K, Norinaga K, Li C‐Z, Hayashi J‐i. Characteristics of Gas‐Phase Partial Oxidationof Nascent Tar from the Rapid Pyrolysis of Cedar Sawdust at700800°C. Energy&Fuels.2010;24(5):2900‐9.
    [13] Chen Y, Luo Y‐h, Wu W‐g, Su Y. Experimental Investigation on Tar Formation and Destruction in aLab‐Scale Two‐Stage Reactor. Energy&Fuels.2009;23(9):4659‐67.
    [14] Wu W‐g, Luo Y‐h, Chen Y, Su Y, Zhang Y‐l, Zhao S‐h, et al. Experimental Investigation of TarConversion under Inert and Partial Oxidation Conditions in a Continuous Reactor. Energy&Fuels.2011;25(6):2721‐9.
    [15] Wang Y, Namioka T, Yoshikawa K. Effects of the reforming reagents and fuel species on tar reformingreaction. Bioresource Technology.2009;100(24):6610‐4.
    [16] Onozaki M, Watanabe K, Hashimoto T, Saegusa H, Katayama Y. Hydrogen production by the partialoxidation and steam reforming of tar from hot coke oven gas. Fuel.2006;85(2):143‐9.
    [17] Mendiara T, Johansen JM, Utrilla R, Jensen AD, Glarborg P. Evaluation of different oxygen carriersfor biomass tar reforming (II): Carbon deposition in experiments with methane and other gases. Fuel.2011;90(4):1370‐82.
    [18] Kong M, Fei J, Wang S, Lu W, Zheng X. Influence of supports on catalytic behavior of nickel catalystsin carbon dioxide reforming of toluene as a model compound of tar from biomass gasification.Bioresource Technology.2011;102(2):2004‐8.
    [19] Yue B, Wang X, Ai X, Yang J, Li L, Lu X, et al. Catalytic reforming of model tar compounds from hotcoke oven gas with low steam/carbon ratio over Ni/MgO‐Al2O3catalysts. Fuel Processing Technology.2010;91(9):1098‐104.
    [20] Fagbemi L, Khezami L, Capart R. Pyrolysis products from different biomasses: application to thethermal cracking of tar. Applied Energy.2001;69(4):293‐306.
    [21] Hiteshue RW, Anderson RB, Schlesinger MD. Hydrogenating Coal at800°C. Industrial&EngineeringChemistry.1957;49(12):2008‐10.
    [22] Hiteshue R, Anderson R, Friedman S. Gaseous Hydrocarbons by Hydrogenation of Coals and Chars.Industrial&Engineering Chemistry.1960;52(7):577‐9.
    [23] Finn MJ, Fynes G, Ladner WR, Newman JOH. Light aromatics from the hydropyrolysis of coal. Fuel.1980;59(6):397‐404.
    [24] O'Brien RJ. Tar production in coal pyrolysis‐the effect of catalysts, pressure and extraction.University of London, PhD,1986.
    [25] Bolton C, Snape CE, O'Brien RJ, Kandiyoti R. Influence of carrier gas flow and heating rates in fixedbed hydropyrolysis of coal. Fuel.1987;66(10):1413‐7.
    [26] Pindoria RV, Lim J‐Y, Hawkes JE, Lazaro M‐J, Herod AA, Kandiyoti R. Structural characterization ofbiomass pyrolysis tars/oils from eucalyptus wood waste: effect of H2pressure and sample configuration.Fuel.1997;76(11):1013‐23.
    [27] Collot AG, Zhuo Y, Dugwell DR, Kandiyoti R. Co‐pyrolysis and co‐gasification of coal and biomass inbench‐scale fixed‐bed and fluidised bed reactors. Fuel.1999;78(6):667‐79.
    [28] Nunes SM, Paterson N, Herod AA, Dugwell DR, Kandiyoti R. Tar Formation and Destruction in aFixed Bed Reactor Simulating Downdraft Gasification: Optimization of Conditions. Energy&Fuels.2008;22(3):1955‐64.
    [29] Dabai F, Paterson N, Millan M, Fennell P, Kandiyoti R. Tar Formation and Destruction in a Fixed‐BedReactor Simulating Downdraft Gasification: Equipment Development and Characterization ofTar‐Cracking Products. Energy&Fuels.2010;24(8):4560‐70.
    [30] Knoef HAM, Koele HJ. Survey of tar measurement protocols. Biomass and Bioenergy.2000;18(1):55‐9.
    [31] Simell P, St hlberg P, Kurkela E, Albrecht J, Deutsch S, Sj str m K. Provisional protocol for thesampling and anlaysis of tar and particulates in the gas from large‐scale biomass gasifiers. Version1998.Biomass and Bioenergy.2000;18(1):19‐38.
    [32] Xu R, Ferrante L, Briens C, Berruti F. Flash pyrolysis of grape residues into biofuel in a bubbling fluidbed. Journal of Analytical and Applied Pyrolysis.2009;86(1):58‐65.
    [33] Wang S, Liu Q, Liao Y, Luo Z, Cen K. A study on the mechanism research on cellulose pyrolysis undercatalysis of metallic salts. Korean Journal of Chemical Engineering.2007;24(2):336‐40.
    [34] Demirbas A. Determination of calorific values of bio‐chars and pyro‐oils from pyrolysis of beechtrunkbarks. Journal of Analytical and Applied Pyrolysis.2004;72(2):215‐9.
    [35] Williams PT, Nugranad N. Comparison of products from the pyrolysis and catalytic pyrolysis of ricehusks. Energy.2000;25(6):493‐513.
    [36] Keown DM, Hayashi J‐i, Li C‐Z. Effects of volatile‐char interactions on the volatilisation of alkali andalkaline earth metallic species during the pyrolysis of biomass. Fuel.2008;87(7):1187‐94.
    [37] Anthony DB, Howard JB. Coal devolatilization and hydrogastification. AIChE Journal.1976;22(4):625‐56.
    [38] Simell PA, Hakala NAK, Haario HE, Krause AOI. Catalytic Decomposition of Gasification Gas Tar withBenzene as the Model Compound. Industrial&Engineering Chemistry Research.1997;36(1):42‐51.
    [39] Dufour A, Valin S, Castelli P, Thiery S, Boissonnet G, Zoulalian A, et al. Mechanisms and Kinetics ofMethane Thermal Conversion in a Syngas. Industrial&Engineering Chemistry Research.2009;48(14):6564‐72.
    [40] Maschio G, Koufopanos C, Lucchesi A. Pyrolysis, a promising route for biomass utilization.Bioresource Technology.1992;42(3):219‐31.
    [41] Wu W‐g, Luo Y‐h, Su Y, Zhang Y‐l, Zhao S‐h, Wang Y. Nascent Biomass Tar Evolution Properties underHomogeneous/Heterogeneous Decomposition Conditions in a Two‐Stage Reactor. Energy&Fuels.2011;25(11):5394‐406.
    [42]王贤华,陈汉平,王静,辛芬,杨海平.无机矿物质盐对生物质热解特性的影响.燃料化学学报.2008;36(6):5.
    [43] Milne TA, Evans RJ, Abatzaglou N. Biomass Gasifier ''Tars'': Their Nature, Formation, and Conversion;1998. Report No.: NREL/TP‐570‐25357.
    [44] Dong GL, Hüttinger KJ. Consideration of reaction mechanisms leading to pyrolytic carbon ofdifferent textures. Carbon.2002;40(14):2515‐28.
    [45] Ledesma EB, Kalish MA, Nelson PF, Wornat MJ, Mackie JC. Formation and fate of PAH during thepyrolysis and fuel‐rich combustion of coal primary tar. Fuel.2000;79(14):1801‐14.
    [46] Jess A. Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis ofsolid fuels. Fuel.1996;75(12):1441‐8.
    [47] Sharma RK, Hajaligol MR. Effect of pyrolysis conditions on the formation of polycyclic aromatichydrocarbons (PAHs) from polyphenolic compounds. Journal of Analytical and Applied Pyrolysis.2003;66(1–2):123‐44.
    [48] Taralas G, Kontominas MG. Kinetic modelling of VOC catalytic steam pyrolysis for tar abatementphenomena in gasification/pyrolysis technologies. Fuel.2004;83(9):1235‐45.
    [49] Simell PA, Hepola JO, Krause AOI. Effects of gasification gas components on tar and ammoniadecomposition over hot gas cleanup catalysts. Fuel.1997;76(12):1117‐27.
    [50] Smoot LD, Smith PJ. Coal combustion and gasification: Springer;1985.
    [51] Westbrook CK, Dryer FL. Chemical kinetic modeling of hydrocarbon combustion. Progress in Energyand Combustion Science.1984;10(1):1‐57.
    [52] Bryden KM, Ragland KW. Numerical Modeling of a Deep, Fixed Bed Combustor. Energy&Fuels.1996;10(2):269‐75.
    [53] Abu El‐Rub Z. Biomass char as an in‐situ catalyst for tar removal in gasification systems. TwenteUniversity, PhD,2008.
    [54] Swierczynski D, Courson C, Kiennemann A. Study of steam reforming of toluene used as modelcompound of tar produced by biomass gasification. Chemical Engineering and Processing: ProcessIntensification.2008;47(3):508‐13.
    [55] Morf P, Hasler P, Nussbaumer T. Mechanisms and kinetics of homogeneous secondary reactions oftar from continuous pyrolysis of wood chips. Fuel.2002;81(7):843‐53.
    [56]王光辉,熊少祥.有机质谱解析:化学工业出版社;2005.
    [57] Jarvis MW, Daily JW, Carstensen H‐H, Dean AM, Sharma S, Dayton DC, et al. Direct Detection ofProducts from the Pyrolysis of2‐Phenethyl Phenyl Ether. The Journal of Physical Chemistry A.2011;115(4):428‐38.
    [58] Westmoreland PR, Dean AM, Howard JB, Longwell JP. Forming benzene in flames by chemicallyactivated isomerization. Journal of Physical Chemistry.1989;93(25):8171‐80.
    [59] Frenklach M, Wang H. Detailed mechanism and modeling of soot particle formation;1994.
    [60] Miller JA, Melius CF. Kinetic and thermodynamic issues in the formation of aromatic compounds inflames of aliphatic fuels. Combustion and Flame.1992;91(1):21‐39.
    [61] Stein SE, Walker JA, Suryan MM, Fahr A. A new path to benzene in flames. Symposium(International) on Combustion.1991;23(1):85‐90.
    [62] Wang H, Frenklach M. A detailed kinetic modeling study of aromatics formation in laminarpremixed acetylene and ethylene flames. Combustion and Flame.1997;110(1–2):173‐221.
    [63] Shukla B, Koshi M. Comparative study on the growth mechanisms of PAHs. Combustion and Flame.2011;158(2):369‐75.
    [64] Ledesma EB. Investigation of the Rates of Evolution and Distribution of Products During thePyrolysis and Combustion of Coal Volatiles. The University of Sydney, Ph. D.,1998.
    [65] Ledesma EB NP, Mackie JC. THE FORMATION OF NITROGEN SPECIES AND OXYGENATED PAHDURING THE COMBUSTION OF COAL VOLATILES. Twenty‐Seventh Symposium (International) onCombustion. The Combustion Institute, Pittsburgh, PA; p.1687‐93.
    [66] Subramanian RB. Aromatic Formation in Catalytic Cracking: A Study Using Model Compounds OverASTM Standard Catalysts: West Virginia University;1997.
    [67] Badger G, Donnelly J, Spotswood T. The formation of aromatic hydrocarbons at high temperatures.XXIII. The pyrolysis of anthracene. Australian Journal of Chemistry.1964;17(10):1147‐56.
    [68] Badger G, Jolad S, Spotswood T. The formation of aromatic hydrocarbons at high temperatures. XX.The pyrolysis of [1‐14C]naphthalene. Australian Journal of Chemistry.1964;17(7):771‐7.
    [69] B hm H, Jander H, Tanke D. PAH growth and soot formation in the pyrolysis of acetylene andbenzene at high temperatures and pressures: Modeling and experiment. Symposium (International) onCombustion.1998;27(1):1605‐12.
    [70] Sarofim AF, Longwell JP, Wornat MJ, Mukherjee J. Role of biaryl reactions in PAH and soot formation;1994.
    [71] Unterreiner BV, Sierka M, Ahlrichs R. Reaction pathways for growth of polycyclic aromatichydrocarbons under combustion conditions, a DFT study. Physical Chemistry Chemical Physics.2004;6(18):4377‐84.
    [72] Jess. A. Thermische und katalytische spaltung von kohlenwasserstoffen in wasserstof‐undwasserdampfreicher atmosph¨are: Eine modelluntersuchung zur erzeugung von reduktionsgas auskoksofenrohgas. Habilitationsschrift, Universit¨at,1996.
    [73] Siegmann K, Hepp H, Sattler K. Reactive Dimerization: A New PAH Growth Mechanism in Flames.Combustion Science and Technology.1995;109(1‐6):165‐81.
    [74] B hm H, Jander H. PAH formation in acetylene‐benzene pyrolysis. Physical Chemistry ChemicalPhysics.1999;1(16):3775‐81.
    [75] Frenklach M, Moriarty NW, Brown NJ. Hydrogen migration in polyaromatic growth. Symposium(International) on Combustion.1998;27(2):1655‐61.
    [76] Badger GM, Kimber RWL, Spotswood TM. Mode of Formation of3,4‐Benzopyrene in HumanEnvironment. Nature.1960;187(4738):663‐5.
    [77] Nelson PF, Tyler RJ. Twenty‐first Symposium (International) on Combustion. Pittsburgh1986, p.427‐35.
    [78] Badger GM. Pyrolysis of hydrocarbon. Progress in physical organic chemistry (Ed SCohen).1995:1‐40.
    [79] Poutsma ML. A review of thermolysis studies of model compounds relevant to processing of coal.Oak Ridge, TN(USA): Oak Ridge National Laboratory;1987.
    [80] Vreugdenhil BJ, Zwart RWR. Tar formation in pyrolysis and gasification: ECN Biomass, Coal andEnvironmental Research;2009.
    [81] Garcia XA, Hüttinger KJ. Steam gasification of naphthalene as a model reaction of homogeneousgas/gas reactions during coal gasification. Fuel.1989;68(10):1300‐10.
    [82] Vassilatos V, Taralas G, Sj str m K, Bj rnbom E. Catalytic cracking of tar in biomass pyrolysis gas inthe presence of calcined dolomite. The Canadian Journal of Chemical Engineering.1992;70(5):1008‐13.
    [83] Futamura S, Annadurai G. Plasma reforming of aliphatic hydrocarbons with CO2. IEEE Transactionson Industry Applications.2005;41(6):1515‐21.
    [84] Futamura S, Kabashima H, Annadurai G. Roles of CO2and H2O as oxidants in the plasma reformingof aliphatic hydrocarbons. Catalysis Today.2006;115(1–4):211‐6.
    [85] Mungen R, Kratzer MB. Partial combustion of methane with oxygen. Industrial and EngineeringChemistry Research.1951;43:2782‐7.
    [86] Mallens EPJ, Hoebink JHBJ, Marin GB. The Reaction Mechanism of the Partial Oxidation of Methaneto Synthesis Gas: A Transient Kinetic Study over Rhodium and a Comparison with Platinum. Journal ofCatalysis.1997;167(1):43‐56.
    [87] Rostrup‐Nielsen JR. Syngas in perspective. Catalysis Today.2002;71(3–4):243‐7.
    [88] Zhu J, Zhang D, King KD. Reforming of CH4by partial oxidation: thermodynamic and kinetic analyses.Fuel.2001;80(7):899‐905.
    [1] Boehm HP. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon1994;32:759.
    [2] Senneca O, Salatino P, Masi S. Microstructural changes and loss of gasification reactivity of charsupon heat treatment. Fuel1998;77:1483.
    [3] Pindoria RV, Megaritis A, Messenb ck RC, Dugwell DR, Kandiyoti R. Comparison of the pyrolysis andgasification of biomass: effect of reacting gas atmosphere and pressure on Eucalyptus wood. Fuel1998;77:1247.
    [4] Abu El‐Rub Z, Bramer EA, Brem G. Experimental comparison of biomass chars with other catalystsfor tar reduction. Fuel2008;87:2243.
    [5] Henriksen U, Ahrenfeldt J, Jensen TK, G bel B, Bentzen JD, Hindsgaul C, et al. The design,construction and operation of a75kW two‐stage gasifier. Energy2006;31:1542.
    [6] Gilbert P, Ryu C, Sharifi V, Swithenbank J. Tar reduction in pyrolysis vapours from biomass over a hotchar bed. Bioresource Technology2009;100:6045.
    [7] Chen Y, Luo Y‐h, Wu W‐g, Su Y. Experimental Investigation on Tar Formation and Destruction in aLab‐Scale Two‐Stage Reactor. Energy&Fuels2009;23:4659.
    [8] Jensen PA, Frandsen FJ, Dam‐Johansen K, Sander B. Experimental Investigation of theTransformation and Release to Gas Phase of Potassium and Chlorine during Straw Pyrolysis. Energy&Fuels2000;14:1280.
    [9] Fagbemi L, Khezami L, Capart R. Pyrolysis products from different biomasses: application to thethermal cracking of tar. Applied Energy2001;69:293.
    [10] Brunauer S, Emmett PH, Teller E. Adsorption of Gases in Multimolecular Layers. Journal of theAmerican Chemical Society1938;60:309.
    [11] Barrett EP, Joyner LG, Halenda PP. The Determination of Pore Volume and Area Distributions inPorous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society1951;73:373.
    [12]邹亚娟,许实. ICP‐AES分析纳米二氧化硅表面吸附的金属元素含量.光谱实验室2008;25:3.
    [13]王铮,许实. ICP‐AES测铣刀中的钴元素.分析测试学报2006;25:2.
    [14] Pastor‐Villegas J, Durán‐Valle CJ. Pore structure of chars and activated carbons prepared usingcarbon dioxide at different temperatures from extracted rockrose. Journal of Analytical and AppliedPyrolysis2001;57:1.
    [15] ábrego J, Arauzo JS, Sánchez JL, Gonzalo A, Cordero T, Rodríguez‐Mirasol J. Structural changes ofsewage sludge char during fixed‐bed pyrolysis. Industrial and Engineering Chemistry Research2009;48:3211.
    [16] Standish N, Tanjung AFA. Gasification of single wood charcoal particles in CO2. Fuel1988;67:666.
    [17]胡松,向军,孙路石,付鹏,杨涛,苏胜, et al.谷壳热解过程中颗粒孔隙结构分形特性.化工学报2008;59:6.
    [18] Yip K, Xu M, Li C‐Z, Jiang SP, Wu H. Biochar as a Fuel:3. Mechanistic Understanding on BiocharThermal Annealing at Mild Temperatures and Its Effect on Biochar Reactivity. Energy&Fuels2010;25:406.
    [19] Raveendran K, Ganesh A. Adsorption characteristics and pore‐development of biomass‐pyrolysischar. Fuel1998;77:769.
    [20] Groen JC, Pefer LAA, Pérez‐Ram r ez J. Pore size determination in modified micro‐and mesoporousmaterials. Pitfalls and limitations in gas adsorption data analysis. Microporous and MesoporousMaterials2003;60:1.
    [21]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究.煤炭学报2001;26:5.
    [22]近藤精一,石川达雄,安部郁夫,译李.吸附科学:化学工业出版社;2006.
    [23] Ebshish A, Yaakob Z, Narayanan B, Bshish A, Daud WRW. The Activity of Ni‐Based Catalysts onSteam Reforming of Glycerol for Hydrogen Production. International Journal of Integrated Engineering2011;3:5.
    [24] Adinata D, Wan Daud WMA, Aroua MK. Preparation and characterization of activated carbon frompalm shell by chemical activation with K2CO3. Bioresource Technology2007;98:145.
    [25] Mahamud MM. Textural characterization of active carbons using fractal analysis. Fuel ProcessingTechnology2006;87:907.
    [26] Mahamud M, López ó, Pis JJ, Pajares JA. Textural characterization of chars using fractal analysis.Fuel Processing Technology2004;86:135.
    [27] Passé‐Coutrin N, Jeanne‐Rose V, Ouensanga A. Textural analysis for better correlation of the charyield of pyrolysed lignocellulosic materials. Fuel2005;84:2131.
    [28] Wang X, He R, Chen Y. Evolution of porous fractal properties during coal devolatilization. Fuel2008;87:878.
    [29] Dobrescu G, Berger D, Papa F, Ionescu NI. Fractal dimensions of lanthanum ferrite samples byadsorption isotherm method. Appl Surf Sci2003;220:154.
    [30] El Shafei GMS, Philip CA, Moussa NA. Fractal analysis of hydroxyapatite from nitrogen isotherms.Journal of Colloid and Interface Science2004;277:410.
    [31] Avnir D, Jaroniec M. An isotherm equation for adsorption on fractal surfaces of heterogeneousporous materials. Langmuir1989;5:1431.
    [32] Jaroniec M. Evaluation of the Fractal Dimension from a Single Adsorption Isotherm. Langmuir1995;11:2316.
    [33]胡松,孙路石,向军,邱建荣,徐明厚.高速热解条件下谷壳颗粒物理结构的演化.化工学报2007;58:6.
    [34] Shafeeyan MS, Daud WMAW, Houshmand A, Shamiri A. A review on surface modification ofactivated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis2010;89:143.
    [35] Chiang H‐L, Huang CP, Chiang PC, You JH. Effect of metal additives on the physico‐chemicalcharacteristics of activated carbon exemplified by benzene and acetic acid adsorption. Carbon1999;37:1919.
    [36] Liu W‐J, Zeng F‐X, Jiang H, Zhang X‐S. Preparation of high adsorption capacity bio‐chars from wastebiomass. Bioresource Technology2011;102:8247.
    [37] Asadullah M, Zhang S, Min Z, Yimsiri P, Li C‐Z. Effects of biomass char structure on its gasificationreactivity. Bioresource Technology2010;101:7935.
    [38] Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and ligninpyrolysis. Fuel2007;86:1781.
    [39] Yang H, Yan R, Chen H, Lee DH, Liang DT, Zheng C. Mechanism of Palm Oil Waste Pyrolysis in aPacked Bed. Energy&Fuels2006;20:1321.
    [40] Ascough PL, Bird MI, Francis SM, Lebl T. Alkali extraction of archaeological and geological charcoal:evidence for diagenetic degradation and formation of humic acids. Journal of Archaeological Science2011;38:69.
    [41] Biniak S, Szymański G, Siedlewski J, wiat kowski A. The characterization of activated carbons withoxygen and nitrogen surface groups. Carbon1997;35:1799.
    [42] Konwer D, Kataki R, Saikia P. Pyrolysis of Some Indigenous Tree Species of Northeast India: Effect ofPyrolysis Temperature and Heating Rate on the Products Yield and Char Quality. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects2007;29:1433.
    [43] Mangun CL, Benak KR, Daley MA, Economy J. Oxidation of activated carbon fibers: Effect on poresize, surface chemistry, and adsorption properties. Chemistry of Materials1999;11:3476.
    [44] Figueiredo JL, Pereira MFR, Freitas MMA, órf o JJM. Modification of the surface chemistry ofactivated carbons. Carbon1999;37:1379.
    [45] Otake Y, Jenkins RG. Characterization of oxygen‐containing surface complexes created on amicroporous carbon by air and nitric acid treatment. Carbon1993;31:109.
    [46] Dandekar A, Baker RTK, Vannice MA. Characterization of activated carbon, graphitized carbon fibersand synthetic diamond powder using TPD and DRIFTS. Carbon1998;36:1821.
    [47] Papirer E, Li S, Donnet J‐B. Contribution to the study of basic surface groups on carbons. Carbon1987;25:243.
    [48] Montes‐Morán MA, Suárez D, Menéndez JA, Fuente E. On the nature of basic sites on carbonsurfaces: an overview. Carbon2004;42:1219.
    [49] Shen W, Li Z, Liu Y. Surface chemical functional groups modification of porous carbon. RecentPatents Chem Eng2008;1:27.
    [50] Menéndez JA, Illán‐Gómez MJ, y León CAL, Radovic LR. On the difference between the isoelectricpoint and the point of zero charge of carbons. Carbon1995;33:1655.
    [51] Angel Menéndez J, Radovic LR, Xia B, Phillips J. Low‐temperature generation of basic carbonsurfaces by hydrogen spillover. Journal of Physical Chemistry1996;100:17243.
    [52] Menéndez JA, Phillips J, Xia B, Radovic LR. On the modification and characterization of chemicalsurface properties of activated carbon: In the search of carbons with stable basic properties. Langmuir1996;12:4404.
    [53] Matsuoka K, Yamashita T, Kuramoto K, Suzuki Y, Takaya A, Tomita A. Transformation of alkali andalkaline earth metals in low rank coal during gasification. Fuel2008;87:885.
    [54] Kovacevik B. Alkali‐containing aerosol particles‐release during biomass combustion and ambient airconcentrations. Department of Chemistry. Kemihuset: University of Gothenburg2009.
    [55] Keown DM, Favas G, Hayashi J‐i, Li C‐Z. Volatilisation of alkali and alkaline earth metallic speciesduring the pyrolysis of biomass: differences between sugar cane bagasse and cane trash. BioresourceTechnology2005;96:1570.
    [56] Jensen PA, Sander B, Dam‐Johansen K. Removal of K and Cl by leaching of straw char. Biomass andBioenergy2001;20:447.
    [57] Malik A, Nilsson PT, Pagels J, Lindskog M, Rissler J, Gudmundsson A, et al. Methodology forSampling and Characterizing Internally Mixed Soot‐Tar Particles Suspended in the Product Gas fromBiomass Gasification Processes. Energy&Fuels2011;25:1751.
    [58] Kirnbauer F, Hofbauer H. Investigations on Bed Material Changes in a Dual Fluidized Bed SteamGasifica on Plant in Güssing, Austria. Energy&Fuels2011;25:3793.
    [59]大连理工大学无机化学教研室.无机化学:高等教育出版社;2006.
    [60] Hosokai S, Hayashi JI, Shimada T, Kobayashi Y, Kuramoto K, Li CZ, et al. Spontaneous Generation ofTar Decomposition Promoter in a Biomass Steam Reformer. Chemical Engineering Research and Design2005;83:1093.
    [1] Brandt P, Larsen E, Henriksen U. High Tar Reduction in a Two‐Stage Gasifier. Energy&Fuels2000;14:816.
    [2] Henriksen U, Ahrenfeldt J, Jensen TK, G bel B, Bentzen JD, Hindsgaul C, et al. The design,construction and operation of a75kW two‐stage gasifier. Energy2006;31:1542.
    [3] Abu El‐Rub Z. Biomass char as an in‐situ catalyst for tar removal in gasification systems. Enschede:Twente University;2008.
    [4]彭军霞,赵增立,潘守聚,李海滨.生物质焦催化裂解萘和苯酚的实验.农业机械学报2010;41.
    [5] Juneja A, Mani S, Kastner J. Catalytic Cracking of Tar using BioChar as a Catalyst.2010ASABE AnnualInternational Meeting. Pittsburgh, Pennsylvania;2010.
    [6] Xu C, Donald J, Byambajav E, Ohtsuka Y. Recent advances in catalysts for hot‐gas removal of tar andNH3from biomass gasification. Fuel2010;89:1784.
    [7] Wu W‐g, Luo Y‐h, Chen Y, Su Y, Zhang Y‐l, Zhao S‐h, et al. Experimental Investigation of TarConversion under Inert and Partial Oxidation Conditions in a Continuous Reactor. Energy&Fuels2011;25:2721.
    [8] Zhang R, Brown RC, Suby A, Cummer K. Catalytic destruction of tar in biomass derived producer gas.Energy Conversion and Management2004;45:995.
    [9] Jess A. Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis ofsolid fuels. Fuel1996;75:1441.
    [10] Tesner PA, Shurupov SV. Soot formation during pyrolysis of naphthalene, anthracene and pyrene.Combustion Science and Technology1997;126:139.
    [11] Sánchez NE, Callejas A, Millera A, Bilbao R, Alzueta MU. Formation of PAH and soot duringacetylene pyrolysis at different gas residence times and reaction temperatures. Energy2012;43:30.
    [12] Mathieu O, Frache G, Djeba li‐Chaumeix N, Paillard CE, Krier G, Muller JF, et al. Characterization ofadsorbed species on soot formed behind reflected shock waves. Proceedings of the Combustion Institute2007;31:511.
    [13] Bengaard HS, N rskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, et al. Steamreforming and graphite formation on Ni catalysts. Journal of Catalysis2002;209:365.
    [14] Hagen J. Industrial Catalysis: A Practical Approach: John Wiley&Sons;2006.
    [15]刘维桥,孙桂大.固体催化剂实用研究方法:中国石化出版社2000.
    [16] Becker A, Hüttinger KJ. Chemistry and kinetics of chemical vapor deposition of pyrocarbon—IIIpyrocarbon deposition from propylene and benzene in the low temperature regime. Carbon1998;36:201.
    [17] Becker A, Hüttinger KJ. Chemistry and kinetics of chemical vapor deposition of pyrocarbon—IIpyrocarbon deposition from ethylene, acetylene and1,3‐butadiene in the low temperature regime.Carbon1998;36:177.
    [18]陈祎.生物质热解焦油的生成及部分氧化机理的实验研究.上海交通大学.上海:上海交通大学;2010.
    [19] Wang H. Formation of nascent soot and other condensed‐phase materials in flames. Proceedings ofthe Combustion Institute2011;33:41.
    [20]应用化工动力学:化学工业出版社;2003.
    [21]李作骏.多相催化反应动力学基础.北京:北京大学出版社;1990.
    [22] Liu W‐J, Zeng F‐X, Jiang H, Zhang X‐S. Preparation of high adsorption capacity bio‐chars from wastebiomass. Bioresource Technology2011;102:8247.
    [23]刘惠永,徐旭常,姚强,张爱云.燃煤电厂飞灰碳含量与PAHs有机污染物吸附量之间相关性研究.热能动力工程2001:359.
    [24] J.B.Howard. Fundamentals of coal pyrolysis and hydropyrolysis. New York: John Wiley and Sons;1981.
    [25] Azhar Uddin M, Tsuda H, Wu S, Sasaoka E. Catalytic decomposition of biomass tars with iron oxidecatalysts. Fuel2008;87:451.
    [26] Devi L, Ptasinski KJ, Janssen FJJG. Pretreated olivine as tar removal catalyst for biomass gasifiers:investigation using naphthalene as model biomass tar. Fuel Processing Technology2005;86:707.
    [1] Devi L, Ptasinski KJ, Janssen FJJG, van Paasen SVB, Bergman PCA, Kiel JHA. Catalytic decompositionof biomass tars: use of dolomite and untreated olivine. Renewable Energy2005;30:565.
    [2] Miyazawa T, Kimura T, Nishikawa J, Kunimori K, Tomishige K. Catalytic properties of Rh/CeO2/SiO2for synthesis gas production from biomass by catalytic partial oxidation of tar. Science and Technology ofAdvanced Materials2005;6:604.
    [3] Tamai H, Kataoka Y, Nishiyama F, Yasuda H. Characteristics and catalytic activity of carbons obtainedfrom pitch containing noble metal complexes. Carbon2000;38:899.
    [4] Zhang R, Brown RC, Suby A, Cummer K. Catalytic destruction of tar in biomass derived producer gas.Energy Conversion and Management2004;45:995.
    [5]张晓东,骆仲泱,周劲松,陈花,岑可法.焦油催化裂化催化剂积炭失活的实验研究.燃料化学学报2004;32:542.
    [6] Yoon SJ, Choi Y‐C, Lee J‐G. Hydrogen production from biomass tar by catalytic steam reforming.Energy Conversion and Management;51:42.
    [7] Myrén C, H rnell C, Bj rnbom E, Sj str m K. Catalytic tar decomposition of biomass pyrolysis gaswith a combination of dolomite and silica. Biomass and Bioenergy2002;23:217.
    [8] Lu J, Fu B, Kung MC, Xiao G, Elam JW, Kung HH, et al. Coking‐and Sintering‐Resistant PalladiumCatalysts Achieved Through Atomic Layer Deposition. Science2012;335:1205.
    [9] Furusawa T, Tsutsumi A. Comparison of Co/MgO and Ni/MgO catalysts for the steam reforming ofnaphthalene as a model compound of tar derived from biomass gasification. Applied Catalysis A: General2005;278:207.
    [10] Kong M, Fei J, Wang S, Lu W, Zheng X. Influence of supports on catalytic behavior of nickel catalystsin carbon dioxide reforming of toluene as a model compound of tar from biomass gasification.Bioresource Technology2011;102:2004.
    [11] Park HJ, Park SH, Sohn JM, Park J, Jeon J‐K, Kim S‐S, et al. Steam reforming of biomass gasificationtar using benzene as a model compound over various Ni supported metal oxide catalysts. BioresourceTechnology2010;101:S101.
    [12] Yue B, Wang X, Ai X, Yang J, Li L, Lu X, et al. Catalytic reforming of model tar compounds from hotcoke oven gas with low steam/carbon ratio over Ni/MgO‐Al2O3catalysts. Fuel Processing Technology2010;91:1098.
    [13] Devi L, Ptasinski KJ, Janssen FJJG. Pretreated olivine as tar removal catalyst for biomass gasifiers:investigation using naphthalene as model biomass tar. Fuel Processing Technology2005;86:707.
    [14] Juneja A, Mani S, Kastner J. Catalytic Cracking of Tar using BioChar as a Catalyst.2010ASABE AnnualInternational Meeting. Pittsburgh, Pennsylvania;2010.
    [15]彭军霞,赵增立,潘守聚,李海滨.生物质焦催化裂解萘和苯酚的实验.农业机械学报2010;41.
    [16]王磊,吴创之,赵增立.热解焦对生物质焦油催化裂解的影响太阳能学报2006;27:514.
    [17] Henriksen U, Ahrenfeldt J, Jensen TK, G bel B, Bentzen JD, Hindsgaul C, et al. The design,construction and operation of a75kW two‐stage gasifier. Energy2006;31:1542.
    [18] Su Y, Yonghao L. Experiment on rice straw gasification in a two‐stage gasifier. Wuhan, China: Inst. ofElec. and Elec. Eng. Computer Society;2009, p. Wuhan University; IEEE Power and Energy Society;Chinese Society for Electrical Engineering; Scientific Research Publishing.
    [19] Fagbemi L, Khezami L, Capart R. Pyrolysis products from different biomasses: application to thethermal cracking of tar. Applied Energy2001;69:293.
    [20] Chen Y, Luo Y‐h, Wu W‐g, Su Y. Experimental Investigation on Tar Formation and Destruction in aLab‐Scale Two‐Stage Reactor. Energy&Fuels2009;23:4659.
    [21] Ledesma EB, Marsh ND, Sandrowitz AK, Wornat MJ. Global Kinetic Rate Parameters for theFormation of Polycyclic Aromatic Hydrocarbons from the Pyrolyis of Catechol, A Model CompoundRepresentative of Solid Fuel Moieties. Energy&Fuels2002;16:1331.
    [22] Brandt P, Larsen E, Henriksen U. High Tar Reduction in a Two‐Stage Gasifier. Energy&Fuels2000;14:816.
    [23] Badger GM. The formation of aromatic hydrocarbons at high temperatures. The pyrolysis ofanthracene. Australian Journal of Chemistry1964;17:1147.
    [24] Zhang Y, Kajitani S, Ashizawa M, Oki Y. Tar destruction and coke formation during rapid pyrolysis andgasification of biomass in a drop‐tube furnace. Fuel;In Press, Uncorrected Proof.
    [25] Han J, Kim H. The reduction and control technology of tar during biomass gasification/pyrolysis: Anoverview. Renewable and Sustainable Energy Reviews2008;12:397.
    [26] Devi L, Ptasinski KJ, Janssen FJJG. A review of the primary measures for tar elimination in biomassgasification processes. Biomass and Bioenergy2003;24:125.
    [27] Zhang J, Wang Y, Dong L, Gao S, Xu G. Decoupling Gasification: Approach Principle and TechnologyJustification. Energy&Fuels2010;24:6223.
    [28] Mitsuoka K, Hayashi S, Amano H, Kayahara K, Sasaoaka E, Uddin MA. Gasification of woody biomasschar with CO2: The catalytic effects of K and Ca species on char gasification reactivity. Fuel ProcessingTechnology2011;92:26.
    [29] Keown DM, Hayashi J‐i, Li C‐Z. Effects of volatile‐char interactions on the volatilisation of alkali andalkaline earth metallic species during the pyrolysis of biomass. Fuel2008;87:1187.
    [30] Keown DM, Favas G, Hayashi J‐i, Li C‐Z. Volatilisation of alkali and alkaline earth metallic speciesduring the pyrolysis of biomass: differences between sugar cane bagasse and cane trash. BioresourceTechnology2005;96:1570.
    [31] Zolin A, Jensen A, Jensen PA, Frandsen F, Dam‐Johansen K. The Influence of Inorganic Materials onthe Thermal Deactivation of Fuel Chars. Energy&Fuels2001;15:1110.
    [32] Abu El‐Rub Z, Bramer EA, Brem G. Experimental comparison of biomass chars with other catalystsfor tar reduction. Fuel2008;87:2243.
    [33] Lv PM, Xiong ZH, Chang J, Wu CZ, Chen Y, Zhu JX. An experimental study on biomass air‐steamgasification in a fluidized bed. Bioresource Technology2004;95:95.
    [34] Keown DM, Hayashi J‐I, Li C‐Z. Drastic changes in biomass char structure and reactivity uponcontact with steam. Fuel2008;87:1127.
    [35] Babu BV, Sheth PN. Modeling and simulation of reduction zone of downdraft biomass gasifier:Effect of char reactivity factor. Energy Conversion and Management2006;47:2602.
    [36] Koenig PC, Squires RG, Laurendeau NM. Effect of potassium carbonate on char gasification bycarbon dioxide. Journal Name: J Catal;(United States); Journal Volume:100:11986:Medium: X; Size:Pages:228.
    [37] Van de steene L, Tagutchou JP, Mermoud F, Martin E, Salvador S. A new experimental ContinuousFixed Bed Reactor to characterise wood char gasification. Fuel2010;89:3320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700