沉淀强化铜合金的制备及组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文包括两部分内容,主要工作为沉淀强化Cu-Cr-Y和Cu-Cr-Zr-Y合金材料的研究,其次初步探讨了在Fe-Cr-C耐磨堆焊药芯焊丝中添加B、W来取代价格昂贵的Nb元素。主要研究内容如下:
     1、分析了热处理对Cu-0.8Cr--0.05Y合金组织及性能的影响,Cu-0.8Cr-0.05Y合金经固溶处理+70%变形+480℃时效24min后,可获得良好的综合性能,显微硬度达到143HV,导电率达到84%IACS;时效后的Cu-0.8Cr-0.05Y合金存在两种强化Cr颗粒,一种是在铸造及固溶过程当中由于没有溶解到铜基体中的粗大Cr颗粒,另一种是时效过程中过饱和固溶体分解析出的细小弥散颗粒,这部分细小弥散的颗粒对合金的强化效果起主要作用。
     2、比较了Cu-0.8Cr-0.05Y两种热处理工艺(铸态+冷变形+时效和铸态+固溶+冷变形+时效)对合金析出特性的差异,由于铸态冷却过程中就有一部分细小弥散Cr颗粒析出,强化了合金的硬度,固溶处理后析出的细小弥散Cr颗粒发生聚集长大并粗化,削弱了固溶后合金的硬度;采用铸态+冷变形+时效工艺使得时效过程中再结晶的延迟进一步强化了合金硬度;合金经铸态+90%冷变形+480。C时效30min处理,显微硬度达到150HV,导电率达至90%IACS,综合性能匹配良好。
     3、分析了添加微量Zr元素的Cu-0.8Cr-0.05Y合金冷变形时效行为,结果表明:Zr元素的加入,可以显著改善合金的显微组织,细化晶界,减少Cu-Cr共晶组织的产生,提高合金的显微硬度并提高合金的热稳定性,Zr的加入可以抑制合金时效过程中Cr析出相的长大,细化Cr析出相,从而提高合金强度,并且能有效的保持强度。但添加量不宜过多,过多反而导致显微组织恶化及性能的降低,其加入量在0.2wt%,经90%冷轧变形,在480℃时效,60min后,显微硬度可达198HV,导电率达81%IACS,可以获得优良的硬度与导电率匹配的综合性能。
     4、对Cu-1.0Cr-0.3Zr-0.05Y合金铸态显微组织进行研究Cu-1.0Cr-0.3Zr-0.05Y铸态组织为典型的枝晶,晶内主要由Cu基体和初生的纯Cr相组成;稀土Y主要偏聚于晶界形成Y2O3、Cu5Y,Y2O3的存在能够对铜基体起到净化作用;在晶界处主要组成物为Y2O3、Cu2O、Cu5Y、Cu5Zr及复杂的多元共晶组织。对Cu-1.0Cr-0.05Y和Cu-1.0Cr-0.3Zr-0.05Y合金采用不同热处理工艺,研究了热处理工艺后合金的时效行为。
     5、在上述研究结果的基础上,选择综合性能较好的Cu-Cr系合金进行抗氧化性能研究。合金在latmO2中连续氧化,氧化膜结构主要由最外层暗灰色的CuO、内层亮灰色的Cu2O组成及靠近基体一侧多孔网状区处的白色亮点富含Cr、Zr的氧化物组成。并在Cu-0.8Cr-0.2Zr-0.15Y合金中出现了柱状晶的Cu2O层。
     添加Zr元素以后,时效过程中析出细小弥散的Cr、Zr第二相,且在400℃氧化会继续析出,有利于形成均匀的Cr2O3膜;Zr的添加在合金550℃抗氧化性并不明显,甚至比纯Cu的还要差,是由于氧化温度高于时效温度,时效过程中析出的弥散细小Cr、Zr等颗粒进一步聚集长大,使得形成连续选择性Cr2O3氧化膜能力相对较差,降低了合金的抗氧化性。晶粒细化影响了合金的抗氧化性,合金中Cr、Zr含量较低不容易形成保护性的氧化膜,因而在550℃下产生的再结晶晶粒细化反而会对氧化起到加速作用;对纯铜而言550℃下的再结晶晶粒长大,使得晶界扩散占比减小,反而降低了铜的氧化速率,这两方面的相互作用形成CrZr的添加在合金550℃抗氧化性并不明显。
     此外,本文还进行了以下研究工作:
     我们为取代A2#试样中价格昂贵的金属Nb,降低产生成本,制备出复合添加W、B的堆焊药芯焊丝,并对其显微组织及性能进行了分析。
     1、首先比较市售两种耐磨堆焊药芯焊丝的组织及性能,含Nb的A2#试样性能较好主要基于以下因素:首先NbC的显微硬度比M7C3显微硬度高达44%,分布在M7C3周围或镶嵌其中,起到耐磨骨架的支撑作用;其次碳含量和铌代替一部分铬含量的增加,合金成分偏离共晶线越远,在共晶反应过程中,初生相占比就越多,共晶组织在凝固组织中占比例相应的就减少,因而初生碳化物越来越多同时共晶组织相应的就减少,也是显微硬度增加的一个重要原因。此外Nb对共晶碳化物及基体的细化对性能的提高有一定的贡献。
     2、含W、B堆焊药芯焊丝,可以增加M7C3型初生碳化物的数量,由于W、B既可以形成碳化物,又能溶于固溶体,除可以增加钨碳化物、硼碳化物强化相数量增强基体硬度外,还由于两种元素都可以固溶在奥氏体中,有利于增加奥氏体的稳定性,导致试样冷却过程中基体中的马氏体数量增加,相应的基体硬度升高。含W、B的B1#试样水冷条件下堆焊层表面宏观硬度可达60.8HRC,与A2#含Nb的相当。W、B由于取代了价格昂贵的金属Nb大大降低了生产成本,而性能却没有降低。
This paper includes two parts, Study on Preparation and Micro structure Property of Precipitation Strengthening Cu Alloy. Boron and tungsten to replace the expensive Nb elements, and were added to Fe-Cr-C hardfacing alloy and its effect on the microstructure and microhardness of the alloy was studied. The main research contents are as follows:
     1. The influence of cold-worked and aging processes on the microstructures, mechanical properties and conductivity of Cu-Cr-Y alloy has been investigated. Cu-Cr-Y alloy has an excellent combination of microhardness and conductivity after cold working70%and aging at480℃for24min. The microhardness and conductivity is about143HV and84%IACS, respectively. There were two particles in the Cu-Cr-Y alloy:the coarser particles exist in the Cu-Cr-Y alloy before aged, the fine and dispersed distributed Cr precipitate, which form due to decomposition of the supersaturated solid solution during aging, is responsible for the peak maximum microhardness as it is predominantly present in the peak aged hardening condition.
     2. Two kind processing crafts to the casting Cu-0.8Cr-0.05Y alloys:casting+cold working+aging, and casting+solution treated+cold working+aging. The alloy after treated by casting+cold working+aging has more excellent properties because the second phase precipitates from the alloy and grows up before recrystallization during aging. The hardness and conductivity of the alloy are up to150HV and90%IACS respectively by cold working90%and aging at480℃for30min.
     3. The Cu-0.8Cr-0.05Y alloys containing different contents of Zr additions were treated with cold working and aging. Zr addition could obviously improve microstructures, refine grain boundary, decrease the eutectic of Cu-Cr alloy, increase the hardness and thermal stability. The addition of Zr was found to refine Cr particles and made Cr particles growing more slowly during aging, thus the strength of the alloys were improved. The hardness and electrical conductivity of the alloy cotaining 0.2%Zr addition are198HV and81%IACS respectively by cold worked90%aged at480℃for60min, has good combination of hardness and electrical conductivity.
     4. As-cast Microstructure of Cu-1.0Cr-0.3Zr-0.05Y Alloy was studied. The results show that as-cast microstructure of Cu-1.0Cr-0.3Zr-0.05Y alloy were dendritics; there are Cu matrix and primary of Cr inside the crystal. Rare earth Y distributed in grain boundaries and exists in form of Y2O3、Cu5Y. The existence of Y2O3can purify copper matrix. In the grain boundary there are Cu2O、Y2O3、Cu5Y、 Cu5Zr phase and complex eutectic structure. Comparison of Cu-1.0Cr-0.05Y and Cu-1.0Cr-0.3Zr-0.05Y alloy in different heat treatment of aging characteristics. Solution treatment could increase the effect of the aging treatment and result in decrease in the hardening of the alloys. The addition of Zr was fourd to refine the Cr particles and grow more slowly the Cr particles during the aging.
     5. Based on the above findings, choose good comprehensive performance and oxidation behaviour of Cu alloys with high performance were studied. Add a Zr element, aging precipitation dispersed Cr, Zr the second phase, is conducive to the formation of homogeneous Cr2O3film at400℃; The alloy with Zr antioxidant is not evident at550℃.The reason may be due to the oxidation temperature is higher than the aging temperature, small Cr, Zr particles further aggregation and growth during the aging of550℃, so as to form a continuous selective Cr2O3oxidation ability is relatively poor, reducing alloy oxidation resistance. The effects of grain refinement on oxidation resistance of the alloy. With low content of Cr, Zr is not easy to form a protective film at grain boundary; and at550℃the recrystallized grain refinement will speed up effect on oxidation of copper is550℃. Recrystallization grain growth, the grain boundary diffusion ratio decreases.
     In addition, this paper also conducts the following research work:
     The Nb was substituted in the A2#specimen for expensive. To prepare composite addition of W, B hardfacing flux cored wire, and its microstructure and properties were analyzed.
     1. The first comparison of two commercially available for wear resistant hardfacing flux-cored wire structure and properties, including Nb A2#sample performance better master, based on the following factors:the first NbC hardness higher than the M7C3microhardness reaches as high as44%, distribution around the M7C3or embedded therein, the wear-resisting framework supporting role; the second carbon content and niobium instead of a portion of the chromium content increases, alloy composition deviation of eutectic line farther, in the eutectic reaction process, primary phase ratio is more, eutectic structure in solidification structure proportion of corresponding reduced, thus increasing the primary carbide eutectic structure corresponding to the less, the hardness increase is one of the important reasons. In addition Nb on eutectic carbide and matrix of thinning effect on performance improvement of a certain contribution.
     2. With the addition of W, B, the microstructure of hardfacing alloy was increased the M7C3type primary carbide. Because W, B can form carbides, and can be dissolved in solid solution, except can increase tungsten carbide, boron carbide reinforcing phase reinforced matrix hardness number, also because the two element can be solid solubility in austenite, to increase the stability of austenite, resulting in the cooling process of the sample matrix martensite amount increases, the corresponding matrix hardness elevated.Including W, B B1#specimen overlay surface hardness up to60.8HRC, and A2#Nb containing considerable.W, B due to replace the expensive metal Nb can greatly reduce the production cost, and the performance is not reduced.
引文
[1]梁明,陈自力,卢亚锋,等.高强高导铜铌微观复合材料的微观结构与性能[J].稀有金属材料与工程,2009,38(10):1774-1777.
    [2]梁明,卢亚锋,张平祥,等.高强度高导电Cu-Nb微观复合材料的研究进展[J].材料导报,2009,23(17):75-79.
    [3]Botcharova E, Freudenberger J, Gaganov A, et al. Novel Cu-Nb-wires:Processing and characterisation[J]. Materials Science and Engineering:A,2006,416(1-2):261-268.
    [4]Spencer K, Lecouturier F, Thilly L, et al. Established and Emerging Materials for use as High-Field Magnet Conductors[J]. Advanced Engineering Materials,2004,6(5):290-297.
    [5]Dupouy F, Askenazy S, Peyrade J P, et al. Composite conductors for high pulsed magnetic fields[J]. Physica B:Condensed Matter,1995,211(1):43-45.
    [6]丁亮,赵国平.包芯线技术在Cu-Cr-Zr合金熔铸中的应用[J].特种铸造及有色合金,2011,31(9):870-873.
    [7]Shukla A K, Narayana Murty S V S, Suresh Kumar R, et al. Densification behavior and mechanical properties of Cu-Cr-Nb alloy powders[J]. Materials Science and Engineering:A.2012,551:241-248.
    [8]韩丽娟,李亚斐,郝留成,等.制备工艺对触头材料用Cu-Cr-Zr合金性能的影响[J].热加工工艺,2012,41(11):66-68.
    [9]Xia C, Jia Y, Zhang W, et al. Study of deformation and aging behaviors of a hot rolled-quenched Cu-Cr-Zr-Mg-Si alloy during thermomechanical treatments[J]. Materialsand Design,2012.39(0):404-409.
    [10]刘琳静,陈敬超,冯晶,等.高性能Cu-Cr-Zr合金接触导线材料的制备与性能[J].特种铸造及有色合金,2009,29(9):875-877.
    [11]Tu J P, Qi W X, Yang Y Z, et al. Effect of aging treatment on the electrical sliding wear behavior of Cu-Cr-Zr alloy[J]. Wear,2001,249(10-11):1021-1027.
    [12]张毅.微合金化高性能Cu-Ni-Si系引线框架材料的研究[D].西安理工大学,2009.
    [13]Xia C D, Zhang W, Kang Z Y, et al. High strength and high electrical conductivity Cu-Cr system alloys manufactured by hot rolling-quenching process and thermomechanical treatments[J]. Materials Science and Engineering:A,2012,538:295-301.
    [14]Deng J, Zhang X, Shang S, et al. Effect of Zr addition on the microstructure and properties of Cu-10Cr in situ composites [J]. Materials and Design,2009,30(10):4444-4449.
    [15]彭涛,辜承林.脉冲强磁场发展技术[J].核技术,2003,26(3):185-188.
    [16]Herlach F. Laboratory electromagnets-from Oersted to megagauss[J]. Physica B:Condensed Matter,2002,319(1-4):321-329.
    [17]彭涛,辜承林.脉冲强磁体导体材料研究[J].材料导报,2004,18(1):6-9.
    [18]雷若姗,汪明朴,郭明星,等.形变复合法制备高强高导纳米Cu-Nb合金的研究进展[J].材料导报,2008,22(2):42-45.
    [19]Liu J B, Meng L, Zeng Y W. Microstructure evolution and properties of Cu-Ag microcomposites with different Ag content[J]. Materials Science and Engineering:A, 2006,435-436:237-244.
    [20]Raabe D, Miyake K, Takahara H. Processing, microstructure, and properties of ternary high-strength Cu-Cr-Ag in situ composites[J]. Materials Science and Engineering:A, 2000,291(1-2):186-197.
    [21]Sohn K Y. The influence of microstructure on the strength and electrical conductivity of directionally-solidified Cu-Ag microcomposites[D]. University of Florid,1997.
    [22]Freudenberger J, Lyubimova J, Gaganov A, et al. Non-destructive pulsed field CuAg-solenoids[J]. Materials Science and Engineering:A,2010,527(7-8):2004-2013.
    [23]Liu J B, Zhang L, Dong A P, et al. Effects of Cr and Zr additions on the microstructure and properties of Cu-6wt.%Ag alloys[J]. Materials Science and Engineering:A,2012,532(0): 331-338.
    [24]Heringhaus F, Schneider-Muntau H, Gottstein G. Analytical modeling of the electrical conductivity of metal matrix composites:application to Ag-Cu and Cu-Nb[J]. Materials Science and Engineering:A,2003,347(1-2):9-20.
    [25]Pantsyrnyi V, Shikov A, Vorobieva A, et al. High strength, high conductivity macro-and microcomposite winding wires for pulsed magnets [J]. Physica B:Condensed Matter, 2001,294-295:669-673.
    [26]Botcharova E, Freudenberger J, Schultz L. Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu-Nb alloys[J]. Acta Materialia,2006,54(12):3333-3341.
    [27]Vidal V, Thilly L, Lecouturier F, et al. Cu nanowhiskers embedded in Nb nanotubes inside a multiscale Cu matrix:The way to reach extreme mechanical properties in high strength conductors[J]. Scripta Materialia,2007,57(3):245-248.
    [28]Lei R, Wang M, Guo M, et al. Microstructure evolution and thermal stability of nanocrystalline Cu-Nb alloys during heat treatment[J]. Transactions of Nonferrous Metals Society of China,2009,19(2):272-276.
    [29]Cui B Z, Xin Y, Han K. Structure and transport properties of nanolaminate Cu-Nb composite foils by a simple fabrication route[J]. Scripta Materialia,2007,56(10):879-882.
    [30]彭涛,李亮.65T脉冲强磁体设计与实验研究[J].强激光与粒子束,2010,22(1):225-228.
    [31]马莒生,黄福祥,黄乐,等.铜基引线框架材料的研究与发展[J].功能材料,2002,33(1):1-4.
    [32]Tomioka Y, Miyake J. A copper alloy development for leadframe:Electronic Manufacturing Technology Symposium,1995, Proceedings of 1995 Japan International, 18th IEEE/CPMT International,1995[C].
    [33]赵冬梅,董企铭,刘平,等.铜合金引线框架材料的发展[J].材料导报,2001,15(5): 18-20.
    [34]刘凯,齐亮,谢春晓.IC引线框架材料概述[J].热处理,2006,21(2):21-24.
    [35]邬震泰.半导体器件引线框架材料的现状与发展[J].材料科学与工程,2001,19(3):127-130.
    [36]龙红军,杨元政,陈小祝,等.引线框架用铜合金C194的制备与性能研究[J].热加工工艺,2009,38(16):125-128.
    [37]陈小红,李炎,田保红,等.铜基引线框架材料C194合金的析出相研究[J].铸造,2006,55(5):513-515.
    [38]刘平,顾海澄,曹兴国.铜基集成电路引线框架材料的发展概况[J].材料开发与应用,1998,13(3):39-43.
    [39]王碧文.大规模集成电路引线框架材料发展动向及对策[J].有色金属,1997,49(3):96-100.
    [40]赵大军,唐丽,管桂生.我国电气化铁道用接触线的现状和发展趋势[J].铁道机车车辆,2008,28(5):74-77.
    [41]李华清,谢水生.轨道交通专用铜合金接触导线的研究进展[J].特种铸造及有色合金,2005,25(12):729-731.
    [42]丁雨田,李来军,许广济,等.接触线材料的现状及研究热点[J].电线电缆,2004(2):3-9.
    [43]黄崇祺.轮轨高速电气化铁路接触网用接触线(电车线)的发展,选型和国产化[J].机电产品开发与创新,1999,55(2):1-3.
    [44]王永鹏,宋克兴,国秀花,等.高速电气化铁路接触导线的应用现状及研究进展[J].热加工工艺,2009,38(14):32-35.
    [45]赵媛霞,刘平,刘新宽,等.高速电气化铁路接触线的研究与应用[J].材料导报,2012,26(2):46-50.
    [46]松山晋作.集电装置材料的演变—受电弓滑板和接触网导线[J].国外机车车辆工艺,2003(3):1-8.
    [47]AKIYAMA Y.,赵学慧译.世界高速铁路[J].电气化铁道,1996(1):1-6.
    [48]李晓峰.高速电气化列车高强高导接触线用Cu-Cr-Zr合金组织和性能[D].浙江大学,2011.
    [49]贾淑果,任伟,郭望望,等.纯铜接触线材料的组织和性能[J].河南科技大学学报(自然科学版),2009,30(6):5-7.
    [50]温宏权,毛协民,徐匡迪,等.铜电车线材料的研究进展[J].材料导报,1998,12(1):25-28.
    [51]黄崇祺.轮轨高速电气化铁路接触网用接触线的研究[J].中国铁道科学,2001,22(1):6-10.
    [52]支海军,徐玉松,陆敏松,等.高速电气化铁道用铜锡合金接触线成形工艺的确定[J].机械工程材料,2011,35(10):76-79.
    [53]吴承玲,王云飞,赵大军.连铸连轧法生产高速电气化铁路铜银合金接触线[J].新技术新工艺,2009(1):51-52.
    [54]Watanabe C, Monzen R, Tazaki K. Mechanical properties of Cu-Cr system alloys with and without Zr and Ag[J]. Journal of Materials Science,2008,43(3):813-819.
    [55]赵大军.高速电气化铁道用铜锡合金接触线的开发[J].中国有色冶金,2007(5):56-59.
    [56]张强.高速用铜镁合金接触线的研究[J].铁道机车车辆,1999(6):15-17.
    [57]刘强,崔建忠,许光明,等.杂质元素及加工工艺对无氧铜接触线性能的影响[J].东北大学学报,2005,26(3):240-243.
    [58]杨斌,李明茂.适用于高速电气化铁路的铜合金接触线[J].铁道机车车辆,2005,25(1):68-70.
    [59]李贵茂,王恩刚,张林,等.形变原位Cu-Ag复合材料的研究进展[J].材料导报,2010,24(5):80-84.
    [60]雷静果,刘平,井晓天,等.高速铁路接触线用时效强化铜合金的发展[J].金属热处理,2005,30(3):1-5.
    [61]张强,宋卫星.我国铜及铜合金接触线与承力索的研究和创新[J].现代城市轨道交通,2004(2):18-21.
    [62]黄崇祺.中国电力牵引用接触线(电车线)的发展[J].中国铁道科学,2003,24(5):61-65.
    [63]胡会军,蔡庆辉,王洪兵.宝钢板坯连铸结晶器使用技术实践[J].宝钢技术,2008(4):59-62.
    [64]岳灿甫.连铸结晶器铜板及表面处理技术进展[J].材料开发与应用,201](1):56-60.
    [65]高泽平.连铸结晶器铜板及镀层的应用进展[J].特殊钢,2007,28(4):39-41.
    [66]崔振铎,刘华山.金属材料及热处理[M].长沙:中南大学出版社,2010.
    [67]赵冬梅,董企铭,刘平,等.探索高强高导铜合金最佳成分的尝试[J].功能材料,2001,32(6):609-611.
    [68]Mu S G, Guo F A, Tang Y Q, et al. Study on microstructure and properties of aged Cu-Cr-Zr-Mg-RE alloy[J]. Materials Science and Engineering:A,2008,475(1-2):235-240.
    [69]Yu F X, Cheng J Y,Ao X W. Aging characteristic of Cu-0.6Cr-0.15Zr-0.05Mg-0.02Si alloy containing trace rare earth yttrium[J]. Rare Metals,2011,30(5):539-543.
    [70]Fenici P, Boerman D J, Tartaglia G P, et al. Effect of fast-neutron irradiation on tensile properties of precipitation-hardened Cu-Cr-Zr alloy[J]. Journal of Nuclear Materials, 1994,212-215, Part 1(0):399-403.
    [71]Leon K V, Munoz-Morris M A, Morris D G. Optimisation of strength and ductility of Cu-Cr-Zr by combining severe plastic deformation and precipitation[J]. Materials Science and Engineering:A,2012,536(0):181-189.
    [72]程智刚,王自东,林国标,等.热处理工艺对Cu-Cr-Zr合金组织及性能的影响[J].铸造,2008,57(2):122-125.
    [73]杜忠泽,李明山,王庆娟,等.等径弯曲通道变形制备高性能Cu-Cr合金的组织性能[J].材料热处理学报,2008,29(6):120-124.
    [74]马旭,王顺兴,刘勇,等.变形量对Cu-Cr-Zr合金等温时效动力学的影响[J].热加工工艺,2009,38(8):10-12.
    [75]潘志勇,汪明朴,李周,等.超高强度Cu-5.2Ni-1.2Si合金的形变热处理[J].中国有色 金属学报,2007,17(11):1821-1826.
    [76]钟建伟,周海涛,赵仲恺,等.形变热处理对Cu-Cr-Zr合金时效组织和性能的影响[J].中国有色金属学报,2008,18(6):1032-1038.
    [77]Fernee H, Nairn J, Atrens A. Cold worked Cu-Fe-Cr alloys[J]. Journal of materials science, 2001,36(22):5497-5510.
    [78]冯江,田保红,孙永伟,等Al2O3/Cu-WC复合材料载流磨损性能研究[J].金属热处理,2012,37(3):66-69.
    [79]Takada J, Miyawaki S, Kamata K, et al. High-temperature Deformation of (001) Single-crystals in Cu-Al2O3 Alloy [J]. Transactions of The Japan Institute of Metals, 1984,25(11):784-796.
    [80]田保红,周洪雷,张毅,等.Al2O3弥散强化铜/铬复合材料的强化机理[J].材料热处理学报,2011,32(6):13-17.
    [81]苏凡凡,张旦闻,赵冬梅,等.内氧化法制备Al2O3弥散强化铜合金的组织和性能[J].特种铸造及有色合金,2009,29(7):677-679.
    [82]田保红,周洪雷,刘勇,等.真空热压烧结Al2O3/Cu-Cr复合材料的组织与性能[J].特种铸造及有色合金,2009,29(2):166-169.
    [83]杨争,田保红,刘勇,等.内氧化制备Cu-Al2O3/(Ce+Y)复合材料薄板带的组织和性能[J].材料热处理学报,2010,31(10):5-9.
    [84]张晓楠,赵冬梅,董企铭,等.内氧化制备Al2O3/Cu复合材料组织性能研究[J].特种铸造及有色合金,2007,27(2):142-144.
    [85]姜锋,陈小波,蒋龙,等.铬锆微合金化高强高导铜合金的研究进展[J].热加工工艺,2009,38(2):1-5.
    [86]Jayakumar P K, Balasubramanian K, Tagore G R. Recrystallisation and bonding behaviour of ultra fine grained copper and Cu-Cr-Zr alloy using ECAP[J]. Materials Science and Engineering:A,2012,538:7-13.
    [87]Kapoor K, Lahiri D, Batra I S, et al. X-ray diffraction line profile analysis for defect study in Cu-1 wt.%Cr-0.1 wt.%Zr alloy[J]. Materials Characterization,2005,54(2):131-140.
    [88]Leon K V, Munoz-Morris M A, Morris D G. Optimisation of strength and ductility of Cu-Cr-Zr by combining severe plastic deformation and precipitation[J]. Materials Science and Engineering:A,2012,536:181-189.
    [89]Li H, Xie S, Wu P, et al. Study on improvement of conductivity of Cu-Cr-Zr alloys[J]. Rare Metals,2007,26(2):124-130.
    [90]Lin G B, Wang Z D, Zhang M K, et al. Heat treatment method for making high strength and conductivity Cu-Cr-Zr alloy[J]. Materials Science and Technology,2011,27(5): 966-969.
    [91]Xia C D, Jia Y L, Zhang W, et al. Study of deformation and aging behaviors of a hot rolled-quenched Cu-Cr-Zr-Mg-Si alloy during thermomechanical treatments[J]. Materials and Design,2012,39:404-409.
    [92]Saglam I, Ozyurek D, Cetinkaya K. Effect of ageing treatment on wear properties and electrical conductivity of Cu-Cr-Zr alloy[J]. Bulletin of Materials Science,2011,34(7): 1465-1470.
    [93]刘勇,刘平,董企铭,等.变形量对接触线用Cu-Cr-Zr-Y合金时效特性和力学性能的影响[J].中国有色金属学报,2006,16(3):417-421.
    [94]苏娟华,董企铭,刘平,等.引线框架Cu-Cr-Zr-Mg合金二级变形时效工艺[J].金属热处理,2006,31(8):76-79.
    [95]程天一,章守华.快速凝固技术与新型合金[M].北京:宇航出版社,1990.
    [96]Correia J B, Davies H A, Sellars C M. Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys[J]. Acta Materialia,1997,45(1):177-190.
    [97]Batawi E, Biselli C, Gunther S, et al. Thermomechanical processing of spray-formed Cu-Cr-Zr alloy[J]. Scripta Metallurgica et Materialia,1993,29(6):765-769.
    [98]Stobrawa J, Ciura L, Rdzawski Z. Rapidly solidified strips of Cu-Cr alloys[J]. Scripta Materialia,1996,34(11):1759-1763.
    [99]Tenwick M J, Davies H A. Enhanced strength in high conductivity copper alloys[J]. Materials Science and Engineering,1988,98(0):543-546.
    [100]Xie M. Liu J, Lu X, et al. Investigation on the Cu-Cr-RE alloys by rapid solidification[J]. Materials Science and Engineering:A,2001,304-306(0):529-533.
    [101]Xie M, Liu J, Lu X, et al. Study of rapidly solidified Cu-Cr-RE alloys[J]. Science and Technology of Advanced Materials,2001,2(1):79-82.
    [102]Sun Z B, Wang Y H, Guo J, et al. Liquid and solid phase separation during melt spinning and annealing in melt-spun Cu-Cr ribbons[J]. Materials Science and Engineering:A, 2007,452:411-416.
    [103]Bevk J, Harbison J P, Bell J L. Anomalous increase in strength o f in situ formed Cu-Nb multifilamentary composite[J]. Journal Applied Physics,1978,49(12):6031-6038.
    [104]Zhang L, Meng L. Evolution of microstructure and electrical resistivity of Cu-12wt.%Ag filamentary microcomposite with drawing deformation[J]. Scripta Materialia,2005,52(12): 1187-1191.
    [105]Raabe D, Mattissen D. Microstructure and mechanical properties of a cast and wire-drawn ternary Cu-Ag-Nb in situ composite[J]. Acta Materialia,1998,46(16):5973-5984.
    [106]Liu J B, Zeng Y W, Meng L. Crystal structure and morphology of a rare-earth compound in Cu-12wt.%Ag[J]. Journal of Alloys and Compounds,2009,468(1-2):73-76.
    [107]Song J S, Kim H S, Lee C T, et al. Deformation processing and mechanical properties of Cu-Cr-X (X=Ag or Co) microcomposites[J]. Journal of Materials Processing Technology, 2002,130-131(0):272-277.
    [108]Gao H, Wang J, Sun B. Effect of Ag on the thermal stability of deformation processed Cu-Fe in situ composites [J]. Journal of Alloys and Compounds,2009,469(1-2):580-586.
    [109]Gao H, Wang J, Shu D, et al. Microstructure and strength of Cu-Fe-Ag in situ composites[J]. Materials Science and Engineering:A,2007,452-453(0):367-373.
    [110]张雷.纤维相增强Cu-Ag合金的显微组织及力学和电学性能[D].浙江大学,2005.
    [111]Sakai Y, Schneider-Muntau H J. Ultra-high strength, high conductivity Cu-Ag alloy wires[J]. Acta Materialia,1997,45(3):1017-1023.
    [112]Sakai Y, Inoue K, Maeda H. New high-strength, high-conductivity Cu-Ag alloy sheets[J]. Acta Metallurgica et Materialia,1995,43(4):1517-1522.
    [113]刘嘉斌,张雷,孟亮.稀土元素在Cu-12%Ag合金中形成的化合物及对合金退火性能的影响[J].中国有色金属学报,2008,18(5):845-850.
    [114]Lin J, Meng L. Effect of aging treatment on microstructure and mechanical properties of Cu-Ag alloys[J]. Journal of Alloys and Compounds,2008,454(1-2):150-155.
    [115]Zhang L, Meng L. Microstructure, mechanical properties and electrical conductivity of Cu-12 wt.%Ag wires annealed at different temperature[J]. Materials Letters,2004,58(30): 3888-3892.
    [116]Song J S, Hong S I, Park Y G. Deformation processing and strength/conductivity properties of Cu-Fe-Ag microcomposites[J], Journal of Alloys and Compounds,2005,388(1):69-74.
    [117]Hong S I, Song J S, Kim H S. Thermo-mechanical processing and properties of Cu-9Fe-1.2Co microcomposite wires[J]. Scripta Materialia,2001,45(11):1295-1300.
    [118]Song J S, Hong S I, Kim H S. Heavily drawn Cu-Fe-Ag and Cu-Fe-Cr microcomposites[J]. Journal of Materials Processing Technology,2001,113(1-3):610-616.
    [119]Song J S, Hong S I. Strength and electrical conductivity of Cu-9Fe-1.2Co filamentary microcomposite wires[J]. Journal of Alloys and Compounds,2000,311(2):265-269.
    [120]Hong S I, Song J S. Strength and conductivity of Cu-9Fe-1.2 X (X= Ag or Cr) filamentary microcomposite wires[J]. Metallurgical and Materials Transactions A,2001,32(4):985-991.
    [121]葛继平,姚再起,刘书华.合金元素对形变Cu-Fe原位复合材料性能的影响[J].材料热处理学报,2005,26(1):14-19.
    [122]葛继平,姚再起.高强度高导电的形变Cu-Fe原位复合材料[J].中国有色金属学报,2004,14(4):568-573.
    [123]Segal V M, R.eznikov V I, Drobyshevskii A E, et al. Plastic working of metals by simple shear[J]. Russ. Met.,1981(1):99-105.
    [124]Valiev R Z, Korznikov A V, Mulyukov R R. Structure and properties of ultrafine-grained materials produced by severe plastic deformation[J]. Materials Science and Engineering:A, 1993,168(2):141-148.
    [125]Valiev R Z, Krasilnikov N A, Tsenev N K. Plastic deformation of alloys with submicron-grained structure[J]. Materials Science and Engineering:A,1991,137(0):35-40.
    [126]Mani B, Jahedi M, Paydar M H. Consolidation of commercial pure aluminum powder by torsional-equal channel angular pressing (T-ECAP) at room temperature[J]. Powder Technology,2012,219(0):1-8.
    [127]Kim H S, Kim W Y, Song K H. Effect of post-heat-treatment in ECAP processed Cu-40%Zn brass[J]. Journal of Alloys and Compounds,2012,536, Supplement 1(0):S200-S203.
    [128]Stolyarov V V, Zhu Y T, Lowe T C, et al. Microstructure and properties of pure Ti processed by ECAP and cold extrusion[J]. Materials Science and Engineering:A, 2001,303(1-2):82-89.
    [129]An X H, Lin Q Y, Wu S D, et al. The influence of stacking fault energy on the mechanical properties of nanostructured Cu and Cu-Al alloys processed by high-pressure torsion[J]. Scripta Materialia,2011,64(10):954-957.
    [130]Tian Y Z, An X H, Wu S D, et al. Direct observations of microstructural evolution in a two-phase Cu-Ag alloy processed by high-pressure torsion[J]. Scripta Materialia, 2010,63(1):65-68.
    [131]Zhao Y H, Guo Y Z, Wei Q, et al. Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu[J]. Scripta Materialia,2008,59(6):627-630.
    [132]刘英,李元元,张大童.金属材料的等通道转角挤压研究进展[J].材料科学与工程,2002(4):613-617.
    [133]许方山.等径角挤压接触线用Cu-Cr-Zr合金的研究[D].南京理工大学,2012.
    [134]杜忠泽,李明山,王庆娟,等.等径弯曲通道变形制备高性能Cu-Cr合金的组织性能[J].材料热处理学报,2008,29(6):120-124.
    [135]Alexander D J, Beyerlein I J. Anisotropy in mechanical properties of high-purity copper processed by equal channel angular extrusion[J]. Materials Science and Engineering:A, 2005,410-411 (0):480-484.
    [136]Jayakumar P K, Balasubramanian K, Rabindranath Tagore G. Recrystallisation and bonding behaviour of ultra fine grained copper and Cu-Cr-Zr alloy using ECAP[J], Materials Science and Engineering:A,2012,538(0):7-13.
    [137]Dahmen U, Witcomb M J, Westmacott K H. Morphology of Cr precipitates in an overaged Cu-0.3% Cr alloy[J]. Scripta Metallurgica,1988,22(12):1867-1872.
    [138]Luo C P. Dahmen U, Westmacott K H. Morphology and crystallography of Cr precipitates in a Cu-0.33 wt%Cr alloy[J]. Acta Metallurgica et Materialia,1994,42(6):1923-1932.
    [139]Fujii T, Nakazawa H, Kato M, et al. Crystallography and morphology of nanosized Cr particles in a Cu-0.2% Cr alloy[J]. Acta Materialia,2000,48(5):1033-1045.
    [140]Weatherly G C, Humble P, Borland D. Precipitation in a Cu-0,55 wt.% Cr alloy[J]. Acta Metallurgica,1979,27(12):1815-1828.
    [141]Jacob K T, Priya S, Waseda Y. Thermodynamic study of liquid Cu-Cr alloys and metastable liquid immiscibility[J]. Zeitschrift fuer Metallkunde,2000,91(7):594-600.
    [142]Sun Z, Wang Y, Guo J, et al. Liquid and solid phase separation during melt spinning and annealing in melt-spun Cu-Cr ribbons[J]. Materials Science and Engineering:A,2007, 452-453:411-416.
    [143]Zeng K, Hamalainen M. Thermodynamic analysis of stable and metastable equilibria in the Cu-Cr system[J]. Calphad,1995,19(1):93-104.
    [144]Morris M A, Morris D G. Microstructures and mechanical properties of rapidly solidified Cu-Cr alloys[J]. Acta Metallurgica,1987,35(10):2511-2522.
    [145]Komem Y, J R. Precipitation at coherency loss in Cu-0.35 wt pct Cr[J]. Metallurgical Transactions A,1975,6(3):549-551.
    [146]Chbihi A, Sauvage X, Blavette D. Atomic scale investigation of Cr precipitation in copper[J]. Acta Materialia,2012,60(11):4575-4585.
    [147]李强,陈敬超,孙加林.过饱和铜铬合金的时效过程结构演变研究[J].稀有金属材料与工程,2006(S2):259-262.
    [148]李强,陈敬超,孙加林.过饱(?)Cu-Cr合金时效过程中的亚稳结构[J].稀有金属与硬质合金,2006,34(4):1-5.
    [149]Fuxiang H, Jusheng M, Honglong N, et al. Analysis of phases in a Cu-Cr-Zr alloy[J]. Scripta Materialia,2003,48(1):97-102.
    [150]Su J, Liu P, Li H, et al. Phase transformation in Cu-Cr-Zr-Mg alloy[J]. Materials Letters, 2007,61 (27):4963-4966.
    [151]Su J, Dong Q, Liu P, et al. Research on aging precipitation in a Cu-Cr-Zr-Mg alloy[J]. Materials Science and Engineering:A,2005,392(1-2):422-426.
    [152]Sun Z, Guo J, Song X, et al. Effects of Zr addition on the liquid phase separation and the microstructures of Cu-Cr ribbons with 18-22at.% Cr[J]. Journal of Alloys and Compounds, 2008,455(1-2):243-248.
    [153]Zeng K J, Hamalainen M. A theoretical study of the phase equilibria in the Cu-Cr-Zr system[J], Journal of Alloys and Compounds,1995,220(1-2):53-61.
    [154]Zeng K J, Hamalainen M, Lilius K. Phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram[J]. Scripta Metallurgica et Materialia,1995,32(12):2009-2014.
    [155]慕思国.高强高导Cu-Cr-Zr系合金制备新工艺及理论研究[D].中南大学,2008.
    [156]Xie H F, Mi X J. Huang G J, et al. Effect of thermomechanical treatment on microstructure and properties of Cu-Cr-Zr-Ag alloy[J]. Rare Metals,2011,30(6):650-656.
    [157]刘嘉斌,张雷,孟亮.稀土元素在Cu-12%Ag合金中形成的化合物及对合金退火性能的影响[J].中国有色金属学报,2008,18(5):845-850.
    [158]Wu Z, Zhang J, Chen Y, et al. Effect of rare earth addition on microstructural, mechanical and electrical characteristics of Cu-6%Fe microcomposites[J]. Journal of Rare Earths, 2009,27(1):87-91.
    [159]黄福祥,马莒生,耿志挺,等La,Fe(或Co)/Ti对Cu-Cr-Zr合金时效特性的影响[J].稀有金属材料与工程,2004,33(3):267-270.
    [160]刘勇,刘平.田保红,等.微量Ce和Y对Cu-Cr-Zr合金时效特性和电滑动磨损行为的影响[J].金属热处理,2007,32(3):22-24.
    [161]刘勇,刘平,康布熙,等.微量Ce对Cu-Cr-Zr合金性能的影响[J].稀土,2006,27(3):16-19.
    [162]刘勇,刘平,李伟,等Cu-Cr-Zr-Ce合金时效行为和电滑动磨损性能研究[J].摩擦学学报,2005,25(3):265-269.
    [163]刘道新.材料的腐蚀与防护[M].西安:西北工业大学,2006.
    [164]李晓刚.材料腐蚀与防护[G].长沙:中南大学出版社,2009.
    [165]Jaffe P M, Banks E. Oxidation states of europium in the alkaline earth oxide and sulfide pnospnors[J]. Journal of The Electrochemical Society,1955,102(9):518-523.
    [166]吕海波.铜铝合金氧化过程探讨[D].吉林大学,2010.
    [167]张轲,牛焱,李远士,等Cu-44%Cr-12%Fe合金在800℃不同氧分压下的氧化行为[J].中国有色金属学报,2004,14(2):184-188.
    [168]Lee W, Cho H, Cho B, et al. Factors affecting passivation of Cu(Mg) alloy films[J]. Joural of The Electrochemical Society,2000,147(8):3066-3069.
    [169]Zhu Y F, Lu H M, Jiang Q, et al. Effect of alloying Mg on corrosion resistance of Cu at high temperature [J]. Joural of The Electrochemical Society,2007,154(3):C153-C158.
    [170]苏勇,付广艳,刘群,等.不同方法制备的Cu-Si合金的高温氧化行为[J].特种铸造及有色合金,2007,27(8):647-650.
    [171]刘国军,贾树盛,贾素秋.退火工艺对CuAl合金高温氧化速率的影响[J].特种铸造及有色合金,2008,28(1):74-76.
    [172]Ogbuji L U. Oxidation behavior of Cu-Cr environmental barrier coatings on Cu-8Cr-4Nb[J]. Surface and Coatings Technology,2005,197(2-3):327-335.
    [173]Haugsrud R, Lee K L. On the oxidation behaviour of a Cu-10vol% Cr in situ composite[J]. Materials Science and Engineering:A,2005,396(1-2):87-91.
    [174]Fu G Y, Niu Y, Gesmundo F. Microstructural effects on the high temperature oxidation of two-phase Cu-Cr alloys in 1 atm O2[J]. Corrosion Science,2003,45(3):559-574.
    [175]李铁藩.金属晶界在高温氧化中的作用[J].中国腐蚀与防护学报,2002(3):53-56.
    [176]曹中秋,曹丽杰,牛焱.晶粒细化对Cu-45Ni-30Cr合金抗高温氧化性能的影响[J].材料保护,2005(6):14-17.
    [177]曹中秋,牛焱,吴维.晶粒细化对Cu-20Ni-20Cr合金氧化行为的影响[J].稀有金属材料与工程,2003(12):1016-1020.
    [178]李文兵,高卫明.高强高导铜合金的抗氧化性能研究[J].特种铸造及有色合金,2010,30(5):481-484.
    [179]刘国军.铜合金高温抗氧化性的研究[D].吉林大学,2008.
    [180]张玉柱,黄文德,刘文生,等.铜中加稀土对氧化动力学的影响[J].稀土,1991,12(5):35-38.
    [181]黄文德,张玉柱.Cu-Y合金高温氧化膜组织结构分析[J].稀土,1991,12(6):63-65.
    [182]黄文德,张玉柱,刘文生,等.在铜中加入少量混合稀土金属对其抗氧化性能的影响[J].稀土,:1990,11(4):39-40.
    [183]符建伟,张萌,郭守晖.稀土Y?对铜铬合金氧化行为的影响[J].热加工工艺,2008,37(6):76-79.
    [184]俞小青,张萌,郭守晖.一(?)Cu-Cr-Nd合金的冷变形及时效特性[J].航空材料学报,2007(6):27-29.
    [185]帅歌旺,张萌,丁岩.真空熔铸工艺对铜铬合金组织与性能的影响[J].材料科学与工艺,2007(1):68-71.
    [186]郭守晖,张萌,帅歌旺,等.不同热处理的Cu-0.8Cr-0.05Y合金形变时效行为[J].南昌大学学报(理科版),2006,30(5):470-472.
    [187]刘国明,张萌,付绍云.微量稀土La和Y在铜中的分布及对电导性的影响[J].南昌大学学报(理科版),2005,29(1):50-53.
    [188]尹建营,张萌,陈晓芳.稀土金属Y对Cu-Cr合金硬度和导电率的影响[J].金属热处理,2004,29(4):32-35.
    [189]陈晓芳,许彪,张萌.稀土元素对铜合金显微组织的影响[J].南昌大学学报(理科版),2003,27(1):33-36.
    [190]张萌,郭守晖,帅歌旺,等.稀土Y在电解铜及Cu-Cr合金中的分布与微观组织特征:第三届中国热处理活动周暨第六次全国热处理生产技术改造会议,中国西安[C].全国热处理学会,
    [191]帅歌旺,张萌,黄惠珍Cu-Cr合金强化机制研究及其对导电性能的影响[J].铸造技术,2007(3):396-398.
    [192]徐顺建,张萌,付绍云.叠层压铸法制备纳米碳纤维/铜基复合材料[J].材料科学与工艺,2007(4):503-506.
    [193]徐顺建,张萌.混合稀土(La-Ce)在快速凝固Cu-Cr合金中的作用[J].材料热处理学报,2005,26(4):74-78.
    [194]Srivastava V C, Schneider A, Uhlenwinkel V, et al. Effect of thermomechanical treatment on spray formed Cu-Ni-Sialloy[J]. Materials Science and Technology,2004,20(7):839-848.
    [195]Batra I S, Dey G K, Kulkami U D, et al. Microstructure and properties of a Cu-Cr-Zr alloy[J]. Journal of Nuclear Materials,2001,299(2):91-100.
    [196]刘平.快速凝固高强度高导电铜合金的制备技术及组织和性能的研究[D].西安交通大学,1999.
    [197]丁厚福.急冷Cu-Cr-0.05Zr合金强化机理探讨[J].金属热处理学报,1996(1):54-57.
    [198]Sun Z, Guo J, Song X, et al. Effects of Zr addition on the liquid phase separation and the microstructures of Cu-Cr ribbons with 18-22at.% Cr[J]. Journal of Alloys and Compounds, 2008,455(1-2):243-248.
    [199]Neishi K, Horita Z, Langdon T G. Achieving superplasticity in ultrafine-grained copper: influence of Zn and Zr additions[J]. Materials Science and Engineering:A,2003,352(1-2): 129-135.
    [200]Holzwarth U. Stamm H. The precipitation behaviour of ITER-grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing[J]. Journal of Nuclear Materials, 2000,279(1):31-45.
    [201]Sun Z, Guo J, Song X, et al. Effects of Zr addition on the liquid phase separation and the microstructures of Cu--Cr ribbons with 18-22at.%Cr[J]. Journal of Alloys and Compounds, 2008,455(1):243-248.
    [202]Gaganov A, Freudenberger J, Botcharova E, et al. Effect of Zr additions on the microstructure, and the mechanical and electrical properties of Cu-7 wt.%Ag alloys[J]. Materials Science and Engineering:A,2006,437(2):313-322.
    [203]陆栋,方俊鑫.固体物理学[M].上海:上海科技出版社,1980.
    [204]徐光宪.稀土[M].第二版.北京:冶金工业出版社,1995.
    [205]郭守晖,张萌.不同热处理对Cu-0.8Cr-0.05Y合金抗软化性能的影响[J].东北大学学报(自然科学版),2007,28,S1(6):58-61.
    [206]李铁藩.金属高温氧化和热腐蚀[M].北京:化学工业出版社,2003.
    [207]Roy S K, Ananth V, Bose S K. Oxidation behavior of copper at high temperatures under two different modes of direct-current applications[J]. Oxidation of metals,1995,43(3): 185-215.
    [208]Prisedsky V V, Vinogradov V M. Fragmentation of diffusion zone in high-temperature oxidation of copper[J]. Journal of Solid State Chemistry,2004,177(11):4258-4268.
    [209]朱日彰,何亚东,齐慧滨.高温腐蚀及耐高温腐蚀材料[M].上海:上海科技出版社,1995.
    [210]Niu Y, Gesmundo F, Viani F, et al. The air oxidation of two-phase Cu-Cr alloys at 700-900℃[J]. Oxidation of Metals,1997,48(5):357-380.
    [211]Paljevic M, Tudja M. Unusual oxidation behaviour of Zr50Cu50 alloy at high temperatures[J]. Corrosion Science,2008,50(3):818-822.
    [212]Paljevic M, Tudja M. Anomalous high-temperature oxidation in the zirconium-copper system[J]. Corrosion Science,2004,.46(8):2055-2065.
    [213]孙洪津,曹中秋,孙玥,等.晶粒细化对Cu-20Co-20Cr合金高温化学稳定性影响[J].沈阳师范大学学报(自然科学版),2011,29(2):241-244.
    [214]A Diffusional Analysis of the Oxidation of Binary Multiphase Alloys[J]. Oxidation of Metals,1990,35:333-338.
    [215]D B B, C W G, P W D. Morphoiogies of Uniform Adherent Scales on Binary Alloys[J]. Oxidation of Metals,1981,16:1.
    [216]Hart E W. On the role of dislocations in bulk diffusion[J]. Acta Metallurgica,1957,5(10): 597.
    [217]张清辉,肖逸锋,龚建勋.高效高硬度低成本耐磨堆焊焊条的研制[J].焊接学报,2008,29(3):5-8.
    [218]刘政军,张桂清,尹奕君,等.合金元素对铁基耐磨堆焊合金性能的影响[J].焊接学报,2007,28(3):69-72.
    [219]杨绍斌,董伟,徐晓辰,等Fe-Cr-C系堆焊耐磨材料的研究现状与展望[J].材料导报,2012(3):96-100.
    [220]李逢波.低成本高效化堆焊药芯焊丝的研究[D].山东大学,2009.
    [221]董丽虹,朱胜,徐滨士,等.耐磨损耐腐蚀粉末等离子弧堆焊技术的研究进展[J].焊接,2004,25(7):6-9.
    [222]刘政军,张桂清,刘铎,等Cr-B-Ni-W-V系堆焊合金的组织性能及耐磨机理[J].表面技术,2006,35(5):4-7.
    [223]Wang X H, Han F, Liu X M, et al. Microstructure and wear properties of the Fe-Ti-V-Mo-C hardfacing alloy[J]. Wear,2008,265(5-6):583-589.
    [224]周庆德,饶启昌等.铬系抗磨铸铁(论文汇编)[M].1986.
    [225]Ogi K, Yamamoto K, Miyakawa N, et al. Alloy design for heat and abrasion resistant high alloy cast iron[J]. International Journal of Cast Metals Research,2003,16(1-3):269-274.
    [226]Powell G L F, Carlson R A, Randle V. The morphology and microtexture of M7C3 carbides in Fe-Cr-C and Fe-Cr-C-Si alloys of near eutectic composition[J]. Journal of Materials Science,1994,29(18):4889-4896.
    [227]Park M C, Kim K N, Shin G S, et al. Effects of strain induced martensitic transformation on the cavitation erosion resistance and incubation time of Fe-Cr-Ni-C alloys[J]. Wear, 2012,274:28-33.
    [228]Chang C, Hsieh C, Lin C, et al. Effect of carbon content on microstructure and corrosion behavior of hypereutectic Fe-Cr-C claddings[J]. Materials Chemistry and Physics, 2010,123(1):241-246.
    [229]Azimi G, Shamanian M. Effect of silicon content on the microstructure and properties of Fe-Cr-C hardfacing alloys[J]. Journal of Materials Science,2010,45(3):842.
    [230]Chang C, Chen L, Lin C, et al. Microstructure and wear characteristics of hypereutectic Fe-Cr-C cladding with various carbon contents[J]. Surface and Coatings Technology, 2010,205(2):245-250.
    [231]Correa E O, Alcantara N G, Tecco D G, et al. The Relationship between the Microstructure and Abrasive Resistance of a Hardfacing Alloy in the Fe-Cr-C-Nb-V System[J]. Metallurgical and Materials Transactions A,2007,38(8):1671,
    [232]王智慧,贺定勇,王月琴.硼对Fe-Cr-C耐磨堆焊合金组织的影响[J].材料工程,2001(10):18-20.
    [233]Chatterjee S, Pal T K. Wear behaviour of hardfacing deposits on cast iron[J]. Wear, 2003;255(1-6):417-425.
    [234]王勇,韩培德.碳含量对多元合金系堆焊焊条堆焊层硬度的影响[J].山西科技,2002(3):37-38.
    [235]Azimi G, Shamanian M. Effects of silicon content on the microstructure and corrosion behavior of Fe-Cr-C hardfacing alloys[J]. Journal of Alloys and Compounds,2010,505(2): 598-603.
    [236]李达,杨育林,刘利刚,等.稀土氧化物及合金元素对堆焊金属显微组织的影响[J].焊接学报,2010,31(1):37-40.
    [237]Hao F F, Li D, Dan T, et al. Effect of rare earth oxides on the morphology of carbides in hardfacing metal of high chromium cast iron[J]. Journal of Rare Earths,2011(2):168-172.
    [238]冯萌,王智慧,贺定勇,等Fe-C-Ti-Cr-B系堆焊合金组织及耐磨性能[J].焊接学报,2012,33(1):89-92.
    [239]Lin C, Chang C, Chen J, et al. The effects of additive elements on the microstructure characteristics and mechanical properties of Cr-Fe-C hard-facing alloys[J]. Journal of Alloys and Compounds,2010,498(1):30-36.
    [240]黄四亮.钒钛硼变质高铬铸铁的研究[J].现代铸铁,2001(4):19-21.
    [241]余璐.自保护硬面药芯焊丝及性能研究[D].华中科技大学,2011.
    [242]郝石坚.现代铸铁学[M].北京:冶金工业出版社,2009.
    [243]Raynor G V, Rivlin V G. Phase Equilibria in Iron Ternary Alloys(Phase Diagrams of Ternary Iron Alloys. IV.)[J]. The Institute of Metals,1988:485.
    [244]Bungardt K, Kunze E, Horn E. Investigations Into the Structure of the System Iron-Chromium-Carbon[J]. Arch. Eisenhuttenwes,1958,29(3):193-203.
    [245]Chang C, Chen Y, Wu W. Microstructural and abrasive characteristics of high carbon Fe-Cr-C hardfacing alloy[J]. Tribology International,2010,43(5-6):929-934.
    [246]王智慧,王清宝Fe-Cr-C耐磨堆焊合金中初生碳化物生长方向的控制[J].焊接学报,2004(1):103-106.
    [247]蒋旻,栗卓新,王英杰,等.含钒耐磨堆焊合金的组织与性能[J].中国机械工程,2008,21(13):1621-1625.
    [248]杨威.超高碳高铬耐磨堆焊合金微观组织研究[D].机械科学研究总院,2007.
    [249]田大标.铌在高铬铸铁堆焊层中的存在状态[J].中国表面工程,2008,21(6):37-40.
    [250]田大标.铌对高铬铸铁堆焊层耐磨性的影响[J].焊接,2008(1):58-60.
    [251]Lin C M, Lai H H, Kuo J C, et al. Effect of carbon content on solidification behaviors and morphological characteristics of the constituent phases in Cr-Fe-C alloys[J]. Materials Characterization,2011,62(12):1124-1133.
    [252]Chang C, Lin C, Hsieh C, et al. Effect of carbon content on microstructural characteristics of the hypereutectic Fe-Cr-C claddings [J]. Materials Chemistry and Physics,2009,117(1): 257-261.
    [253]Chang C M, Lin C M, Hsieh C C, et al. Micro-structural characteristics of Fe-40 wt%Cr-xC hardfacing alloys with [1.0-4.0 wt%] carbon content[J]. Journal of Alloys and Compounds, 2009,487(1-2):83-89.
    [254]Kim J H, Ko K H, Noh S D, et al. The effect of boron on the abrasive wear behavior of austenitic Fe-based hardfacing alloys[J]. Wear,2009,267(9-10):1415-1419.
    [255]Liu D, Liu R, Wei Y. Effects of titanium additive on microstructure and wear performance of iron-based slag-free self-shielded flux-cored wire[J]. Surface and Coatings Technology, 2012.
    [256]Xing S L, Yu S F, Deng Y, et al. Effect of cerium on abrasive wear behaviour of hardfacing alloy[J]. Journal of Rare Earths,2012,30(1):69-73.
    [257]Hao F F, Li D, Dan T, et al. Effect of rare earth oxides on the morphology of carbides in hardfacing metal of high chromium cast iron[J]. Journal of Rare Earths,2011,29(2):168-172.
    [258]Haol F F, Liao B, Li D, et al. Effects of rare earth oxide on hardfacing metal microstructure of medium carbon steel and its refinement mechanism[J]. Journal of Rare Earths,2011, 29(6):609-613.
    [259]Qi X W, Jia Z N, Yang Q X, et al. Effects of vanadium additive on structure property and tribological performance of high chromium cast iron hardfacing metal[J]. Surface and Coatings Technology,2011,205(23-24):5510-5514.
    [260]潘川,吴智武,王移山,等.Nb在高铬铸铁型堆焊金属中的作用[J].中国表面工程, 2012,25(1):104-109.
    [261]Zhi X, Xing J, Fu H, et al. Effect of niobium on the as-cast microstructure of hypereutectic high chromium cast iron[J]. Materials Letters,2008,62(6-7):857-860.
    [262]智小慧,韩彦军,邢建东.铌细化过共晶高铬铸铁的研究[J].稀有金属材料与工程,2011,40(S2):169-171.
    [263]王清宝,王智慧,李世敏Fe-Cr-C系高碳耐磨堆焊合金组织及性能[J].焊接学报,2004,25(6):119-123.
    [264]王清宝,王智慧,李世敏.高碳型Fe-Cr-C耐磨堆焊合金显微组织研究[J].机械工程材料,2004,28(10):23-25.
    [265]Wu X, Xing J, Fu H, et al. Effect of titanium on the morphology of primary M7C3 carbides in hypereutectic high chromium white iron[J]. Materials Science and Engineering:A, 2007,457(1-2):180-185.
    [266]于广文.含钨高铬铸铁组织及性能研究[D].郑州大学,2007.
    [267]郝石坚.高铬耐磨铸铁[M].北京:煤炭工业出版社,1993.
    [268]Ogi K, Matsubara Y, Matsuda K. Eutectic solidification of high chromium cast iron2eutectic mechanism of eutectic growth[J]. Transactions of the American Foundrymen's Society,1982,89(6):197-204.
    [269]Miyake H, Okada A, Ozaki R. Effects of Cooling Rate and Melting Conditions on Nucleation and Growth of Primary Austenite in Hypo-Eutectic Cast Iron[J]. Imono(J. Jpn. Foundrymen's Soc.),1982,54(7):454-459.
    [270]李浩,严文,陈建,等Fe-Cr-C过共晶原位生长复合材料定向凝固的研究[J].铸造技术,2007,28(3):307-311.
    [271]陈建,严文,苗健,等.凝固速度对Fe-Cr-C原位生长复合材料定向凝固组织的影响[J].铸造技术,2006,27(2):131-134.
    [272]曹海叶,辛啟斌,王琳琳,等.硼对Cr20白口铸铁组织和性能的影响[J].材料与冶金学报,2010,9(1):57-61.
    [273]于广文,孙玉福,李志明,等.钨对Cr24高铬铸铁组织及性能的影响[J].铸造,2007,56(12):1316-1319.
    [274]王兆昌,韩福生.B与RE-Si变质处理对高Cr-Mn白口铸铁的组织及性能的影响[J].铸造,1985,34(3):1-6.
    [275]彭晓春,晁建兵,徐仁健.加硼高铬铸铁[J].现代机械,2004(1):72-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700