2009-2011年国内传染性支气管炎病毒分子流行病学研究及以马立克病毒为载体的基因工程疫苗研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禽传染性支气管炎病毒(avian infectious bronchitis virus,IBV)属于冠状病毒科冠状病毒属中的γ-冠状病毒,由该病毒感染引起的疾病称为禽传染性支气管炎(avian infectious bronchitis,IB),是一种对鸡危害非常严重的急性、高度传染性的病毒性呼吸道疾病,可导致鸡的增重和饲料报酬降低,也能引起蛋鸡产蛋量和蛋的品质下降等,因此具有重要的经济意义,免疫预防是目前控制该病的最为有效的手段。IBV的重要特点之一就是血清型众多,不同血清型之间交叉保护性较低甚至完全不能保护,因此在生产中必须选用与流行毒株血清型一致的疫苗才能取得良好的免疫保护效果。不同血清型的IBV具有典型的地域性流行特征,而且由于病毒基因组的突变和毒株间的重组使得新的血清型不断出现,使免疫预防日益复杂化。本研究的目的旨在通过系统的流行病学监测了解近年来不同基因型IBV在我国的流行状况,通过生物信息学分析阐明不同IBV基因型间遗传演化的规律和发展趋势,并针对流行的优势基因型毒株研制新型疫苗。
     1、2009-2011年间国内IBV流行病学监测与流行株的遗传进化分析
     2009-2011年间,共从国内主要养鸡省份分离到IBV流行毒株54株,其中肉鸡源毒株52株,蛋鸡源毒株2株。在肉鸡源毒株中我们发现存在较高比例的IBV与H9亚型AIV的混合感染(25/52),发生混合感染的鸡群往往发病更为严重,且混合感染样品对接种的鸡胚表现出更强的致病性,该结果提示这两种病毒之间可能存在一定程度的致病协同作用。对所有分离毒株S1基因进行克隆和基因测序,共发现4种不同的S1基因长度,分别为1611bp、1617bp、1620bp和1626bp,说明S1基因中碱基的插入和缺失是一种非常普遍的现象。将54个分离株S1基因序列和近年来在国内及周边国家和地区流行的13个基因型共57个参考毒株的S1基因序列用Mega4.1软件进行遗传进化分析,结果显示54个分离株可以分为QX型(42株)、HN-08型(5株)、LSC/991型(2株)、TW-I型(2株)、Mass型(1株)、793/B型(1株)和CHⅢ型(1株)等7个基因型。在所有分离株中,QX型分离株数量最多,占总数的77.8%(42/54)。从进化树中还可以看出,QX型分离株又可以进一步细分为两个不同的基因亚群-Cluster Ⅰ(21株)和Cluster Ⅱ(21株),经典的QX型参考毒株QXIBV和LX4株均属于Cluster Ⅰ亚群,而Cluster Ⅱ亚群中的毒株均在2010年才开始出现。为了更加系统地描述同期内国内不同基因型IBV的分布情况,我们将已经在GenBank发表全长S1基因序列的所有同时期分离株共296株合并进行遗传进化分析,结果显示,350个同时期分离株可分为19个基因型,其中11个基因型均能根据现有文献报道找到同源的参考毒株,根据各基因型中包含的毒株数量多少依次为:QX型(219株)、HN-08型(26株)、LSC/99I型(22株)、LDT3/03型(12株)、TW-I型(12株)、CH Ⅲ型(11株)、Mass型(10株)、LDL/971型(3株)、CH VI型(3株)、TW-Ⅱ型(2株)和793/B型(1株),此外还有8个基因型未能归入已被正式命名的已知基因型,因此暂定名为未定型Ⅰ~未定型Ⅷ。从分型结果可以看出,我国流行的IBV基因型具有典型的地域性分布特征,大多数在周边国家和地区广泛流行的基因型在我国并未发现。
     为阐明国内不同基因型毒株之间的遗传演化关系,根据遗传进化和基因分型的结果,从不同基因型中选择代表性毒株,用RDP3.31软件对S1基因进行重组分析。结果显示当前国内流行的毒株中存在广泛的重组现象,不同基因型间的重组事件不仅导致同一基因型内部发生分化,出现了不同基因亚群,而且经过多次的同源重组后可能会导致新的基因型毒株的出现。综合不同基因型间发生的系列重组事件,可以推断:QX型、LSC/991型、793/B型、LDL/971型、TW-Ⅰ型和TW-Ⅱ型是目前在我国流行的所有基因型毒株的原型毒株,除此以外的新出现的基因型均是在这6个基因型的基础上经过一次或多次的同源重组而产生的变异株。
     2、Mass型H120活疫苗对当前流行的主要基因型代表毒株的免疫保护效力试验
     根据遗传进化分析的结果,从当前主要流行的三个IBV基因型中挑选出4个代表毒株:AH/2009/1(QX型Cluster Ⅰ亚群)、JS/2010/12(QX型Cluster Ⅱ亚群)、JS/2009/5(LSC/99I型)和JS/2010/6(HN08型),分别用Mass型IBV活疫苗(H120株)进行免疫保护效力试验,以评价现有疫苗对流行毒株的免疫保护状况。结果显示H120疫苗株对不同基因型的IBV毒株免疫保护效力存在较大差异,对同属于Mass基因型的M41强毒株能够提供完全保护,且能显著降低攻毒后气管和肾脏的排毒率;对于QX型毒株AH/2009/1和JS/2010/12,基本达到临床保护标准,但试验鸡气管和肾脏带毒的比例远远高于M41攻毒组,说明局部免疫保护效果不是非常理想;对于HN08型的JS/2010/6株和LSC/991型的JS/2009/5株保护效果均不理想,攻毒后鸡群表现出较为严重的临床症状和相当高的气管和肾脏排毒率。该结果提示我们,现有疫苗已经不能对当前流行的主要基因型毒株提供良好的免疫保护,急需研究开发与流行毒株基因型一致的新疫苗用于该病的防控。
     3、以马立克病毒为载体研制QX型IBV基因工程疫苗
     本研究以MDV CV1988/Rispens疫苗毒株为载体,以其IRS-US间隔区作为插入位点,选择网状内皮组织增生症病毒(REV)基因组长末端重复序列(LTR)作为启动子,构建含QX型IBV分离株CK/CH/JS/06Ⅱ S1基因及报告基因EGFP的转移载体pUP-LTR-EGFP-S1-DOWN。将MDV基因组DNA与转移载体共转染鸡胚成纤维细胞(CEF),经同源重组获得重组病毒,通过多轮荧光筛选和纯化,最终获得的重组病毒命名为rMDV-EGFP-S1。进一步通过Cre重组酶介导的重组反应敲除EGFP报告基因,获得仅带有LTR启动子和S1基因的重组病毒,命名为rMDV-S1。通过PCR和间接免疫荧光试验(IFA)对重组病毒进行鉴定,结果表明S1基因完全按照预定方式正确插入到MDV基因组中并能够表达S1蛋白。将重组病毒在CEF上进行连续30代传代培养,经PCR和IFA试验鉴定,该重组病毒具有良好的遗传稳定性。
     重组病毒rMDV-S1。对QX型IBV强毒株CK/CH/JS/06Ⅱ的免疫攻毒保护效力试验结果显示,重组病毒按5×103PFU/羽的剂量免疫1日龄SPF鸡,免疫后4w攻毒,免疫组试验鸡发病率和死亡率分别为30%和5%,对照组则分别为100%和30%,经χ2检验差异显著(p<0.05)。排毒检测结果显示,免疫组气管排毒率在攻毒后部分时间点与对照组相比差异显著,攻毒后14d扑杀时肾脏排毒率差异极显著(p<0.01)。免疫组试验鸡攻毒后的增重未受明显影响,与对照组相比差异显著(p<0.05)。病理组织学检查结果显示与对照组相比免疫组试验鸡肾脏的病变程度相对较轻。所有结果均表明重组病毒对QX型强毒株的攻击能够提供良好的免疫保护。
     重组病毒对MDV强毒株RB1B的免疫攻毒保护试验结果显示,与亲本病毒CV1988/Rispens相比,对MDV本身的免疫保护效率未受明显影响,说明该重组病毒可以作为二联疫苗同时用于IB和MD两种疾病的免疫预防。
Avian infectious bronchitis virus (IBV), a member of the genus Gammacoronavirus of the family Coronaviridae, causes avian infectious bronchitis (IB), an acute, highly contagious respiratory disease in chickens. IB is of major economic importance because it is a cause of poor weight gain and feed efficiency and reduced egg production and egg quality. Live or inactivated vaccines containing strains of IBV from multiple serotypes are routinely used to protect chickens against IB infection in commercial settings. In nature, IBVs can evolve rapidly to give rise to new antigenic variants, which have complicated and increased the cost of attempts to prevent the disease by immunization. The aims of this study were to elucidate the predominant genotypes circulating in China in recent years and define their phylogenetic relationships, as well as to develop a new recombinant viral vaccine effective against the current epidemic genotypes using Marek's disease virus (MDV) as a vector.
     1. Epidemiological surveillance and phylogenetic analysis of IBVs circulating in China between2009and2011
     A total of54IBV field strains were isolated from chicken flocks suspected of infection with IB in8provinces of China between2009and2011. Of the54strains collected,52were isolated from broiler chickens and2were isolated from egg-laying chickens. Frequent high mortality (25/52flocks) caused by coinfection with IBV and H9subtype avian influenza viruses (AIV) have been observed in broiler chicken flocks in this study. The multiple infection samples also exhibited more severe pathogenicity in inoculated embryos. This phenomenon suggested that there is potential synergism between IBV and H9subtype AIV.
     The S1genes of all isolates were cloned and sequenced, revealing4different S1genes, including1611-,1617-,1620-and1626-nucleotide isoforms. This demonstrated that nucleotide insertion or deletion is common in the S1gene. The sequences of S1genes from all isolates and57reference strains representing different genotypes recently circulating in China and surrounding countries or areas were aligned, and a phylogenetic tree was constructed. The results revealed that all of the isolates could be grouped into7genotypes:QX (42isolates). HN-08(5isolates), LSC7991(2isolates). TW-I (2isolates), Mass (1isolate),793/B (1isolate) and CH Ⅲ (1isolate). The QX type has been the predominant genotype recently circulating in China, and strains of this type could be further subdivided into Cluster Ⅰ (21isolates) and Cluster Ⅱ (21isolates). The classical QX-type reference strain QXIBV is in Cluster Ⅰ, and all Cluster Ⅱ strains were found in samples obtained prior tosince2010.
     To more clearly describe the distribution of the different genotypes in China,296isolates between2009and2011with complete S1genes published in GenBank were combined for further phylogenetic analysis. These results revealed that all350isolates could be grouped into19genotypes, including11known genotypes and8novel genotypes. The11known genotypes were QX (219isolates), HN-08(26isolates), LSC/991(22isolates), LDT3/03(12isolates), TW-I (12isolates), CH III (11isolates), Mass (10isolates), LDL/971(3isolates), CH VI (3isolates), TW-II (2isolates) and793/B (1isolate). The8novel genotypes were tentatively named undetermined genotypes I-VIII. These results strongly suggested that IBV epidemiology in China is very complex and shows distinct regional distribution characteristics; interestingly, most of the genotypes circulating in surrounding countries and areas are not found in China.
     To clarify the phylogenetic relationships between the different IBV genotypes circulating in China, the S1gene sequences of some strains in different genotypes were chosen for recombination analysis with RDP3.31software. The results revealed that recombination between S1genes is a common phenomenon. A series of recombination incidents not only accelerate genotype differentiation but also lead to the emergence of new genotypes. According to the results of recombinant analysis, we were able to conclude that all current epidemic genotypes in China originated from6parental genotypes:QX, LSC/99I,793/B, LDL/97I, TW-Ⅰ and TW-Ⅱ. We further concluded that all newly emerged genotypes were variants generated by one or more homologous recombination events between those6prototype strains.
     2. Protective efficacy of Mass type H120live vaccine against some genotypes of IBV
     Four IBV strains representing three predominant genotypes were selected to evaluate the protective efficacy offered by Mass type H120live vaccine according to the results of our phylogenetic analysis. The corresponding genotypes were QX type Cluster1(AH/2009/I), QX type Cluster Ⅱ (JS/2010/12). LSC/99I type (JS/2009/5) and HN08type (JS/2010/6), respectively. In this experiment,3-day-old young SPF chickens were vaccinated with HI20live vaccine and challenged21d post-vaccination with4field isolates and another virulent Mass type IBV reference strain M41. The morbidity, mortality and virus shedding from the trachea and kidney of challenged chickens were recorded for each group. The results showed that the protective efficacy was different against every virus. The vaccine conferred complete protection against the homologous Mass type M41strain, and the chickens showed low shedding rates post-challenge. Although the vaccination also conferred clinical protection against the QX-like strains AH/2009/1and JS/2010/12. high rates of virus shedding were detected in the tracheae and kidneys of challenged chickens. The vaccination did not provide good protection against strains JS/2009/5and JS/2010/6, and the challenged chickens showed serious clinical signs of infection and high rates of virus shedding. All of these results suggested that the Mass type vaccine cannot provide complete protection against new epidemic genotypes of IBVs isolated in China, and it is therefore urgent to develop new vaccines to control this disease.
     3. Construction of a recombinant Marek's disease virus expressing the QX-type IBV S1protein
     In this study, we constructed a recombinant CVI988/Rispens, a strain of type Ⅰ MDV, that expresses the S1protein of the QX type IBV strain CK/CH/JS/06Ⅱ. The IRS-US intergenic region of the MDV genome was used as the gene insertion site in which the LTR promoter from the reticuloendotheliosis virus (REV) and S1gene were incorporated into the MDV genome. The transfer vector pUP-LTR-EGFP-S1-DOWN and MDV genomic DNA were co-transfected into chicken embryo fibroblast cells (CEF) to generate the recombinant virus rMDV-EGFP-S1by homologous recombination. The fluorescent plaques formed by recombinant virus were picked and purified by repeated passages in CEFs. Then, the EGFP gene was knocked out by Cre-mediated recombination, and the rendered recombinant virus containing the LTR promoter and the S1gene was designated rMDV-S1. The recombinant virus was identified through PCR and an indirect immunofluorescence antibody assay (IFA), and the results showed that the S1gene was correctly inserted into the MDV genome and was stably expressed. The rMDV-S1virus was genetically stable after30sequential passages in CEFs.
     In the experiment evaluating the protective efficacy of rMDV vaccination against IBV,1-day-old SPF chickens were immunized with5×103PFU rMDV-S1per bird and challenged with QX type virulent IBV strain CK/CH/JS/06Ⅱ. The morbidity and mortality were30%and5%, respectively, compared to100%and30%in the control group, a significant difference (p <0.05), as determined by chi-squared(χ2) test, in the virus shedding test, there was a significant difference in the number of tracheal swabs that tested positive for the virus between the rMDV-S1-vaccinated group and the control group (p<0.05). The virus detection rate from the kidneys of the immunized chickens was lower than that in the control group. There was a highly significant difference (p<0.01) in the number of kidneys that tested positive for the virus between the vaccinated and control groups. All of these results demonstrated that rMDV-S1is an effective and promising recombinant vaccine for the prevention of QX-like IBV infection.
     In an experiment evaluating the protective efficacy of rMDV vaccination against MDV, the rMDV-Sl showed similar protective efficacy against virulent MDV RB1B and its parent virus CVI988/Rispens. This result showed that the rMDV-Sl can serve as a vaccine for the concomitant immunoprophylaxis of IB and MD.
引文
[1]Saif YM, Barnes HJ. Diseases of poultry [M].12th ed. Ames, Iowa:Blackwell Pub. Professional,2008.
    [2]International Committee on Taxonomy of Viruses.. King AMQ. Virus taxonomy classification and nomenclature of viruses:ninth report of the International Committee on Taxonomy of Viruses [M]. London; Waltham, MA:Academic Press,2012.
    [3]Chu DK, Leung CY, Gilbert M, et al. Avian coronavirus in wild aquatic birds [J]. Journal of virology,2011,85(23):12815-20.
    [4]Cavanagh D. Coronaviruses in poultry and other birds [J]. Avian pathology:journal of the WVPA,2005,34(6):439-48.
    [5]Davies HA, Macnaughton MR. Comparison of the morphology of three coronaviruses [J]. Archives of virology.1979,59(1-2):25-33.
    [6]Brian DA, Baric RS. Coronavirus genome structure and replication [J]. Current topics in microbiology and immunology,2005,287:1-30.
    [7]Zhao X, Shaw K, Cavanagh D. Presence of subgenomic mRNAs in virions of coronavirus IBV [J]. Virology,1993,196(1):172-8.
    [8]Boursnell ME, Brown TD, Foulds IJ, et al. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus [J]. The Journal of general virology,1987, 68 (Pt 1):57-77.
    [9]Brown TD, Boursnell ME, Binns MM, et al. Cloning and sequencing of 5'terminal sequences from avian infectious bronchitis virus genomic RNA [J]. The Journal of general virology,1986,67 (Pt 2):221-8.
    [10]Brown TD. Boursnell ME, Binns MM. A leader sequence is present on mRNA A of avian infectious bronchitis virus [J]. The Journal of general virology,1984,65 (Pt 8):1437-42.
    [11]Wang L, Junker D, Collisson EW. Evidence of natural recombination within the S1 gene of infectious bronchitis virus [J]. Virology,1993.192(2):710-6.
    [12]An S, Makino S. Characterizations of coronavirus cis-acting RNA elements and the transcription step affecting its transcription efficiency [J]. Virology,1998,243(1):198-207.
    [13]An S. Maeda A. Makino S. Coronavirus transcription early in infection [J]. Journal of virology,1998,72(11):8517-24.
    [14]Joo M. Makino S. Analysis of coronavirus transcription regulation [J]. Advances in experimental medicine and biology,1995,380:473-8.
    [15]Makino S. Joo M. Effect of intergenic consensus sequence flanking sequences on coronavirus transcription [J]. Journal of virology,1993,67(6):3304-11.
    [16]Hofmann MA, Chang RY, Ku S, et al. Leader-mRNA junction sequences are unique for each subgenomic mRNA species in the bovine coronavirus and remain so throughout persistent infection [J]. Virology,1993,196(1):163-71.
    [17]La Monica N, Yokomori K, Lai MM. Coronavirus mRNA synthesis:identification of novel transcription initiation signals which are differentially regulated by different leader sequences [J]. Virology,1992,188(1):402-7.
    [18]Makino S, Joo M, Makino JK. A system for study of coronavirus mRNA synthesis:a regulated, expressed subgenomic defective interfering RNA results from intergenic site insertion [J]. Journal of virology,1991,65(11):6031-41.
    [19]Ignjatovic J, Galli L. The S1 glycoprotein but not the N or M proteins of avian infectious bronchitis virus induces protection in vaccinated chickens [J]. Archives of virology,1994, 138(1-2):117-34.
    [20]Ignjatovic J, Galli L. Structural proteins of avian infectious bronchitis virus:role in immunity and protection [J]. Advances in experimental medicine and biology,1993, 342(449-53.
    [21]Kant A, Koch G, van Roozelaar DJ, et al. Location of antigenic sites defined by neutralizing monoclonal antibodies on the SI avian infectious bronchitis virus glycopolypeptide [J]. The Journal of general virology,1992,73 (Pt 3):591-6.
    [22]Cavanagh D. Coronavirus avian infectious bronchitis virus [J]. Veterinary research,2007, 38(2):281-97.
    [23]Saif LJ. Coronavirus immunogens [J]. Veterinary microbiology,1993,37(3-4):285-97.
    [24]Cavanagh D. Coronavirus IBV:structural characterization of the spike protein [J]. The Journal of general virology,1983,64 (Pt 12):2577-83.
    [25]Ji J, Xie J, Chen F, et al. Phylogenetic distribution and predominant genotype of the avian infectious bronchitis virus in China during 2008-2009 [J]. Virology journal,2011.8:184.
    [26]Jackwood MW, Hilt DA, Callison SA, et al. Spike glycoprotein cleavage recognition site analysis of infectious bronchitis virus [J]. Avian diseases.2001,45(2):366-72.
    [27]Cavanagh D, Elus MM, Cook JK. Relationship between sequence variation in the S1 spike protein of infectious bronchitis virus and the extent of cross-protection in vivo [J]. Avian pathology:journal of the WVPA,1997,26(1):63-74.
    [28]Ignjatovic J, Sapats S. Identification of previously unknown antigenic epitopes on the S and N proteins of avian infectious bronchitis virus [J]. Archives of virology,2005,150(9): 1813-31.
    [29]Collisson EW, Pei J, Dzielawa J, et al. Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in poultry [J]. Developmental and comparative immunology. 2000,24(2-3):187-200.
    [30]Jackwood MW, Yousef NM, Hilt DA. Further development and use of a molecular serotype identification test for infectious bronchitis virus [J]. Avian diseases,1997,41(1):105-10.
    [31]Adzhar A, Gough RE, Haydon D, et al. Molecular analysis of the 793/B serotype of infectious bronchitis virus in Great Britain [J]. Avian pathology:journal of the WVPA, 1997.26(3):625-40.
    [32]Neuman BW, Kiss G, Kunding AH, et al. A structural analysis of M protein in coronavirus assembly and morphology [J]. Journal of structural biology,2011,174(1):11-22.
    [33]Xing J, Liu S, Han Z, et al. Identification of a novel linear B-cell epitope in the M protein of avian infectious bronchitis coronaviruses [J]. Journal of microbiology,2009,47(5): 589-99.
    [34]Wang J, Fang S, Xiao H, et al. Interaction of the coronavirus infectious bronchitis virus membrane protein with beta-actin and its implication in virion assembly and budding [J]. PloS one,2009,4(3):e4908.
    [35]Nguyen VP, Hogue BG. Protein interactions during coronavirus assembly [J]. Journal of virology,1997,71(12):9278-84.
    [36]Klumperman J, Locker JK, Meijer A, et al. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding [J]. Journal of virology,1994,68(10): 6523-34.
    [37]Zhou M, Williams AK, Chung SI, et al. The infectious bronchitis virus nucleocapsid protein binds RNA sequences in the 3'terminus of the genome [J]. Virology,1996,217(1): 191-9.
    [38]Collisson EW, Williams AK, Chung SI. et al. Interactions between the 1BV nucleocapsid protein and RNA sequences specific for the 3'end of the genome [J]. Advances in experimental medicine and biology,1995,380:523-8.
    [39]Seo SH, Collisson EW. Cytotoxic T lymphocyte responses to infectious bronchitis virus infection [J]. Advances in experimental medicine and biology,1998,440:455-60.
    [40]Seo SH, Wang L, Smith R, et al. The carboxyl-terminal 120-residue polypeptide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection [J]. Journal of virology,1997,71(10):7889-94.
    [41]Seo SH, Collisson EW. Specific cytotoxic T lymphocytes are involved in in vivo clearance of infectious bronchitis virus [J]. Journal of virology,1997.71(7):5173-7.
    [42]Yu D, Han Z, Xu J, et al. A novel B-cell epitope of avian infectious bronchitis virus N protein [J]. Viral immunology,2010,23(2):189-99.
    [43]Sapats SI, Ashton F, Wright PJ, et al. Novel variation in the N protein of avian infectious bronchitis virus [J]. Virology,1996,226(2):412-7.
    [44]Williams AK, Wang L, Sneed LW, et al. Comparative analyses of the nucleocapsid genes of several strains of infectious bronchitis virus and other coronaviruses [J]. Virus research, 1992,25(3):213-22.
    [45]Seah JN, Yu L, Kwang J. Localization of linear B-cell epitopes on infectious bronchitis virus nucleocapsid protein [J]. Veterinary microbiology,2000,75(1):11-6.
    [46]Ruch TR, Machamer CE. The hydrophobic domain of infectious bronchitis virus E protein alters the host secretory pathway and is important for release of infectious virus [J]. Journal of virology,2011,85(2):675-85.
    [47]Corse E, Machamer CE. The cytoplasmic tail of infectious bronchitis virus E protein directs Golgi targeting [J]. Journal of virology,2002,76(3):1273-84.
    [48]Corse E. Machamer CE. Infectious bronchitis virus envelope protein targeting:implications for virus assembly [J]. Advances in experimental medicine and biology,2001,494:571-6.
    [49]Corse E, Machamer CE. Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles [J]. Journal of virology,2000,74(9): 4319-26.
    [50]Napthine S, Liphardt J, Bloys A, et al. The role of RNA pseudoknot stem 1 length in the promotion of efficient-1 ribosomal frameshifting [J]. Journal of molecular biology,1999, 288(3):305-20.
    [51]Somogyi P, Jenner AJ, Brierley I, et al. Ribosomal pausing during translation of an RNA pseudoknot [J]. Molecular and cellular biology,1993,13(11):6931-40.
    [52]Brierley I, Jenner AJ, Inglis SC. Mutational analysis of the "slippery-sequence" component of a coronavirus ribosomal frameshifting signal [J]. Journal of molecular biology,1992, 227(2):463-79.
    [53]Brierley I. Rolley NJ, Jenner AJ, et al. Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal [J]. Journal of molecular biology,1991,220(4):889-902.
    [54]Inglis SC, Rolley N, Brierley 1. A ribosomal frameshift signal in the polymerase-encoding region of the IBV genome [J]. Advances in experimental medicine and biology,1990,276: 269-73.
    [55]Brierley 1. Digard P. Inglis SC. Characterization of an efficient coronavirus ribosomal frameshifting signal:requirement for an RNA pseudoknot [J]. Cell,1989,57(4):537-47.
    [56]Brierley I, Boursnell ME, Binns MM, et al. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV [J]. The EMBO journal.1987, 6(12):3779-85.
    [57]Fang SG, Shen H, Wang J, et al. Proteolytic processing of polyproteins 1a and 1ab between non-structural proteins 10 and 11/12 of Coronavirus infectious bronchitis virus is dispensable for viral replication in cultured cells [J]. Virology,2008.379(2):175-80.
    [58]Ng LF, Liu DX. Membrane association and dimerization of a cysteine-rich,16-kilodalton polypeptide released from the C-terminal region of the coronavirus infectious bronchitis virus 1a polyprotein [J]. Journal of virology.2002.76(12):6257-67'.
    [59]Xu HY, Lim KP, Shen S, et al. Further identification and characterization of novel intermediate and mature cleavage products released from the ORF 1 b region of the avian coronavirus infectious bronchitis virus 1a/1 b polyprotein [J]. Virology,2001,288(2): 212-22.
    [60]Ng LF, Liu DX. Identification of a 24-kDa polypeptide processed from the coronavirus infectious bronchitis virus 1 a polyprotein by the 3C-like proteinase and determination of its cleavage sites [J]. Virology,1998,243(2):388-95.
    [61]Liu DX, Shen S, Xu HY, et al. Proteolytic mapping of the coronavirus infectious bronchitis virus 1b polyprotein:evidence for the presence of four cleavage sites of the 3C-like proteinase and identification of two novel cleavage products [J]. Virology,1998,246(2): 288-97.
    [62]Liu DX, Shen S, Xu HY, et al. Proteolytic processing of the polyprotein encoded by ORF1 b of the coronavirus infectious bronchitis virus (IBV) [J]. Advances in experimental medicine and biology,1998,440:149-59.
    [63]Liu DX, Xu HY, Brown TD. Proteolytic processing of the coronavirus infectious bronchitis virus 1a polyprotein:identification of a 10-kilodalton polypeptide and determination of its cleavage sites [J]. Journal of virology,1997,71(3):1814-20.
    [64]Tibbles K W, Brierley 1, Cavanagh D. et al. A region of the coronavirus infectious bronchitis virus 1a polyprotein encoding the 3C-like protease domain is subject to rapid turnover when expressed in rabbit reticulocyte lysate [J]. The Journal of general virology,1995,76 (Pt 12):3059-70.
    [65]Liu DX, Brown TD. Characterisation and mutational analysis of an ORF la-encoding proteinase domain responsible for proteolytic processing of the infectious bronchitis virus 1a/1b polyprotein [J]. Virology,1995,209(2):420-7.
    [66]Liu DX, Brierley 1, Tibbles KW, et al. A 100-kilodalton polypeptide encoded by open reading frame (ORF) 1b of the coronavirus infectious bronchitis virus is processed by ORF 1a products [J]. Journal of virology,1994,68(9):5772-80.
    [67]Liu DX, Tibbles KW, Cavanagh D. et al. Involvement of viral and cellular factors in processing of polyprotein encoded by ORF1a of the coronavirus IBV [J]. Advances in experimental medicine and biology,1995,380:413-21.
    [68]Tibbies KW, Cavanagh D, Brown TD. Activity of a purified His-tagged 3C-like proteinase from the coronavirus infectious bronchitis virus [J]. Virus research,1999,60(2):137-45.
    [69]Tibbles KW, Brierley I, Cavanagh D, et al. Characterization in vitro of an autocatalytic processing activity associated with the predicted 3C-like proteinase domain of the coronavirus avian infectious bronchitis virus [J]. Journal of virology,1996,70(3):1923-30.
    [70]Pendleton AR, Machamer CE. Infectious bronchitis virus 3a protein localizes to a novel domain of the smooth endoplasmic reticulum [J]. Journal of virology,2005,79(10): 6142-51.
    [71]Hodgson T, Britton P, Cavanagh D. Neither the RNA nor the proteins of open reading frames 3a and 3b of the coronavirus infectious bronchitis virus are essential for replication [J]. Journal of virology,2006,80(1):296-305.
    [72]Youn S, Leibowitz JL, Collisson EW. In vitro assembled, recombinant infectious bronchitis viruses demonstrate that the 5a open reading frame is not essential for replication [J]. Virology,2005,332(1):206-15.
    [73]de Wit JJ, Davelaar FG, Braunius WW. Comparison of the enzyme linked immunosorbent assay, the haemagglutination inhibition test and the agar gel precipitation test for the detection of antibodies against infectious bronchitis and Newcastle disease in commercial broilers [J]. Avian pathology:journal of the WVPA,1992,21(4):651-8.
    [74]Dawson PS, Gough RE. Antigenic variation in strains of avian infectious bronchitis virus [J]. Archiv fur die gesamte Virusforschung,1971,34(1):32-9.
    [75]Chen HW, Wang CH, Cheng IC. A type-specific blocking ELISA for the detection of infectious bronchitis virus antibody [J]. Journal of virological methods,2011,173(1):7-12.
    [76]Jia W. Mondal SP, Naqi SA. Genetic and antigenic diversity in avian infectious bronchitis virus isolates of the 1940s [J]. Avian diseases,2002.46(2):437-41.
    [77]Moore KM, Jackwood MW, Hilt DA. Identification of amino acids involved in a serotype and neutralization specific epitope within the sl subunit of avian infectious bronchitis virus [J]. Archives of virology,1997,142(11):2249-56.
    [78]Karaca K. Naqi S. A monoclonal antibody blocking ELISA to detect serotype-specific infectious bronchitis virus antibodies [J]. Veterinary microbiology,1993.34(3):249-57.
    [79]Cavanagh D. Davis PJ, Cook JK, et al. Location of the amino acid differences in the S1 spike glycoprotein subunit of closely related serotypes of infectious bronchitis virus [J]. Avian pathology:journal of the WVPA,1992,21(1):33-43.
    [80]Naqi SA. A monoclonal antibody-based immunoperoxidase procedure for rapid detection of infectious bronchitis virus in infected tissues [J]. Avian diseases.1990,34(4):893-8.
    [81]Alexander DJ, Allan WH, Biggs PM, et al. A standard technique for haemagglutination inhibition tests for antibodies to avian infectious bronchitis virus [J]. The Veterinary record. 1983.113(3):64.
    [82]Alexander DJ, Bracewell CD, Gough RE. Preliminary evaluation of the haemagglutination and haemagglutination inhibition tests for avian infectious bronchitis virus [J]. Avian pathology:journal of the WVPA.1976,5(2):125-34.
    [83]Schultze B, Cavanagh D, Herrler G. Neuraminidase treatment of avian infectious bronchitis coronavirus reveals a hemagglutinating activity that is dependent on sialic acid-containing receptors on erythrocytes [J]. Virology,1992,189(2):792-4.
    [84]Ruano M, El-Attrache J, Villegas P. A rapid-plate hemagglutination assay for the detection of infectious bronchitis virus [J]. Avian diseases,2000,44(1):99-104.
    [85]Ignjatovic J, Gould G, Sapats S. Isolation of a variant infectious bronchitis virus in Australia that further illustrates diversity among emerging strains [J]. Archives of virology, 2006,151(8):1567-85.
    [86]Mardani K, Noormohammadi AH, Ignatovic J, et al. Typing infectious bronchitis virus strains using reverse transcription-polymerase chain reaction and restriction fragment length polymorphism analysis to compare the 3'7.5 kb of their genomes [J]. Avian pathology:journal of the WVPA,2006,35(1):63-9.
    [87]Abreu JT, Resende JS, Flatschart RB, et al. Molecular analysis of Brazilian infectious bronchitis field isolates by reverse transcription-polymerase chain reaction, restriction fragment length polymorphism, and partial sequencing of the N gene [J]. Avian diseases, 2006,50(4):494-501.
    [88]Wang X, Khan Ml. Use of reverse transcriptase-polymerase chain reaction-restriction fragment length polymorphism to examine the interaction between infectious bronchitis virus strains Massachusetts 41 and JMK in ovo [J]. Avian pathology:journal of the WVPA, 2000,29(5):441-8.
    [89]Kwon HM, Jackwood MW. Gelb J, Jr. Differentiation of infectious bronchitis virus serotypes using polymerase chain reaction and restriction fragment length polymorphism analysis [J]. Avian diseases,1993,37(1):194-202.
    [90]Lin Z, Kato A, Kudou Y. et al. A new typing method for the avian infectious bronchitis virus using polymerase chain reaction and restriction enzyme fragment length polymorphism [J]. Archives of virology,1991,116(1-4):19-31.
    [91]Luo H, Qin J, Chen F. et al. Phylogenetic analysis of the S1 glycoprotein gene of infectious bronchitis viruses isolated in China during 2009-2010 [J]. Virus genes,2012,44(1):19-23.
    [92]Li M, Wang XY, Wei P, et al. Serotype and genotype diversity of infectious bronchitis viruses isolated during 1985-2008 in Guangxi, China [J]. Archives of virology,2012, 157(3):467-74.
    [93]Abro SH, Renstrom LH, Ullman K, et al. Emergence of novel strains of avian infectious bronchitis virus in Sweden [J]. Veterinary microbiology,2012,155(2-4):237-46.
    [94]Yan F, Zhao Y, Yue W, et al. Phylogenetic analysis of S1 gene of infectious bronchitis virus isolates from China [J]. Avian diseases,2011,55(3):451-8.
    [95]Xie Q, Ji J, Xie J, et al. Epidemiology and immunoprotection of nephropathogenic avian infectious bronchitis virus in southern China [J]. Virology journal,2011,8:484.
    [96]Sun C, Han Z, Ma H, et al. Phylogenetic analysis of infectious bronchitis coronaviruses newly isolated in China, and pathogenicity and evaluation of protection induced by Massachusetts serotype H120 vaccine against QX-like strains [J]. Avian pathology:journal of the WVPA,2011.40(1):43-54.
    [97]Pohuang T, Chansiripornchai N, Tawatsin A, et al. Sequence analysis of SI genes of infectious bronchitis virus isolated in Thailand during 2008-2009:identification of natural recombination in the field isolates [J]. Virus genes,2011,43(2):254-60.
    [98]Han Z, Sun C, Yan B, et al. A 15-year analysis of molecular epidemiology of avian infectious bronchitis coronavirus in China [J]. Infection, genetics and evolution:journal of molecular epidemiology and evolutionary genetics in infectious diseases,2011,11(1): 190-200.
    [99]Chacon JL, Rodrigues JN, Assayag Junior MS, et al. Epidemiological survey and molecular characterization of avian infectious bronchitis virus in Brazil between 2003 and 2009 [J]. Avian pathology:journal of the WVPA.2011,40(2):153-62.
    [100]Zou NL. Zhao FF. Wang YP, et al. Genetic analysis revealed LX4 genotype strains of avian infectious bronchitis virus became predominant in recent years in Sichuan area, China [J]. Virus genes.2010,41(2):202-9.
    [101]Villarreal LY, Sandri TL, Souza SP, et al. Molecular epidemiology of avian infectious bronchitis in Brazil from 2007 to 2008 in breeders, broilers, and layers [J]. Avian diseases, 2010,54(2):894-8.
    [102]Mase M. Kawanishi N, Ootani Y, et al. A novel genotype of avian infectious bronchitis virus isolated in Japan in 2009 [J]. The Journal of veterinary medical science/the Japanese Society of Veterinary Science,2010,72(10):1265-8.
    [103]Krapez U, Slavec B, Barlic-Maganja D, et al. Molecular analysis of infectious bronchitis viruses isolated in Slovenia between 1990 and 2005:a retrospective study [J]. Virus genes, 2010,41(3):414-6.
    [104]Zulperi ZM, Omar AR, Arshad SS. Sequence and phylogenetic analysis of S1, S2, M, and N genes of infectious bronchitis virus isolates from Malaysia [J]. Virus genes,2009,38(3): 383-91.
    [105]Shimazaki Y, Watanabe Y, Harada M, et al. Genetic analysis of the S1 gene of 4/91 type infectious bronchitis virus isolated in Japan [J]. The Journal of veterinary medical science/ the Japanese Society of Veterinary Science,2009,71(5):583-8.
    [106]Roussan DA, Totanji WS, Khawaldeh GY. Molecular subtype of infectious bronchitis virus in broiler flocks in Jordan [J]. Poultry science,2008,87(4):661-4.
    [107]Villarreal LY, Brandao PE, Chacon JL, et al. Molecular characterization of infectious bronchitis virus strains isolated from the enteric contents of Brazilian laying hens and broilers [J]. Avian diseases,2007,51(4):974-8.
    [108]Jang JH, Sung HW, Song CS, et al. Sequence analysis of the S1 glycoprotein gene of infectious bronchitis viruses:identification of a novel phylogenetic group in Korea [J]. Journal of veterinary science,2007,8(4):401-7.
    [109]磨美兰,李孟,韦正吉,等.广西1985年~2008年IBV分离株S1基因高变区Ⅰ和N基因的序列和系统进化分析[J].中国预防兽医学报,2009,31(10):761-5+99.
    [110]韦正吉,韦平,磨美兰,等.广西不同时期IBV分离株S1基因高变区Ⅰ的遗传变异分析[J].病毒学报,2008,24(2):126-32.
    [111]磨美兰,韦正吉,韦平.等.传染性支气管炎病毒的分离及其S1基因高变区Ⅰ的遗传变异性分析[J].养禽与禽病防治,2007,2:2-5.
    [112]磨美兰,韦正吉.韦平,等.传染性支气管炎病毒广西分离株S1基因高变区Ⅰ的序列分析[J].扬州大学学报.2006,27(3):5-9.
    [113]Gelb J, Jr., Keeler CL, Jr.. Nix WA, et al. Antigenic and S-1 genomic characterization of the Delaware variant serotype of infectious bronchitis virus [J]. Avian diseases,1997,41(3): 661-9.
    [114]Cavanagh D, Davis PJ, Cook JK. Infectious bronchitis virus:evidence for recombination within the Massachusetts serotype [J]. Avian pathology:journal of the WVPA,1992.21(3): 401-8.
    [115]Jordan FT, Nassar TJ. The combined influence of age of embryo and temperature and duration of incubation on the replication and yield of avian infectious bronchitis (IB) virus in the developing chick embryo [J]. Avian pathology:journal of the WVPA,1973,2(4): 279-94.
    [116]Gillette KG. Plaque formation by infectious bronchitis virus in chicken embryo kidney cell cultures [J]. Avian diseases,1973,17(2):369-78.
    [117]Otsuki K, Noro K, Yamamoto H, et al. Studies on avian infectious bronchitis virus (IBV). Ⅱ. Propagation of IBV in several cultured cells [J]. Archives of virology,1979,60(2):115-22.
    [118]Ambali AG, Jones RC. The effects of three reproductive hormones and cortisone on the replication of avian infectious bronchitis virus in vitro [J]. Revue roumaine de virologie, 1990,41(3-4):151-6.
    [119]Ambali AG, Jones RC. Early pathogenesis in chicks of infection with an enterotropic strain of infectious bronchitis virus [J]. Avian diseases,1990,34(4):809-17.
    [120]de Wit JJ, de Jong MC, Pijpers A, et al. Transmission of infectious bronchitis virus within vaccinated and unvaccinated groups of chickens [J]. Avian pathology:journal of the WVPA,1998,27(5):464-71.
    [121]Jones RC, Ambali AG. Re-excretion of an enterotropic infectious bronchitis virus by hens at point of lay after experimental infection at day old [J]. The Veterinary record,1987, 120(26):617-8.
    [122]Karaca K, Naqi SA, Palukaitis P, et al. Serological and molecular characterization of three enteric isolates of infectious bronchitis virus of chickens [J]. Avian diseases,1990,34(4): 899-904.
    [123]Lucio B. Fabricant J. Tissue tropism of three cloacal isolates and Massachusetts strain of infectious bronchitis virus [J]. Avian diseases,1990.34(4):865-70.
    [124]Boltz DA, Nakai M, Bahra JM. Avian infectious bronchitis virus:a possible cause of reduced fertility in the rooster [J]. Avian diseases,2004,48(4):909-15.
    [125]Fulton RM, Reed WM, Thacker HL. Cellular response of the respiratory tract of chickens to infection with Massachusetts 41 and Australian T infectious bronchitis viruses [J]. Avian diseases,1993.37(4):951-60.
    [126]Cook JK, Smith HW, Huggins MB. Infectious bronchitis immunity:its study in chickens experimentally infected with mixtures of infectious bronchitis virus and Escherichia coli [J]. The Journal of general virology,1986.67 (Pt 7):1427-34.
    [127]Tottori J, Yamaguchi R, Murakawa Y, et al. Experimental production of ascites in broiler chickens using infectious bronchitis virus and Escherichia coli [J]. Avian diseases,1997, 41(1):214-20.
    [128]Springer WT, Luskus C, Pourciau SS. Infectious bronchitis and mixed infections of Mycoplasma synoviae and Escherichia coli in gnotobiotic chickens. I. Synergistic role in the airsacculitis syndrome [J]. Infection and immunity,1974,10(3):578-89.
    [129]Chu HP, Uppal PK. Single and mixed infections of avian infectious bronchitis virus and Mycoplasma gallisepticum [J]. Developments in biological standardization,1975,28: 101-14.
    [130]Macowan KJ, Randall CJ, Brand TF. Cloacal infection with Mycoplasma gallisepticum and the effect of inoculation with H120 infectious bronchitis vaccine virus [J]. Avian pathology journal of the WVPA,1983,12(4):497-503.
    [131]Hopkins SR, Yoder HW, Jr. Influence of infectious bronchitis strains and vaccines on the incidence of Mycoplasma synoviae airsacculitis [J]. Avian diseases,1982,26(4):741-52.
    [132]Haghighat-Jahromi M, Asasi K, Nili H, et al. Coinfection of avian influenza virus (H9N2 subtype) with infectious bronchitis live vaccine [J]. Archives of virology,2008,153(4): 651-5.
    [133]Chew PH, Wakenell PS, Farver TB. Pathogenicity of attenuated infectious bronchitis viruses for oviducts of chickens exposed in ovo [J]. Avian diseases,1997,41(3):598-603.
    [134]Gough RE, Randall CJ, Dagless M, et al. A'new'strain of infectious bronchitis virus infecting domestic fowl in Great Britain [J]. The Veterinary record,1992,130(22):493-4.
    [135]Parsons D, Ellis MM, Cavanagh D, et al. Characterisation of an infectious bronchitis virus isolated from vaccinated broiler breeder flocks [J]. The Veterinary record,1992,131(18): 408-11.
    [136]刘家彦.腺胃肿大型鸡传染性支气管炎[J].畜牧兽医科技信息,1996,15:8.
    [137]王玉东,王永玲,张子春,等.鸡腺胃型传染性支气管炎病毒(QX IBV)的分离和鉴定[J].中国动物检疫.1998,15(1):3-5.
    [138]周继勇.传染性支气管炎病毒嗜腺胃毒株(ZJ971毒株)结构蛋白和S1基因的结构分析[J].中国兽医学报,2000,20(5):429-33.
    [139]张晓楠,王滨,李成仁,等.几种中国鸡传染性支气管炎致弱毒株对流行毒株CK/CH/LDL/971保护作用的评价[J].中国兽医学报,2009,29(4):389-93.
    [140]王玉东,张子春,范根成,等.鸡腺胃型传染性支气管炎的同源动物回归试验、致鸡胚侏儒化试验和免疫保护试验[J].山东家禽,1999.2:5-8.
    [141]荣骏弓.吴东来,谷守林,等.腺胃病变型鸡传染性支气管炎病毒分离株(IBV-D971)对SPF鸡的致病力试验[J].中国预防兽医学报,1999,21(4):58-61.
    [142]林绍仪,刘镇明,邝荣禄,等.鸡传染性支气管炎肾变病型的诊断报告[J].养禽与禽病防治,1983,1:49-51.
    [143]Hitchner SB. History of biological control of poultry diseases in the USA [J]. Avian diseases,2004,48(1):1-8.
    [144]Gelb J, Jr., Perkins BE, Rosenberger JK, et al. Serologic and cross-protection studies with several infectious bronchitis virus isolates from Delmarva-reared broiler chickens [J]. Avian diseases,1981,25(3):655-66.
    [145]Jackwood MW, Hilt DA, Lee CW, et al. Data from 11 years of molecular typing infectious bronchitis virus field isolates [J]. Avian diseases,2005,49(4):614-8.
    [146]Fields DB. Arkansas 99, a new infectious bronchitis serotype [J]. Avian diseases,1973, 17(3):659-61.
    [147]Alvarado IR, Villegas P, El-Attrache J, et al. Evaluation of the protection conferred by commercial vaccines against the California 99 isolate of infectious bronchitis virus [J]. Avian diseases,2003,47(4):1298-304.
    [148]Nix WA, Troeber DS, Kingham BF, et al. Emergence of subtype strains of the Arkansas serotype of infectious bronchitis virus in Delmarva broiler chickens [J]. Avian diseases, 2000,44(3):568-81.
    [149]Jackwood MW, Hilt DA, McCall AW, et al. Infectious bronchitis virus field vaccination coverage and persistence of Arkansas-type viruses in commercial broilers [J]. Avian diseases,2009,53(2):175-83.
    [150]Sander JE, Jackwood MW, Rowland GN. Protection by a commercial Arkansas-type infectious bronchitis virus vaccine against a field isolate of the same serotype [J]. Avian diseases,1997,41(4):964-7.
    [151]Sjaak de Wit JJ, Cook JK. van der Heijden HM. Infectious bronchitis virus variants:a review of the history, current situation and control measures [J]. Avian pathology:journal of the WVPA.2011,40(3):223-35.
    [152]Gelb J, Jr., Ladman BS, Tamayo M, et al. Novel infectious bronchitis virus S1 genotypes in Mexico 1998-1999 [J]. Avian diseases,2001,45(4):1060-3.
    [153]Escorcia M, Jackwood MW, Lucio B, et al. Characterization of Mexican strains of avian infectious bronchitis isolated during 1997 [J]. Avian diseases,2000,44(4):944-7.
    [154]Rimondi A, Craig MI, Vagnozzi A, et al. Molecular characterization of avian infectious bronchitis virus strains from outbreaks in Argentina (2001-2008) [J]. Avian pathology journal of the WVPA,2009,38(2):149-53.
    [155]Alvarado IR, Villegas P, Mossos N, et al. Molecular characterization of avian infectious bronchitis virus strains isolated in Colombia during 2003 [J]. Avian diseases,2005,49(4): 494-9.
    [156]Davelaar FG, Kouwenhoven B, Burger AG. Occurrence and significance of infectious bronchitis virus variant strains in egg and broiler production in the Netherlands [J]. The Veterinary quarterly,1984,6(3):114-20.
    [157]Lambrechts C, Pensaert M, Ducatelle R. Challenge experiments to evaluate cross-protection induced at the trachea and kidney level by vaccine strains and Belgian nephropathogenic isolates of avian infectious bronchitis virus [J]. Avian pathology:journal of the WVPA,1993,22(3):577-90.
    [158]Pensaert M, Lambrechts C. Vaccination of chickens against a Belgian nephropathogenic strain of infectious bronchitis virus B1648 using attenuated homologous and heterologous strains [J]. Avian pathology:journal of the WVPA,1994,23(4):631-41.
    [159]Valastro V, Monne I, Fasolato M, et al. QX-type infectious bronchitis virus in commercial flocks in the UK [J]. The Veterinary record,2010,167(22):865-6.
    [160]Irvine RM, Cox WJ, Ceeraz V, et al. Detection of IBV QX in commercial broiler flocks in the UK [J]. The Veterinary record,2010,167(22):877-9.
    [161]Monne I, Cattoli G, Jones R, et al. QX genotypes of infectious bronchitis virus circulating in Europe [J]. The Veterinary record,2008,163(20):606-7.
    [162]Gough RE, Cox WJ, de BWD, et al. Chinese QX strain of infectious bronchitis virus isolated in the UK [J]. The Veterinary record,2008,162(3):99-100.
    [163]Beato MS, De Battisti C, Terregino C, et al. Evidence of circulation of a Chinese strain of infectious bronchitis virus (QXIBV) in Italy [J]. The Veterinary record,2005,156(22):720.
    [164]Bochkov YA, Batchenko GV, Shcherbakova LO, et al. Molecular epizootiology of avian infectious bronchitis in Russia [J]. Avian pathology:journal of the WVPA,2006,35(5): 379-93.
    1165]Worthington KJ, Jones RC. New genotype of infectious bronchitis virus in chickens in Scotland [J]. The Veterinary record,2006,159(9):291-2.
    [166]Terregino C, Toffan A, Beato MS, et al. Pathogenicity of a QX strain of infectious bronchitis virus in specific pathogen free and commercial broiler chickens, and evaluation of protection induced by a vaccination programme based on the Ma5 and 4/91 serotypes [J]. Avian pathology:journal of the WVPA,2008,37(5):487-93.
    [167]Bourogaa H. Miled K, Gribaa L, et al. Characterization of new variants of avian infectious bronchitis virus in Tunisia [J]. Avian diseases,2009,53(3):426-33.
    [168]el Houadfi M, Jones RC. Isolation of avian infectious bronchitis viruses in Morocco including an enterotropic variant [J]. The Veterinary record,1985,116(16):445.
    [169]Bourogaa H, Miled K, Larbi I, et al. Avian infectious bronchitis disease in Tunisia: seroprevalence. pathogenicity and compatibility studies of vaccine-field isolates [J]. Archives de l'Institut Pasteur de Tunis,2009,86(1-4):75-83.
    [170]Meir R, Rosenblut E, Perl S, et al. Identification of a novel nephropathogenic infectious bronchitis virus in Israel [J]. Avian diseases,2004,48(3):635-41.
    [171]Roussan DA, Haddad R, Khawaldeh G. Molecular survey of avian respiratory pathogens in commercial broiler chicken flocks with respiratory diseases in Jordan [J]. Poultry science, 2008,87(3):444-8.
    [172]Gharaibeh SM. Infectious bronchitis virus serotypes in poultry flocks in Jordan [J]. Preventive veterinary medicine,2007,78(3-4):317-24.
    [173]Seyfi Abad Shapouri MR, Mayahi M, Assasi K, et al. A survey of the prevalence of infectious bronchitis virus type 4/91 in Iran [J]. Acta veterinaria Hungarica,2004,52(2): 163-6.
    [174]Gingerich EN, Winterfield RW, Fadly AM. Variant infectious bronchitis virus isolated from Indiana chickens [J]. Poultry science,1976,55(4):1482-5.
    [175]Pohuang T. Chansiripornchai N, Tawatsin A, et al. Detection and molecular characterization of infectious bronchitis virus isolated from recent outbreaks in broiler flocks in Thailand [J]. Journal of veterinary science,2009,10(3):219-23.
    [176]Song CS, Lee YJ, Kim JH, et al. Epidemiological classification of infectious bronchitis virus isolated in Korea between 1986 and 1997 [J]. Avian pathology:journal of the WVPA, 1998,27(4):409-16.
    [177]Lee SK, Sung HW, Kwon HM. S1 glycoprotein gene analysis of infectious bronchitis viruses isolated in Korea [J]. Archives of virology,2004,149(3):481-94.
    [178]Doi M, Yamakami T, Koimaru H, et al. Serotypes of avian infectious bronchitis virus isolates from field cases in Japan [J]. Avian diseases,1982,26(4):946-56.
    [179]Mase M, Inoue T, Yamaguchi S, et al. Genetic diversity of avian infectious bronchitis viruses in Japan based on analysis of s2 glycoprotein gene [J]. The Journal of veterinary medical science/the Japanese Society of Veterinary Science,2009,71 (3):287-91.
    [180]Mase M, Tsukamoto K, Imai K, et al. Phylogenetic analysis of avian infectious bronchitis virus strains isolated in Japan [J]. Archives of virology,2004,149(10):2069-78.
    [181]Chen HW. Huang YP, Wang CH. Identification of Taiwan and China-like recombinant avian infectious bronchitis viruses in Taiwan [J]. Virus research,2009,140(1-2):121-9.
    [182]Huang YP, Lee HC. Cheng MC, et al. S1 and N gene analysis of avian infectious bronchitis viruses in Taiwan [J]. Avian diseases,2004.48(3):581-9.
    [183]Wang CH, Tsai CT. Genetic grouping for the isolates of avian infectious bronchitis virus in Taiwan [J]. Archives of virology,1996,141(9):1677-88.
    [184]Wang CH, Hsieh MC, Chang PC. Isolation, pathogenicity, and H120 protection efficacy of infectious bronchitis viruses isolated in Taiwan [J]. Avian diseases,1996,40(3):620-5.
    [185]张庆霞.中国1995-2004年部分鸡传染性支气管炎病毒分子流行病学研究[D];中国农业科学院,2006.
    [186]Liu S, Chen J, Chen J, et al. Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas) [J]. The Journal of general virology, 2005,86(Pt 3):719-25.
    [187]于申业.鸡传染性支气管炎病毒793/B RT-PCR检测方法的建立与应用及TA03株S1基因的克隆与表达[D];山东农业大学,2006.
    [188]Ovchinnikova EV, Bochkov YA, Shcherbakova LO, et al. Molecular characterization of infectious bronchitis virus isolates from Russia and neighbouring countries:identification of intertypic recombination in the S1 gene [J]. Avian pathology:journal of the WVPA, 2011.40(5):507-14.
    [189]Mardani K, Browning GF, Ignjatovic J, et al. Rapid differentiation of current infectious bronchitis virus vaccine strains and field isolates in Australia [J]. Australian veterinary journal,2006,84(1-2):59-62.
    [190]Ignjatovic J, Ashton DF, Reece R, et al. Pathogenicity of Australian strains of avian infectious bronchitis virus [J]. Journal of comparative pathology,2002,126(2-3):115-23.
    [191]Lohr JE, Hinze V, Kaleta EF. Immunological relationship between the New Zealand A and the Australian T strains of infectious bronchitis virus as measured by cross-immunisation tests in tracheal organ cultures from immunised birds [J]. New Zealand veterinary journal, 1991.39(3):113-4.
    [192]Endo-Munoz LB, Faragher JT. Avian infectious bronchitis:cross-protection studies using different Australian subtypes [J]. Australian veterinary journal,1989.66(11):345-8.
    [193]McFarlane R, Verma R. Sequence analysis of the gene coding for the S1 glycoprotein of infectious bronchitis virus (IBV) strains from New Zealand [J]. Virus genes,2008,37(3): 351-7.
    [194]McCausland IP, Carter ME, Hunter R. Infectious bronchitis in New Zealand chickens [J]. New Zealand veterinary journal.1972.20(7):120-4.
    [195]Hopkins SR. Yoder HW, Jr. Reversion to virulence of chicken-passaged infectious bronchitis vaccine virus [J]. Avian diseases,1986,30(1):221-3.
    [196]Klieve AV, Cumming RB. Immunity and cross-protection to nephritis produced by Australian infectious bronchitis viruses used as vaccines [J]. Avian pathology:journal of the WVPA,1988,17(4):829-39.
    [197]Klieve AV, Cumming RB. Infectious bronchitis:safety and protection in chickens with maternal antibody [J]. Australian veterinary journal,1988,65(12):396-7.
    [198]Wadey CN, Faragher JT. Australian infectious bronchitis viruses:identification of nine subtypes by a neutralisation test [J]. Research in veterinary science,1981,30(1):70-4.
    [199]刘胜旺.我国鸡传染性支气管炎流行现状及原因分析[J].中国家禽,2010,32(16):5-9.
    [200]Geerligs HJ, Boelm GJ, Meinders CA, et al. Efficacy and safety of an attenuated live QX-like infectious bronchitis virus strain as a vaccine for chickens [J]. Avian pathology journal of the WVPA,2011,40(1):93-102.
    [201]Armesto M, Evans S, Cavanagh D, et al. A recombinant avian infectious bronchitis virus expressing a heterologous spike gene belonging to the 4/91 serotype [J]. PloS one,2011, 6(8):e24352.
    [202]Song CS, Lee YJ, Lee CW, et al. Induction of protective immunity in chickens vaccinated with infectious bronchitis virus S1 glycoprotein expressed by a recombinant baculovirus [J]. The Journal of general virology,1998,79 (Pt 4)(719-23.
    [203]Wu JX, Zhou JY, Zhou XP. Transgenic potato containing immunogenic gene of avian coronavirus and its immunogenicity in mice [J]. Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica,2003,35(11):1011-5.
    [204]Zhou JY, Wu JX, Cheng LQ, et al. Expression of immunogenic S1 glycoprotein of infectious bronchitis virus in transgenic potatoes [J]. Journal of virology,2003,77(16): 9090-3.
    [205]李春.禽传染性支气管炎病毒M基因的克隆、序列分析及S1基因玉米表达载体的构建[D];四川农业大学,2003.
    [206]步志高,赵晓岩.刘长军,等.DNA免疫防制鸡传染性支气管炎的探索研究[J].中国预防兽医学报,2000,22(4):13-6.
    [207]陈洪岩,江国托,杨奇伟,等.鸡传染性支气管炎病毒S1基因免疫对鸡的保护作用[J].中国预防兽医学报,1999,21(4):11-4.
    [208]刘思国,康丽娟,江国托,等.鸡传染性支气管炎病毒核蛋白基因免疫的研究[J].中 国预防兽医学报,2000,S1:215.
    [209]Kapczynski DR. Hilt DA, Shapiro D, et al. Protection of chickens from infectious bronchitis by in ovo and intramuscular vaccination with a DNA vaccine expressing the SI glycoprotein [J]. Avian diseases,2003,47(2):272-85.
    [210]Tang M, Wang H, Zhou S, et al. Enhancement of the immunogenicity of an infectious bronchitis virus DNA vaccine by a bicistronic plasmid encoding nucleocapsid protein and interleukin-2 [J]. Journal of virological methods,2008,149(1):42-8.
    [211]Tan B, Wang H, Shang L, et al. Coadministration of chicken GM-CSF with a DNA vaccine expressing infectious bronchitis virus (IBV) S1 glycoprotein enhances the specific immune response and protects against IBV infection [J]. Archives of virology,2009,154(7): 1117-24.
    [212]Guo Z, Wang H, Yang T, et al. Priming with a DNA vaccine and boosting with an inactivated vaccine enhance the immune response against infectious bronchitis virus [J]. Journal of virological methods,2010,167(1):84-9.
    [213]Yu L, Liu W, Schnitzlein WM, et al. Study of protection by recombinant fowl poxvirus expressing C-terminal nucleocapsid protein of infectious bronchitis virus against challenge [J]. Avian diseases,2001,45(2):340-8.
    [214]Wang X, Schnitzlein WM, Tripathy DN, et al. Construction and immunogenicity studies of recombinant fowl poxvirus containing the S1 gene of Massachusetts 41 strain of infectious bronchitis virus [J]. Avian diseases,2002,46(4):831-8.
    [215]Wang YF, Sun YK, Tian ZC, et al. Protection of chickens against infectious bronchitis by a recombinant fowlpox virus co-expressing IBV-S1 and chicken IFNgamma [J]. Vaccine. 2009,27(50):7046-52.
    [216]Shi XM, Zhao Y, Gao HB, et al. Evaluation of recombinant fowlpox virus expressing infectious bronchitis virus S1 gene and chicken interferon-gamma gene for immune protection against heterologous strains [J]. Vaccine,2011,29(8):1576-82.
    |217] Johnson MA, Pooley C, Ignjatovic J, et al. A recombinant fowl adenovirus expressing the S1 gene of infectious bronchitis virus protects against challenge with infectious bronchitis virus [J]. Vaccine,2003,21(21-22):2730-6.
    [218]Zeshan B, Zhang L, Bai J, et al. Immunogenicity and protective efficacy of a replication-defective infectious bronchitis virus vaccine using an adenovirus vector and administered in ovo [J]. Journal of virological methods.2010.166(1-2):54-9.
    [219]Zeshan B. Mushtaq MH, Wang X, et al. Protective immune responses induced by in ovo immunization with recombinant adenoviruses expressing spike (S1) glycoprotein of infectious bronchitis virus fused/co-administered with granulocyte-macrophage colony stimulating factor [J]. Veterinary microbiology,2011,148(1):8-17.
    [1]Saif YM, Barnes HJ. Diseases of poultry [M].12th ed. Ames, Iowa:Blackwell Pub. Professional,2008.
    [2]Brian DA, Baric RS. Coronavirus genome structure and replication [J]. Current topics in microbiology and immunology,2005,287:1-30.
    [3]Bingham RW, Almeida JD. Studies on the structure of a coronavirus-avian infectious bronchitis virus [J]. The Journal of general virology,1977,36(3):495-502.
    [4]Wang L, Junker D, Hock L, et al. Evolutionary implications of genetic variations in the S1 gene of infectious bronchitis virus [J]. Virus research,1994,34(3):327-38.
    [5]吴志达,谢秀英.鸡传染性支气管炎(IB)介绍[J].上海农业科技,1980,5:42-4.
    [6]刘胜旺.我国鸡传染性支气管炎流行现状及原因分析[J].中国家禽,2010,32(16):5-9.
    [7]Chenna R, Sugawara H, Koike T, et al. Multiple sequence alignment with the Clustal series of programs [J]. Nucleic acids research,2003,31(13):3497-500.
    [8]Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 [J]. Molecular biology and evolution,2007,24(8):1596-9.
    [9]Martin DP, Lemey P, Lott M, et al. RDP3:a flexible and fast computer program for analyzing recombination [J]. Bioinformatics,2010,26(19):2462-3.
    [10]Williams AK, Wang L, Sneed LW, et al. Analysis of a hypervariable region in the 3' non-coding end of the infectious bronchitis virus genome [J]. Virus research,1993,28(1): 19-27.
    [11]Han Z, Sun C, Yan B, et al. A 15-year analysis of molecular epidemiology of avian infectious bronchitis coronavirus in China [J]. Infect Genet Evol,2011,11(1):190-200.
    [12]Kwon HM, Jackwood MW, Gelb J, Jr. Differentiation of infectious bronchitis virus serotypes using polymerase chain reaction and restriction fragment length polymorphism analysis [J]. Avian diseases,1993.37(1):194-202.
    [13]Luo H, Qin J. Chen F, et al. Phylogenetic analysis of the S1 glycoprotein gene of infectious bronchitis viruses isolated in China during 2009-2010 [J]. Virus genes,2012,44(1):19-23.
    [14]Lim TH, Lee HJ, Lee DH, et al. An emerging recombinant cluster of nephropathogenic strains of avian infectious bronchitis virus in Korea [J]. Infect Genet Evol,2011,11(3): 678-85.
    [15]Lee EK, Jeon WJ, Lee YJ, et al. Genetic diversity of avian infectious bronchitis virus isolates in Korea between 2003 and 2006 [J]. Avian diseases,2008,52(2):332-7.
    [16]Jang JH, Sung HW, Song CS, et al. Sequence analysis of the S1 glycoprotein gene of infectious bronchitis viruses:identification of a novel phylogenetic group in Korea [J]. Journal of veterinary science (Suwon-si, Korea),2007,8(4):401-7.
    [17]Lee SK, Sung HW, Kwon HM. S1 glycoprotein gene analysis of infectious bronchitis viruses isolated in Korea [J]. Archives of virology,2004.149(3):481-94.
    [18]Mase M, Kawanishi N, Ootani Y, et al. A novel genotype of avian infectious bronchitis virus isolated in Japan in 2009 [J]. The Journal of veterinary medical science/the Japanese Society of Veterinary Science,2010,72(10):1265-8.
    [19]Shimazaki Y, Harada M, Horiuchi T, et al. Serological studies of infectious bronchitis vaccines against Japanese field isolates of homologous and heterologous genotypes [J]. The Journal of veterinary medical science/the Japanese Society of Veterinary Science,2009, 71(7):891-6.
    [20]Mase M, Inoue T, Yamaguchi S, et al. Existence of avian infectious bronchitis virus with a European-prevalent 4/91 genotype in Japan [J]. The Journal of veterinary medical science/ the Japanese Society of Veterinary Science,2008,70(12):1341-4.
    [21]Mase M, Tsukamoto K, Imai K, et al. Phylogenetic analysis of avian infectious bronchitis virus strains isolated in Japan [J]. Archives of virology,2004,149(10):2069-78.
    [22]Kuo SM, Wang CH, Hou MH, et al. Evolution of infectious bronchitis virus in Taiwan: Characterisation of RNA recombination in the nucleocapsid gene [J]. Veterinary microbiology,2010,144(3-4):293-302.
    [23]Chen HW, Huang YP, Wang CH. Identification of Taiwan and China-like recombinant avian infectious bronchitis viruses in Taiwan [J]. Virus research,2009,140(1-2):121-9.
    [24]Shieh HK, Shien JH, Chou HY, et al. Complete nucleotide sequences of S1 and N genes of infectious bronchitis virus isolated in Japan and Taiwan [J]. The Journal of veterinary medical science/the Japanese Society of Veterinary Science.2004,66(5):555-8.
    [25]Wang CH, Tsai CT. Genetic grouping for the isolates of avian infectious bronchitis virus in Taiwan [J]. Archives of virology,1996,141(9):1677-88.
    [26]Toffan A, Monne I, Terregino C. et al. QX-like infectious bronchitis virus in Africa [J]. The Veterinary record,2011,169(22):589.
    [27]Krapez U, Slavec B, Rojs OZ. Circulation of infectious bronchitis virus strains from Italy 02 and QX genotypes in Slovenia between 2007 and 2009 [J]. Avian diseases.2011,55(1): 155-61.
    [28]Benyeda Z. Mato T, Suveges T, et al. Comparison of the pathogenicity of QX-like, M41 and 793/B infectious bronchitis strains from different pathological conditions [J]. Avian Pathol,2009,38(6):449-56.
    [29]Terregino C, Toffan A, Beato MS, et al. Pathogenicity of a QX strain of infectious bronchitis virus in specific pathogen free and commercial broiler chickens, and evaluation of protection induced by a vaccination programme based on the Ma5 and 4/91 serotypes [J]. Avian Pathol, 2008,37(5):487-93.
    [30]Monne 1, Cattoli G, Jones R, et al. QX genotypes of infectious bronchitis virus circulating in Europe [J]. The Veterinary record,2008,163(20):606-7.
    [31]Gough RE, Cox WJ, de BWD, et al. Chinese QX strain of infectious bronchitis virus isolated in the UK [J]. The Veterinary record,2008,162(3):99-100.
    [32]Beato MS, De Battisti C, Terregino C, et al. Evidence of circulation of a Chinese strain of infectious bronchitis virus (QXIBV) in Italy [J]. The Veterinary record,2005,156(22):720.
    [33]Ji J, Xie J, Chen F, et al. Phylogenetic distribution and predominant genotype of the avian infectious bronchitis virus in China during 2008-2009 [J]. Virology journal,2011,8:184.
    [34]Liu S, Chen J, Chen J, et al. Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas) [J]. The Journal of general virology, 2005,86(Pt 3):719-25.
    [35]Haghighat-Jahromi M, Asasi K, Nili H, et al. Coinfection of avian influenza virus (H9N2 subtype) with infectious bronchitis live vaccine [J]. Archives of virology,2008,153(4): 651-5.
    [36]王玉东,张子春,王永玲,等.鸡腺胃型传染性支气管炎研究初报[J].中国动物检疫,1997,14(3):6-8.
    [37]陈红英,李新生,刘延贺,等.鸡传染性支气管炎腺胃型病毒的分离与鉴定[J].河南农业大学学报,1998,32(4):44-7.
    [38]范根成,蒋贻海,王永玲,等.北京地区鸡腺胃型传染性支气管炎病毒分离与鉴定[J].中国兽医科技,1998,28(10):21-2.
    [39]王凤鸣.鸡腺胃型传染性支气管炎的发生和病毒分离[J].中国兽医杂志,1998,24(11):23.
    [40]王玉东,王永玲,张子春,等.鸡腺胃型传染性支气管炎病毒(QX IBV)的分离和鉴定[J].中国动物检疫,1998,15(1):3-5.
    [41]朱万光,杜元钊,吴延功,等.鸡传染性腺胃炎流行情况的调查报告[J].动物医学进展,1998,19(3):44-5.
    [42]范琳,吕清林.河南省鸡腺胃型传染性支气管炎的初步调查[J].河南农业科学,1999.1:36-7.
    [43]荣骏弓,吴东来,谷守林,等.腺胃病变型鸡传染性支气管炎病毒分离株(IBV-D971)对SPF鸡的致病力试验[J].中国预防兽医学报,1999,21(4):58-61.
    [44]荣骏弓,康丽娟,谷守林,等.腺胃病变型鸡传染性支气管炎病毒的分离鉴定[J].中国预防兽医学报,1999,21(2):45-8.
    [45]王玉东,范根成,丁江,等.腺胃型传染性支气管炎的调查和防制[J].中国兽医科技,1999,29(4):34.
    [46]王玉东,张子春,范根成,等.鸡腺胃型传染性支气管炎的同源动物回归试验、致鸡胚侏儒化试验和免疫保护试验[J].山东家禽,1999,2:5-8.
    [47]陈德胜.传染性支气管炎病毒中国地方流行毒株的分子流行病学研究[D];南京农业大学,2000.
    [48]周继勇.传染性腺胃炎病毒ZJ971株的一些生物学特性[J].畜牧兽医学报,2000,31(3):229-34.
    [49]王玉东,王永玲,张子春,等.鸡腺胃型传染性支气管炎病毒(QX IBV)的分离和鉴定[J].中国动物检疫,1998,15(1):3-5.
    [50]Yu L, Jiang Y, Low S, et al. Characterization of three infectious bronchitis virus isolates from China associated with proventriculus in vaccinated chickens [J]. Avian diseases,2001, 45(2):416-24.
    [51]周继勇.传染性支气管炎病毒嗜腺胃毒株(ZJ971毒株)结构蛋白和S1基因的结构分析[J].中国兽医学报,2000,20(5):429-33.
    [52]Sun C, Han Z, Ma H, et al. Phylogenetic analysis of infectious bronchitis coronaviruses newly isolated in China, and pathogenicity and evaluation of protection induced by Massachusetts serotype H120 vaccine against QX-like strains [J]. Avian Pathol,2011,40(1): 43-54.
    [53]王玉东,张子春,王永玲,等.鸡腺胃型传染性支气管炎研究初报[J].中国动物检疫,1997,14(3):6-8.
    [54]Li M, Wang XY, Wei P, et al. Serotype and genotype diversity of infectious bronchitis viruses isolated during 1985-2008 in Guangxi, China [J]. Archives of virology,2012, 157(3):467-74.
    [55]Abro SH, Renstrom LH, Ullman K, et al. Emergence of novel strains of avian infectious bronchitis virus in Sweden [J]. Veterinary microbiology,2012,155(2-4):237-46.
    [56]Yan F, Zhao Y, Yue W, et al. Phylogenetic analysis of S1 gene of infectious bronchitis virus isolates from China [J]. Avian diseases,2011,55(3):451-8.
    [57]Xie Q, Ji J, Xie J, et al. Epidemiology and immunoprotection of nephropathogenic avian infectious bronchitis virus in southern China [J]. Virology journal,2011,8(1):484.
    [58]Pohuang T, Chansiripornchai N, Tawatsin A, et al. Sequence analysis of S1 genes of infectious bronchitis virus isolated in Thailand during 2008-2009:identification of natural recombination in the field isolates [J]. Virus genes,2011,43(2):254-60.
    [59]Ovchinnikova EV, Bochkov YA, Shcherbakova LO, et al. Molecular characterization of infectious bronchitis virus isolates from Russia and neighbouring countries:identification of intertypic recombination in the S1 gene [J]. Avian Pathol,2011,40(5):507-14.
    [60]Luo H, Qin J, Chen F, et al. Phylogenetic analysis of the S1 glycoprotein gene of infectious bronchitis viruses isolated in China during 2009-2010 [J]. Virus genes,2011,44(1):19-23.
    [61]Li M, Wang XY, Wei P, et al. Serotype and genotype diversity of infectious bronchitis viruses isolated during 1985-2008 in Guangxi, China [J]. Archives of virology,2011, 157(3):467-74.
    [62]Chacon JL, Rodrigues JN, Assayag Junior MS, et al. Epidemiological survey and molecular characterization of avian infectious bronchitis virus in Brazil between 2003 and 2009 [J]. Avian Pathol,2011,40(2):153-62.
    [63]Villarreal LY, Sandri TL, Souza SP, et al. Molecular epidemiology of avian infectious bronchitis in Brazil from 2007 to 2008 in breeders, broilers, and layers [J]. Avian diseases, 2010,54(2):894-8.
    [64]Krapez U, Slavec B, Barlic-Maganja D, et al. Molecular analysis of infectious bronchitis viruses isolated in Slovenia between 1990 and 2005:a retrospective study [J]. Virus genes, 2010,41(3):414-6.
    [65]Mase M, Inoue T, Yamaguchi S, et al. Genetic diversity of avian infectious bronchitis viruses in Japan based on analysis of s2 glycoprotein gene [J]. The Journal of veterinary medical science/the Japanese Society of Veterinary Science,2009,71(3):287-91.
    [66]Li L, Xue C. Chen F, et al. Isolation and genetic analysis revealed no predominant new strains of avian infectious bronchitis virus circulating in South China during 2004-2008 [J]. Veterinary microbiology,2009,143(2-4):145-54.
    [67]Ducatez MF. Martin AM, Owoade AA. et al. Characterization of a new genotype and serotype of infectious bronchitis virus in Western Africa [J]. The Journal of general virology,2009,90(Pt 11):2679-85.
    [68]Dolz R, Pujols J, Ordonez G, et al. Molecular epidemiology and evolution of avian infectious bronchitis virus in Spain over a fourteen-year period [J]. Virology,2008, 374(1):50-9.
    [69]Liu S, Han Z, Chen J. et al. S1 gene sequence heterogeneity of a pathogenic infectious bronchitis virus strain and its embryo-passaged. attenuated derivatives [J]. Avian Pathol, 2007,36(3):231-4.
    [70]Bochkov YA, Tosi G, Massi P. et al. Phylogenetic analysis of partial S1 and N gene sequences of infectious bronchitis virus isolates from Italy revealed genetic diversity and recombination [J]. Virus genes,2007,35(1):65-71.
    [71]Liu SW, Zhang QX, Chen JD, et al. Genetic diversity of avian infectious bronchitis coronavirus strains isolated in China between 1995 and 2004 [J]. Archives of virology, 2006,151(6):1133-48.
    [72]赵继勋,秦卓明.一株类4/91病毒的初步研究[J].中国预防兽医学报,2002,24(5):360-3.
    [73]Gallardo RA, Hoerr FJ, Berry WD, et al. Infectious bronchitis virus in testicles and venereal transmission [J]. Avian diseases,2011,55(2):255-8.
    [74]Zou NL, Zhao FF, Wang YP, et al. Genetic analysis revealed LX4 genotype strains of avian infectious bronchitis virus became predominant in recent years in Sichuan area, China [J]. Virus genes,2010,41 (2):202-9.
    [75]Li L, Xue C, Chen F, et al. Isolation and genetic analysis revealed no predominant new strains of avian infectious bronchitis virus circulating in South China during 2004-2008 [J]. Veterinary microbiology,2010,143(2-4):145-54.
    [76]杨杰华.鸡传染性支气管炎变异毒株的分离鉴定及其免疫原基因的序列分析[D];山东农业大学,2005.
    [77]Phillips JE, Jackwood MW, McKinley ET, et al. Changes in nonstructural protein 3 are associated with attenuation in avian coronavirus infectious bronchitis virus [J]. Virus genes, 2011,44(1):63-74.
    [1]刘胜旺.我国鸡传染性支气管炎流行现状及原因分析[J].中国家禽,2010.32(16):5-9.
    [2]Wang CH, Huang YC. Relationship between serotypes and genotypes based on the hypervariable region of the S1 gene of infectious bronchitis virus [J]. Archives of virology, 2000,145(2):291-300.
    [3]Gelb J, Jr., Ladman BS, Tamayo M, et al. Novel infectious bronchitis virus S1 genotypes in Mexico 1998-1999 [J]. Avian diseases,2001,45(4):1060-3.
    [4]Liu S, Kong X. A new genotype of nephropathogenic infectious bronchitis virus circulating in vaccinated and non-vaccinated flocks in China [J]. Avian Pathol,2004,33(3):321-7.
    [5]Bayry J, Goudar MS, Nighot PK, et al. Emergence of a nephropathogenic avian infectious bronchitis virus with a novel genotype in India [J]. Journal of clinical microbiology,2005, 43(2):916-8.
    [6]Worthington KJ, Jones RC. New genotype of infectious bronchitis virus in chickens in Scotland [J]. The Veterinary record,2006,159(9):291-2.
    [7]Bing GX, Liu X, Pu J, et al. Different genotypes of nephropathogenic infectious bronchitis viruses co-circulating in chicken population in China [J]. Virus genes,2007,35(2):333-7.
    [8]Monne I, Cattoli G, Jones R, et al. QX genotypes of infectious bronchitis virus circulating in Europe [J]. The Veterinary record,2008,163(20):606-7.
    [9]Ducatez MF, Martin AM, Owoade AA, et al. Characterization of a new genotype and serotype of infectious bronchitis virus in Western Africa [J]. The Journal of general virology,2009,90(Pt 11):2679-85.
    [10]Mase M, Kawanishi N, Ootani Y, et al. A Novel Genotype of Avian Infectious Bronchitis Virus Isolated in Japan in 2009 [J]. The Journal of veterinary medical science/the Japanese Society of Veterinary Science,2010,72(10):1265-8
    [11]Ji J, Xie J, Chen F. et al. Phylogenetic distribution and predominant genotype of the avian infectious bronchitis virus in China during 2008-2009 [J]. Virology journal,2011,8:184.
    [12]Krapez U, Slavec B, Rojs OZ. Circulation of infectious bronchitis virus strains from Italy 02 and QX genotypes in Slovenia between 2007 and 2009 [J]. Avian diseases,2011,55(1): 155-61.
    [13]Li M, Wang XY, Wei P, et al. Serotype and genotype diversity of infectious bronchitis viruses isolated during 1985-2008 in Guangxi, China [J]. Archives of virology,2012, 157(3):467-74.
    [14]Acevedo AM, Diaz de Arce H, Brandao PE, et al. First evidence of the emergence of novel putative infectious bronchitis virus genotypes in Cuba [J]. Research in veterinary science, 2012,
    [15]Luo H, Qin J, Chen F, et al. Phylogenetic analysis of the S1 glycoprotein gene of infectious bronchitis viruses isolated in China during 2009-2010 [J]. Virus genes,2012,44(1):19-23.
    [16]Yan F, Zhao Y, Yue W, et al. Phylogenetic analysis of S1 gene of infectious bronchitis virus isolates from China [J]. Avian diseases,2011,55(3):451-8.
    [17]Sun C, Han Z, Ma H. et al. Phylogenetic analysis of infectious bronchitis coronaviruses newly isolated in China, and pathogenicity and evaluation of protection induced by Massachusetts serotype H120 vaccine against QX-like strains [J]. Avian Pathol,2011,40(1): 43-54.
    [18]Han Z, Sun C, Yan B, et al. A 15-year analysis of molecular epidemiology of avian infectious bronchitis coronavirus in China [J]. Infect Genet Evol,2011.11(1):190-200.
    [19]吴志达,谢秀英,郁乃彬.鸡传染性支气管炎H52株疫苗在生产上推广[J].家禽,1982,1:23.
    [20]吴志达,谢秀英.鸡传染性支气管炎H120、H52株疫苗室内外安全、效力试验[J].中国兽医杂志,1982,7:33-4.
    [21]吴志达,谢秀英.鸡传染性支气管炎—H120弱毒疫苗实验室安全及效力试验[J].上海畜牧兽医通讯,1981,1:21-3.
    [22]殷震,刘景华.动物病毒学[M].北京:科学出版社,1997.
    [23]中华人民共和国农业部.中华人民共和国兽用生物制品质量标准(2001年版)[M].北京:中国农业科技出版社,2001.
    [24]Liu S, Zhang X, Wang Y, et al. Evaluation of the protection conferred by commercial vaccines and attenuated heterologous isolates in China against the CK/CH/LDL/971 strain of infectious bronchitis coronavirus [J]. Vet J,2009,179(1):130-6.
    [25]Liu S, Zhang X, Wang Y, et al. Evaluation of the protection conferred by commercial vaccines and attenuated heterologous isolates in China against the CK/CH/LDL/971 strain of infectious bronchitis coronavirus [J]. Vet J,2007,179(1):130-6.
    [26]Liu S, Chen J, Han Z, et al. Infectious bronchitis virus:S1 gene characteristics of vaccines used in China and efficacy of vaccination against heterologous strains from China [J]. Avian Pathol,2006,35(5):394-9.
    [27]Terregino C, Toffan A, Beato MS, et al. Pathogenicity of a QX strain of infectious bronchitis virus in specific pathogen free and commercial broiler chickens, and evaluation of protection induced by a vaccination programme based on the Ma5 and 4/91 serotypes [J]. Avian Pathol,2008,37(5):487-93.
    [28]张国中,赵继勋.2010年鸡重要疫病的流行动态分析[J].中国家禽,2010,32(07):63-6.
    [29]张国中,赵继勋.2011年鸡重要疫病的流行动态分析[J].中国家禽,201],33(07):64-7.
    [30]张国中,赵继勋,杨琪.2009年鸡重要疫病的流行动态分析[J].中国家禽,2009,31(09):61-4.
    [31]Geerligs HJ, Boelm GJ, Meinders CA, et al. Efficacy and safety of an attenuated live QX-like infectious bronchitis virus strain as a vaccine for chickens [J]. Avian Pathol,2011, 40(1):93-102.
    [32]聂磊.鸡传染性支气管炎病毒tl/CH/LDT3/03的鸡胚传代致弱及其免疫效力的初步评价[D];东北农业大学,2007.
    [33]龚利洋.鸡传染性支气管炎病毒CK/CH/LHLJ/04V的分离鉴定及致弱的初步研究[J].中国预防兽医学报,2007,29(10):748-52.
    [34]Shi XM, Zhao Y, Gao HB, et al. Evaluation of recombinant fowlpox virus expressing infectious bronchitis virus S1 gene and chicken interferon-gamma gene for immune protection against heterologous strains [J]. Vaccine,2011,29(8):1576-82.
    [35]Chen HY, Yang MF, Cui BA, et al. Construction and immunogenicity of a recombinant fowlpox vaccine coexpressing S1 glycoprotein of infectious bronchitis virus and chicken IL-18 [J]. Vaccine.2010,28(51):8112-9.
    [36]Wang YF, Sun YK, Tian ZC, et al. Protection of chickens against infectious bronchitis by a recombinant fowlpox virus co-expressing IBV-S1 and chicken IFNgamma [J]. Vaccine, 2009,27(50):7046-52.
    [37]Wang X, Schnitzlein WM, Tripathy DN, et al. Construction and immunogenicity studies of recombinant fowl poxvirus containing the S1 gene of Massachusetts 41 strain of infectious bronchitis virus [J]. Avian diseases,2002.46(4):831-8.
    [38]Yu L, Liu W, Schnitzlein WM, et al. Study of protection by recombinant fowl poxvirus expressing C-terminal nucleocapsid protein of infectious bronchitis virus against challenge [J]. Avian diseases,2001,45(2):340-8.
    [39]Johnson MA, Pooley C,Ignjatovic J, et al. A recombinant fowl adenovirus expressing the S1 gene of infectious bronchitis virus protects against challenge with infectious bronchitis virus [J]. Vaccine,2003,21(21-22):2730-6.
    [40]Zeshan B, Mushtaq MH. Wang X. et al. Protective immune responses induced by in ovo immunization with recombinant adenoviruses expressing spike (SI) glycoprotein of infectious bronchitis virus fused/co-administered with granulocyte-macrophage colony stimulating factor [J]. Veterinary microbiology,2011,148(1):8-17.
    [41]Zeshan B, Zhang L, Bai J, et al. Immunogenicity and protective efficacy of a replication-defective infectious bronchitis virus vaccine using an adenovirus vector and administered in ovo [J]. Journal of virological methods,2010,166(1-2):54-9.
    [42]Sonoda K, Sakaguchi M, Okamura H, et al. Development of an effective polyvalent vaccine against both Marek's and Newcastle diseases based on recombinant Marek's disease virus type 1 in commercial chickens with maternal antibodies [J]. J Virol,2000, 74(7):3217-26.
    [43]Sakaguchi M, Nakamura H, Sonoda K, et al. Protection of chickens with or without maternal antibodies against both Marek's and Newcastle diseases by one-time vaccination with recombinant vaccine of Marek's disease virus type 1 [J]. Vaccine,1998,16(5):472-9.
    [44]Le Gros FX, Dancer A, Giacomini C, et al. Field efficacy trial of a novel HVT-IBD vector vaccine for 1-day-old broilers [J]. Vaccine,2009,27(4):592-6.
    [45]Tarpey I, van Loon AA, de Haas N, et al. A recombinant turkey herpesvirus expressing chicken interleukin-2 increases the protection provided by in ovo vaccination with infectious bursal disease and infectious bronchitis virus [J]. Vaccine,2007,25(51): 8529-35.
    [46]Bublot M, Pritchard N, Le Gros FX, et al. Use of a vectored vaccine against infectious bursal disease of chickens in the face of high-titred maternally derived antibody [J]. J Comp Pathol,2007,137(Suppl 1):81-4.
    [1]Beato MS, De Battisti C, Terregino C, et al. Evidence of circulation of a Chinese strain of infectious bronchitis virus (QXIBV) in Italy [J]. The Veterinary record,2005,156(22):720.
    [2]Benyeda Z, Mato T, Suveges T, et al. Comparison of the pathogenicity of QX-like, M41 and 793/B infectious bronchitis strains from different pathological conditions [J]. Avian Pathol,2009,38(6):449-56.
    [3]Benyeda Z, Szeredi L, Mato T. et al. Comparative Histopathology and Immunohistochemistry of QX-like, Massachusetts and 793/B Serotypes of Infectious Bronchitis Virus Infection in Chickens [J]. Journal of comparative pathology,2010,143(4): 276-83.
    [4]Gough RE, Cox WJ, de BWD, et al. Chinese QX strain of infectious bronchitis virus isolated in the UK [J]. The Veterinary record,2008,162(3):99-100.
    [5]Monne I, Cattoli G, Jones R, et al. QX genotypes of infectious bronchitis virus circulating in Europe [J]. The Veterinary record,2008,163(20):606-7.
    [6]Terregino C, Toffan A, Beato MS, et al. Pathogenicity of a QX strain of infectious bronchitis virus in specific pathogen free and commercial broiler chickens, and evaluation of protection induced by a vaccination programme based on the Ma5 and 4/91 serotypes [J]. Avian Pathol,2008,37(5):487-93.
    [7]Calnek BW. Pathogenesis of Marek's disease virus infection [J]. Curr Top Microbiol Immunol,2001,255(25-55.
    [8]Davison AJ, Eberle R, Ehlers B, et al. The order Herpesvirales [J]. Archives of virology. 2009,154(1):171-7.
    [9]Saif YM, Barnes HJ. Diseases of poultry [M].12th ed. Ames, Iowa:Blackwell Pub. Professional,2008.
    [10]Tsukamoto K, Kojima C, Komori Y, et al. Protection of chickens against very virulent infectious bursal disease virus (IBDV) and Marek's disease virus (MDV) with a recombinant MDV expressing IBDV VP2 [J]. Virology,1999,257(2):352-62.
    [11]LI XQ, Wu YT, Xu XJ, et al. Construction of a recombinant Marek's disease virus expressing HA gene of H5 AIV [J]. Chin J Vet Sci,2009,29(10):1264-8.
    [12]Morgan RW, Cantello JL, McDermott CH. Transfection of chicken embryo fibroblasts with Marek's disease virus DNA [J]. Avian diseases,1990,34(2):345-51.
    [13]Wang YF, Sun YK, Tian ZC, et al. Protection of chickens against infectious bronchitis by a recombinant fowlpox virus co-expressing IBV-S1 and chicken IFNgamma [J]. Vaccine. 2009,27(50):7046-52.
    [14]Geerligs H, Quanz S, Suurland B, et al. Efficacy and safety of cell associated vaccines against Marek's disease virus grown in a continuous cell line from chickens [J]. Vaccine, 2008,26(44):5595-600.
    [15]al-Tarcha B, Sadoon SA. Cross-protection studies with vaccine strain H-120 of infectious bronchitis virus using ciliary activity [J]. Acta veterinaria Hungarica,1991,39(1-2): 95-101.
    [16]Alvarado IR, Villegas P, El-Attrache J, et al. Evaluation of the protection conferred by commercial vaccines against the California 99 isolate of infectious bronchitis virus [J]. Avian diseases,2003,47(4):1298-304.
    [17]Arvidson Y, Tannock GA, Zerbes M, et al. Efficacy of Australian vaccines against recent isolates of avian infectious bronchitis viruses [J]. Australian veterinary journal,1991,68(6): 211-2.
    [18]Cavanagh D. Coronavirus avian infectious bronchitis virus [J]. Veterinary research,2007, 38(2):281-97.
    [19]Geerligs HJ, Boelm GJ, Meinders CA, et al. Efficacy and safety of an attenuated live QX-like infectious bronchitis virus strain as a vaccine for chickens [J]. Avian Pathol,2011, 40(1):93-102.
    [20]Jones RC, Worthington KJ. Capua I, et al. Efficacy of live infectious bronchitis vaccines against a novel European genotype, Italy 02 [J]. The Veterinary record,2005,156(20): 646-7.
    [21]Lee HJ, Youn HN, Kwon JS, et al. Characterization of a novel live attenuated infectious bronchitis virus vaccine candidate derived from a Korean nephropathogenic strain [J]. Vaccine,2010,28(16):2887-94.
    [22]Liu S, Chen J, Han Z, et al. Infectious bronchitis virus:S1 gene characteristics of vaccines used in China and efficacy of vaccination against heterologous strains from China [J]. Avian Pathol,2006.35(5):394-9.
    [23]Liu S, Zhang X, Wang Y, et al. Evaluation of the protection conferred by commercial vaccines and attenuated heterologous isolates in China against the CK/CH/LDL/971 strain of infectious bronchitis coronavirus [J]. Vet J,2007.179(1):130-6.
    [24]Martin MP, Wakenell PS, Woolcock P, et al. Evaluation of the effectiveness of two infectious bronchitis virus vaccine programs for preventing disease caused by a California IBV field isolate [J]. Avian diseases,2007,51(2):584-9.
    [25]Muneer MA, Newman JA, Halvorson DA, et al. Efficacy of infectious bronchitis virus vaccines against heterologous challenge [J]. Research in veterinary science.1988.45(1): 22-7.
    [26]Han Z, Sun C, Yan B, et al. A 15-year analysis of molecular epidemiology of avian infectious bronchitis coronavirus in China [J]. Infect Genet Evol,2011.11(1):190-200.
    [27]Liu S, Kong X. A new genotype of nephropathogenic infectious bronchitis virus circulating in vaccinated and non-vaccinated flocks in China [J]. Avian Pathol,2004.33(3):321-7.
    [28]Zou NL, Zhao FF, Wang YP, et al. Genetic analysis revealed LX4 genotype strains of avian infectious bronchitis virus became predominant in recent years in Sichuan area. China [J]. Virus genes,2010,41(2):202-9.
    [29]Liu S, Zhang X, Wang Y, et al. Evaluation of the protection conferred by commercial vaccines and attenuated heterologous isolates in China against the CK/CH/LDL/971 strain of infectious bronchitis coronavirus [J]. Vet J,2009,179(1):130-6.
    [30]Yu L. Liu W, Schnitzlein WM, et al. Study of protection by recombinant fowl poxvirus expressing C-terminal nucleocapsid protein of infectious bronchitis virus against challenge [J]. Avian diseases,2001,45(2):340-8.
    [31]Wang X, Schnitzlein WM, Tripathy DN, et al. Construction and immunogenicity studies of recombinant fowl poxvirus containing the S1 gene of Massachusetts 41 strain of infectious bronchitis virus [J]. Avian diseases,2002,46(4):831-8.
    [32]Shi XM, Zhao Y, Gao HB, et al. Evaluation of recombinant fowlpox virus expressing infectious bronchitis virus S1 gene and chicken interferon-gamma gene for immune protection against heterologous strains [J]. Vaccine,2011,29(8):1576-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700