不同载荷下缺口参数对轴类零件低周疲劳寿命的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有环形缺口的圆轴构件的疲劳问题一直是人们所关注的热点问题。目前单轴缺口疲劳的研究已趋成熟,而多轴缺口疲劳寿命有许多问题尚待解决。在工程实际中,只受单轴应力状态的情况是极少见的。即使外部只受单轴应力状态,在缺口处也往往是处于多轴应力状态,开展缺口轴类零件的疲劳寿命预测研究具有重要的理论意义和工程应用价值。本文通过理论分析和大量实验,系统研究具有环形缺口轴的疲劳寿命问题。论文的主要工作和取得的主要成果如下:
     (1)总结影响缺口轴疲劳寿命的影响因素并对其分类分析。基于传统的疲劳寿命模型,建立缺口轴的疲劳寿命估算模型,评判几种安全寿命预测模型及其影响因素。基于缺口尖端附近的应力场表达式,得出无量纲因子。应用建立的缺口轴疲劳寿命模型,通过计算,得到了缺口半径、缺口张开角和缺口深度与无量纲因子的关系表达式。结果表明,对具有环形缺口的圆杆,可以把无量纲因子作为表征参量,统一描述环形裂纹、环形钝裂纹和环形切口问题。
     (2)缺口轴在低周拉压、悬臂弯曲及悬臂弯扭载荷下的疲劳实验研究。设计在立式疲劳试验机上进行弯曲、扭转和弯扭组合疲劳实验的组合夹具;在日本岛津(SHIMADZU EHF-EM100kN)新型电液伺服疲劳试验机上进行具有缺口的圆轴在拉压、悬臂弯曲及悬臂弯扭载荷下的低周疲劳实验。通过实验和分析,获得缺口半径、缺口深度和缺口张开角在三种载荷条件下对缺口轴疲劳寿命的影响。结果表明,缺口半径、缺口深度和缺口张开角都是无量纲因子的函数,而且随着缺口半径逐渐增大,缺口轴的疲劳寿命基本呈现增大的趋势。随着切径比的逐渐增大,缺口轴的疲劳寿命呈下降趋势。缺口张开角在小于90°时,对缺口轴疲劳寿命的影响基本可以忽略,证明了所建立的缺口轴疲劳寿命模型的有效性。
     (3)针对影响缺口轴疲劳寿命因素多,且各因素间存在交互作用的问题,提出一种基于Matlab的BP人工神经网络的多因素疲劳寿命预测方法。仿真结果表明,这种方法用来预测缺口参数(缺口半径、缺口深度和缺口张开角)对缺口轴疲劳寿命的影响时具有较高的精度、良好的自适应和自学习的智能化特征等优点,克服了传统计算方法计算量大,要依赖于数学模型的缺点。
     (4)通过悬臂弯扭复合载荷作用下的典型断口分析,获得多轴循环加载下的疲劳裂纹萌生和扩展规律。疲劳裂纹萌生在试样外表面的最大等效应力处,且呈现疲劳裂纹的多源性。疲劳裂纹在试样外表面形成后,呈放射状向内部扩展。随着载荷的加大,瞬断区的撕裂面积逐步增大,且各瞬断区都均偏离中心。分析结果为多轴疲劳过程和疲劳失效机制提供了理论依据。
Fatigue of notch component has been the concern matter of people. At present, uniaxial fatigue of the notch component in research has been a lot of ways, but there is no more mature approach about multiaxial loading fatigue life. In engineering practice, there is extremely rare in the uniaxial stress condition. Even if the outside is to be in the uniaxial stress state, multi-axial stress exit in the shaft notch. It is to be important theoretical significance and engineering application value to carry out the fatigue life prediction research. In this paper, through theoretical analysis and a large number of experiments, systematic research has to be carried out the fatigue life of annular gap axis.The main contents of this paper are as follows.
     (1) The impact factors of the gap-axis fatigue life are be summaried and its to be classified. Based on the traditional fatigue life model, the fatigue life prediction model of gap axis has been established. Several kinds of safety life prediction model and its influencing factors have been evaluated. The expression based on the stress field near the tip gap, dimensionless factor is be obtained. Using the establishment gap axis fatigue life model, through the computation, the relational expression between the gap radius, the gap open angle,the gap depth and the dimensionless factor has been established. The results show that the dimensionless factor can be as the unified parameter to describe the circumferential crack, circumferential blunt crack and ring-shaped crack.
     (2) In this paper, the fatigue experiments of gap axis have been carried out in the low cycle tension-compression, cantilever bending and cantilever blank tear load. A combined clamp has be designed to carry out the fatigue test in tension-compression, cantilever bending and cantilever blank tear load. The test equipment is a new electro-hydraulic fatigue testing machine made by Japan. The range of models are SHIMADZU EHF-EM100kN. Through experiments and analysis, the relation betwwen gap radius, gap depth, gap opening angle and its fatigue life in the three kinds of load conditions, has been obtained. The result indicated that the gap radius, gap depth and gap opening angle are a function of the dimensionless factor. As the notch radius increases gradually, the gap axis fatigue life show increasing trends.As the cutting diameter ratio increased gradually, fatigue life of the gap axis displayed downward trend. When the gap opening angle is less than 90°, its effect on fatigue life of notch shaft has been ignored. It proved that the model of axial fatigue life was effective and useful.
     (3) In view of many impact factors on fatigue life, and the interaction of various factors that exist, the author proposes a kind of fatigue life prediction method based on the Matlab BP artificial neural networks. The simulation results show that this method shows the advantage of high precision, good adaptive and self-learning intelligent characteristics to predict the gap shaft fatigue life on gap parameters (gap radius, gap depth and gap opening angle). The calculation method overcomes the traditional shortconging that relys on the mathematical model and a large quantity of calculation.
     (4) Through the analysis of typical fracture surface in cantilever blank tear load, the law of fatigue crack initiation and expansion has been obtained in multi-axial cyclic loading. Fatigue crack initiates the maximum equivalent stress at the specimen outer surface and presents the multi-origin fatigue crack. Fatigue crack formation of the outer surface of the sample expand to the inner showing radial. Along with load enlargement, tearing area in instantaneous fracture region increase gradually, and instantaneous fracture region is off-center. The analysis result has provided the theory basis for the multi-axial weary process and the fatigue failure mechanism.
引文
[1]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002.
    [2]熊峻江,高镇同.疲劳可靠性[M].北京:航空航天大学,2000.
    [3]王中光译,Suresh S著.材料的疲劳[M].北京:国防工业出版社,1999.
    [4]Goodman J. Mechanics Applied to Engineering [M]. London:Longmans Green, 1899.
    [5]P.Skelton R, T.Vilhelmsen.G.A.Webster. Energy criteria and cumulative damage during fatigue crack growth [J]. International Journal of Fatigue,1998,20(9): 641-649.
    [6]Shankar Mall Christopher D. Lykins, Vinod Jain. An evaluation of parameters for predicting fretting fatigue crack initiation [J]. International Journal of Fatigue, 2000,22(8):703-716.
    [7]冈村弘之著,李顺林译.线弹性断裂力学入门[M].江苏:江苏科学技术出版社,1980.
    [8]李永强,车惠民.混凝土弯曲疲劳累积损伤性能研究[J].中国铁道科学,1998,19(2):52-59.
    [9]李朝阳,宋玉普.混凝土海洋平台疲劳损伤累积Miner准则适用性研究[J].中国海洋平台,2001,16(3):1-4.
    [10]董聪,何庆芝.自洽型随机疲劳累积损伤可靠性分析模型[J].机械强度,1995,17(1): 6-8.
    [11]刘洪天,熊峻江,高镇同.疲劳线性累积损伤理论的a值实验验证[J].力学与实践,2002,24(4):52-55.
    [12]王永廉.用改进的均方根法估算谱载下疲劳裂纹起始寿命[J].强度与环境,2003,30(3):29-33.
    [13]Gary R. Halford. Cumulative fatigue damage modeling-crack nucleation and early growth [J]. International Journal of Fatigue,1997,19(1).
    [14]L.Yang A.Fatemi. Cumulative fatigue damage and life prediction theories:a survey of the state of the art for homogeneous materials [J]. International Journal of Fatigue,1998,20(1):9-34.
    [15]赵少汴.常用累积损伤理论疲劳寿命估算精度的试验研究[J].机械强度.2000,22(3):206-209.
    [16]Cai Yebin, Chen Zailiang, Zhou zhubao. A new nolinear accumulative model of damage to concrete fatigue [J]. Journal of maoming college,2001,11(3): 22-25.
    [17]叶笃毅,王德俊,童小燕.一种基于材料韧性散分析的疲劳损伤定量与新方法[J].实验力学,1999,14(1): 80-88.
    [18]尚德广,姚卫星.单轴非线性连续疲劳损伤累积模型的研究[J].航空学报,1998,19(6): 647-656.
    [19]Cheng Guangxu, Plumtree A. A fatigue damage accumulation model based on continuum damage mechanics and ductility enhaustion [J]. International Journal of Fatigue.1998,20(7):495-501.
    [20]莫椒华,李洪智,齐小杰,等..CFRP层板疲劳累积损伤理论的建立及应用[J].黑龙江工程学院学报(自然科学版),2004,18(1): 8-10.
    [21]齐红字,温卫东,孙联文.基于刚度下降的疲劳累积损伤模型的研究[J].北京航空航天大学学报,2004,30(12): 1200-1203.
    [22]翟红军,姚卫星.化学纤维增强树脂基复合材料的疲劳剩余刚度研究进展 [J].力学进胜,2002,32(1):80-88.
    [23]姚国义,黄培彦,牛鹏志,等.常幅循环载荷下纤维薄板增强钢筋混凝土梁的损伤行为研究[J].机械强度(增刊),2004,26(25-27).
    [24]吕培印,李庆斌,张立翔.混凝土拉一压疲劳损伤模型及其验证[J].工程力学,2004,21(3): 162-166.
    [25]吕培印,李庆斌,张立翊.定侧压混凝土双压疲劳损伤模型[J].工程力学.2004.21(5): 77-82.
    [26]王刚.低周疲劳寿命与累积损伤规律若干问题的研究[D].哈尔滨工业大学,2001.
    [27]冯胜.疲劳寿命与累积损伤的研究[硕士].哈尔滨工业大学,2002.
    [28]冯胜,程燕平,赵亚丽,等.非线性疲劳损伤累积理论研究[J].哈尔滨工业大学学报,2003,35(12):1507-1509.
    [29]朱劲忪,宋玉普.定侧压混凝土双轴拉(?)压疲劳累积损伤试验研究[J].中国公路学报,2005,18(1):40-45.
    [30]徐灏.疲劳强度[M].北京:高等教育出版社,1988.
    [31]甘肃工业大学裂纹技术教研室.裂纹技术基础[M].兰州:1988.
    [32]尚德广,李明,王大康, 姚卫星.随机加载下缺口局部应力应变的弹塑性有限元计算[J].机械强度,2001,23(3):332-335.
    [33]3赵少汴.局部应力应变法及其设计数据[J].机械设计,2000,(2): 1-3.
    [34]赵少汴.局部应力应变法的推广应用[J].机械设计,2000,(3): 11-13.
    [35]常龙 聂宏.基于局部应力应变法估算高周疲劳寿命[J].南京航空航天大学 学报,2000,32(1):75-79.
    [36]R.V. Goldstein S.E. Alexandrov. Distributions of stress and plastic strain in notched tensile bars [J]. International Journal of Fracture,1998,91(1):1-11.
    [37]V. G. Grishko. Automation of testing of materials and structures [J]. Strength of Materials,2005,6(2):262-263.
    [38]A Fatemi Z Zeng. Elasto-plastic stress and strain behaviour at notch roots under monotonic and cyclic loadings [J]. The Journal of Strain Analysis for Engineering Design,2001,36(3):2041-3130.
    [39]E.A. Repetto O. Nguyen, M. Ortiz,R.A. Radovitzky. A cohesive model of fatigue crack growth [J]. International Journal of Fracture.2001,110(4):351-369.
    [40]Vasudevan A.K. Sadananda K., Glinka G. Critical parameters for fatigue damage. [J]. International Journal of Fatigue,2001,23(1):610-621.
    [41]Wilson S P Taylor D.. Statistical Analysis and Reliability Prediction with Short Fatigue Crack Data [J]. Fatigue and Fracture of Engineering Materials and Structure.1999,22(1):67-76.
    [42]王英玉姚卫星.材料多轴疲劳破坏准则回顾[J].机械强度,2003,25(3):246-250.
    [43]刘红顺何庆复,郝海龙.多轴低周寿命预测方法研究[J]..铁道机车车辆,2004.24(3): 30-32.
    [44]陈旭 高庆,孙训方等.非比例载荷下多轴低周疲劳研究最新进展[J].力学进展.1997,27(3):313-325.
    [45]张巧丽陈旭.多轴非比例载荷下低周疲劳寿命估算方法[J].机械强度,2004,26(1): 76-79.
    [46]You B R Lee S B. A Critical Review on Multiaxial Fatigue Assessments of Materials [J]. International Journal of Fatigue,1996,18(4):235-244.
    [47]Chiang Y J.Lee Y L. Fatigue Predictions for Components Under Biaxial Revesred Loading [J]. Journal of Testing and Evaluation,1991,19(5):359-367.
    [48]Bonacuse P. JKalluri S. In-phase and Out-of-phase Axial-torsional Fatigue Behavior of Haynes 188 Superalloy at 7600C [M]. ASTM Special Technical Publication,1993.
    [49]Soon-Bok Lee Bong-Ryul You. A critical review on multiaxial fatigue assessments of metals [J]. International Journal of Fatigue,1996,18(4): 235-244.
    [50]Macha E.Sonsino C M. Energy Criteria of Multiaxial Fatigue Failure [J]. Fatigue and Fracture Engineering Materials and Structure,1999,22(12):1053-1070.
    [51]Lachowicz C T. Calculation of the Elastic-plastic Strain Energy Density under Cyclic and Random Loading [J]. International Journal of Fatigue,2001.23(7): 643-652.
    [52]Wang De-jun Shang De-guang. A new multiaxial fatigue damage model based on the critical plane approach [J]. International Journal of Fatigue,1998,20(3): 241-245.
    [53]Smith K N.Watson P.Topper T H. Stress-strain Function for the Fatigue of Metals [J]. Journal of Materials,1970,5(4):767-778.
    [54]Chen X.Xu S.Huang D. A Critical Plane Strain Energy Density Criterion for Multiaxial Low-cycle Fatigue Life under Non-proportional Loading [J]. Fatigue and Fracture Engineering Materials and Structure.1999,22(8):679-686.
    [55]Varvani F A. A New Energy-critical Plane Parameter for Fatigue Life Assessment of Various Metallic Materials Subjected to In-phase and Out-of-phase Mult-iaxial Fatigue Loading Conditions [J]. International Journal of Fatigue.2000.,22(4): 295-305.
    [56]李三庆,刘百来.利用ANSYS软件对扭转条件下圆轴轴肩圆角的优化设计[J].煤矿机械.2005,10(23):6-8.
    [57]B. Li L. Reis, M. de Freitas. Simulation of cyclic stress/strain evolution for multiaxial fatigue life prediction [J]. International Journal of Fatigue,2006.28: 451-458.
    [58]Fonte M Reis L, Romeiro F,et al. The effect of steady torsion on fatigue crack growth in shafts [J]. International Journal of Fatigue.2006,28(2):609-617.
    [59]J. Liu Z.F Yue, Y.S.Liu. Surface finish of open hole on fatigue life [J]. Theoretical and Applied Fracture Mechanics,2007,47(6):35-45.
    [60]Weixing Yao Bin Ye, Lichun Zheng. A verification of the assumption of anti-fatigue design [J]. International Journal of Fatigue,2001,23(3):271-277.
    [61]JABENYOU.影响车轴疲劳寿命的因素[C].第十一届国际轮轴会议:1997.
    [62]Kumar R. Effect of instant and frequency of overloads on fatigue life [C].Interrnational Conference on Fatigue of Engineering Materials and Structures:
    [63]Cheng Wangquan shih, shan, grace, John, Tu, Wenke,. Axial load effect on contact fatigue life of cylindrical roller bearings [J]. Journal of tribology,2004: 242-247.
    [64]Noguchi Y Miyahara M. Multiaxial creep-fatigue life evaluation under proporational loading [J]. Acta Metallurgica Sinica(English Letters),2004,17(10): 355-360.
    [65]ZANTOPULOS H. Effect of misalignment on the fatigue life of tapered roller bearings [C].ASME Pap 71-Lub-6.6p:1971.
    [66]刘伟张云.微动损伤对车轴疲劳寿命的影响[J].铁道学报,1998,20(6):115-118.
    [67]徐扬,周慎杰,刘成强等.全浮半轴结构应力集中系数的研究[J].农业机械学报,2003,34(6): 176-178.
    [68]陈建华,尚德广,孙国芹.多轴比例加载下镍基合金GH4169试件的弹塑性有限元分析[J].机械强度,2007,29(4):620-626.
    [69]张莉,唐立强,付德龙.多轴非比例低周疲劳寿命估算方法的研究[J].中国机械工程,2006,17(1):95-98.
    [70]付德龙,张莉,样靳.多轴非比例加载低周疲劳寿命预测方法的研究[J].应用力学学报,2006,23(2):218-221.
    [71]李树盛.牙轮钻头滚动轴承抗疲劳设计[硕士].中国石油大学,2006.
    [72]郑称德 朱正萱.韩之俊.基于稳健思想的抗疲劳设计研究[J].机械设计,2000,(10):42-44.
    [73]韩之俊.郑称德.基于田口方法抗疲劳稳健设计研究….机械科学与技术,2000、19(4): 544-546.
    [74]段巍 安立强,王孟.基于疲劳累积损伤概率模型的转轴疲劳强度卡靠性设计[C].全国零部件设计与制造会议:2002.
    [75]张晓苏.轴类零件:疲劳强度的可靠性设计与研究[J]. 拖科技,1990,23(2):23-29.
    [76]童朋战陈文宏.转轴疲劳强度的可靠性设计[J].新疆钢铁,2006,98(2):29-30.
    [77]孙玉秋.转轴疲劳刚度可靠性设计[J].机械设计与制造,2006,15(8): 39-40.
    [78]苏春.基于强度及扭转刚度可靠性分析的传动轴优化设计[J].机械设计与研究,1997,14(1):35-36.
    [79]林春风马建民.连续采煤机滚筒主轴的疲劳可靠性设计[J].河北煤炭,1997,(3): 49-50.
    [80]陈欣陈东升.车辆传动系轴类零件多工况随机疲劳设计[J].机械设计,2002,19(6): 50-52.
    [81]袁季修.关于汽轮发电机轴系扭应力设计准则[J].东方电气评论,1997,11(13):169-176.
    [82]纪敦张蕾,陈群志等.腐蚀条件下起落架机轮半轴疲劳寿命研究….装备环境工程,2006,3(3):89-91.
    [83]俞艘言,仇亚军,叶健熠等.Cr4Mo4V钢滚道表面缺陷对接触疲劳寿命的影 响[J].轴承,2006,8(3):26-28.
    [84]张忠平,李静,张春山等.一种多轴疲劳寿命预测的统一模型[J].空军工程大学学报:自然科学版,2007,8(4): 12-14.
    [85]周志革王德俊.多轴疲劳寿命预测模型的研究[J].机械设计与研究,1999,3(3): 39-41.
    [86]郑松林,低幅载荷对汽车前轴疲劳寿命影响的试验研究[J].机械强度,24(4):547-549.
    [87]命宏平.影响球铁曲轴疲劳寿命因素的探讨[J].天津汽车,2004,20(4):28-29.
    [88]刘宏社.提高传动轴疲劳强度的实证与分析[J].兰州工业高等专科学校学报,2005,12(4): 4-7.
    [89]Li Youtang Yan Changfeng. Anti-Fatigued Criterion of Annularly Breached Spindle on Mechanical Design [J]. Key Engineering Materials,2006,321: 755-758.
    [90]Li Youtang Yan Changfeng. Uniform Model and Fracture Criteria of Annularly Breached Bars under Bending [J]. Key Engineering Materials,2006,321: 751-754.
    [91]Li Youtang Ma Ping, Zhao Juntian. The Influencing Factors and Assessment Rule of Fatigue Life of Shaft Based on Product Lifecycle Management [J]. Materials Science Forums,2007,561:2253-2256.
    [92]李有堂,于立群.扭转条件下过渡圆角半径及径比对圆轴疲劳寿命的影响[J].兰州理工大学学报,2008,34(5):32-35.
    [93]马平.拉伸载荷下环形切口试件的应力集中系数[J].兰州理工大学学报,2004,30(4): 49-52.
    [94]李有堂,于立群.扭转条件下过渡圆角半径及径比对转轴疲劳寿命的影响[J].兰州理工大学学报,2008,34(5):32-35.
    [95]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [96]赵少汴.抗疲劳设计[M].北京:机械上业出版社,1994.
    [97]王卫国.轮盘低循环疲劳寿命预测模型和试验评估方法研究[[D]].南京:南京航空航天大学,2006.
    [98]Chen X Han C, Kim K S. Evaluation ofmultiaxial fatigue criteria under irregular loading [J]. International Journal of Fatigue,2002,24(931-922).
    [99]王永孙伟.多轴低周疲劳寿命预测方法研究[J].兰州工业高等专科学校学报,2008,15(2): 13-16.
    [100]王德俊 王 雷.多轴疲劳寿命预测及验证[J].东北大学学报(自然科学版), 2002,23(2): 175-178.
    [101]于立群.阶梯轴儿何参数及平均应力对其疲劳街命的影响[[硕士]].兰州:兰州理工大学,2008.
    [102]李有堂俞焕然.具有环形缺口圆杆在弯曲载荷下的裂断问题[J].兰州大学学报(自然科学版),1996,32(4): 34-39.
    [103]李灏.断裂力学[M].济南:山东科学技术出版社,1980.
    [104]<<正交试验法>>编写组编.正交试验法[M].北京:国防工业出版社,1976.
    [105]王仁智,吴培远.疲劳失效分析[M].北京:机械工业出版社,1987.
    [106]苏翼林.材料力学[M].北京:高等教育出版社,1988.
    [107]崔约贤王长利.金属断口分析[M].哈尔滨:哈尔滨L业大学出版社,1998.
    [108]鲁春朋.低周疲劳下中碳钢的损伤分析[硕士].兰州:兰州理工大学,2006.
    [109]尚德广.多轴疲劳损伤与寿命预测研究[D].沈…:东北大学,1996.
    [110]上海交通大学.金属断口分析[M].北京:国防工业出版社,1979.
    [111]砸影际定方.神经网络综述[J].科技进步与埘策,2002,19(6): 133-134.
    [112]焦李戊.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1995.
    [113]蒋宗礼.人工神经网络导论[M].北京:高等胶阅出版社.2001.
    [114]付丽强, 林桐,尖维青.神经网络在材料低周疲劳寿命预测中的应用[J].福州大学学报(自然科学版),2001,22(3): 57-60.
    [115]贾群.Matlab在BP卯法分析中的应用[博士专家论坛].
    [116]张青谈.人工神经网络导论[M].北京:中国水利水电出版社,2004.
    [117]张代远.神经网络新理论与方法[M].北京:2006.
    [118]朱大奇,史慧.人工神经网络原理及应用[M].:北京:科学…版社,2006.
    [119]M.D. Mathewa Dae Whan Kim, Woo-Seog Ryu. A neural network model to predict low cycle fatigue life of nitrogen-alloyed 316L stainless steel [J]. Materials Science and Engineering A,2008,474:247-253.
    [120]Fotovati T. Goswami. Prediction of elevated temperature fatigue crack growth rates in TI-6AL-4V alloy-neural network approach [J]. Materials and Design, 2004,25:547-554.
    [121]Yu-Lin Han Xi Liu, Shu-Ho Dai. Fatigue life calculation of flawed structures-based on artificial neural network with special learning set [J]. International Journal of Pressure Vessels and Piping,1998,75:263-269.
    [122]Jae-Youn Kang Ji-Ho Song. Neural network applications in determining the fatigue crack opening load [J]. International Journal of Fatigue,1998,20(1): 57-69.
    [123]T. Todd Pleune Omesh K. Chopra. Using artificial neural networks to predict the fatigue life of carbon and low-alloy steels [J]. Nuclear Engineering and Design, 2000,197:1-12.
    [124]S. Malinov W. Sha, J.J. McKeown. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network [J]. Computational Materials Science,2001,21:375-394.
    [125]H.EI Kadi Y. A1-Assaf. Energy-based fatigue life prediction of fiberglass/epoxy composites using modular neural networks [J]. Computer Structures,2002,57: 85-89.
    [126]M E Haque, K V Sudhakar. Prediction of corrosion-fatigue behavior of DP steel through artificial neurla network [J]. International Journal of Fatigue,2001,23(1): 1.
    [127]Jernej Klemenc Matija Fajdiga. A neural network approach to the simulation of load histories by considering the influence of a sequence of rainflow load cycles [J]. International Journal of Fatigue,2002.24:1109-1125.
    [128]Mohammed E. Haque K.V. Sudhakar. ANN back-propagation prediction model for fracture toughness in microalloy steel [J]. International Journal of Fatigue, 2002,24:1003-1010.
    [129]P. Orbanic M. Fajdiga. A neural network approach to describing the fretting fatigue in aluminium-steel coupling [J]. International Journal of Fatigue.2003,25: 201-207.
    [130]T. Bucar et.al. A neural network approach to describing the scatter of S-N curves [J]. International Journal of Fatigue,2006.28:311-323.
    [131]V.S. Srinivasan M.Valsan, K.Bhanu Sankara Rao, S.L. Mannan, B. Raj. Low cycle fatigue and creep-fatigue interaction behavior of 316(N) stainless steel and life prediction by artificial neural network approach [J]. International Journal of Fatigue,2003,25:1327-1338.
    [132]K. Genel. Application of artificial neural network for predicing strain-life fatigue properties of steels on the basis of tensile tests [J]. International Journal of Fatigue,2004,26:1027-1035.
    [133]C.Marquardt H.Zenner. Lifetime calculation under variable amplitude loading with the application of artificial neural networks [J]. International Journal of Fatigue,2005,27:920-927.
    [134]Raimundo Carlos Silverio Freire Junior. Building of constant life diagrams of fatigue using artificial neural networks [J]. International Journal of Fatigue,2005, 27:746-751.
    [135]Jae-Youn Kang et.al. Neural network application in fatigue damage analysis under multiaxial random loading [J]. International Journal of Fatigue,2006,28: 132-140.
    [136]Yousef A1-Assaf Hany El Kadi. Fatigue life prediction of composite materials using polynomial classifiers and recurrent neural networks [J]. Composite Structures,2007,77(4):561-569.
    [137]Second International Symposium on Neural Networks[C].神经网络国际会议:重庆大学.2005.
    [138]何卫锋,丁键,程礼 RBF网络在结构抗疲劳优化中的应用[J].航空制造技术,2005,7: 77-79.
    [139]Y Cheng, W L Huang, C Y Zhou. Artificial neural network technology for the date processing of on-line corrosion fatigue crack growth monitoring [J]. International Journal of Pressure Vessels and Piping,1999,76(2):113.
    [140]易肖徉,吕国忐.繁于BP神经网络的材料疲劳寿命可靠性仿真[J].中国海汁平台.2004,16(4):7-10.
    [141]傅继阳,王璠,刘人怀,徐加初.基于收进BP神经网络的焦炭塔热机械疲劳剩余寿命预测….试验研究,2005,22(5):4-7.
    [142-]孙道恒,胡俏,徐灏.基于裂纹闭合解析馍型和神经网络理论的疲劳裂纹扩展速率的计算[J].机械工程学报,1998,34(5):60-65.
    [143]张鑫,闹楚良.基于神经网络的结构疲劳寿命仿真的研究[J].计算机仿真,2002,.19(6): 42-44.
    [144]邓韧,李著信,樊友洪,李生林.基于神经网络的疲劳短裂纹扩展速率时序预测方法[J].机械强度,2006,28(5): 757-760.
    [145]金鹰,董超芳,付冬梅,李晓刚.神经网络技术在腐蚀研究与工程中的应用[J].石油化工腐蚀与防护,2001,18(1): 13-17.
    [146]任如飞,赵明,段丽慧.基于神经网络的涡轮盘榫接触部位疲劳寿命可靠性仿真[J].机械科学与技术,2007,26(5): 585-588.
    [147]田辰,阎宏生,胡云昌.基于神经网络响应而的疲劳裂纹扩展寿命的可靠性分析[J].机械强度,2004,26(1):58-62.
    [148]纪冬梅,胡毓仁.基于小波神经网络和疲劳曲线的结构疲劳寿命及可靠度预测[J].船舶力学,2006,10(5):84-89.
    [149]王小同,杨庆雄.疲劳实验曲线拟合的神经网络方法[J].航空学报,1994,15(3): 359-361.
    [150]钟鸣傅戈雁,石世宏。人工神经网络在激光涂层多冲碰撞疲劳寿命预测中的应用[J].26,2005,5(78-79).
    [151]周小平,人工神经网络在球糕铸铁疲劳寿命预测中的应用[J].铸造,2003,52(6): 437-438.
    [152]黄洪钟 陈新,孙道恒,于兰峰,姚新胜.应用神经网络的疲劳裂纹浈化规律的捕述[J].铁道学报,2000,22(3):33-37.
    [153]韩利群.人工椰经网络理论、设计及应用…人工神经细胞、人工神经网络和人工神经系统[M].北京:化学工业出版社,2002.
    [154]张立明 人工神经网络的模型及其应用[M]. 上海:上海复旦.大学出版社,1993.
    [155]Youtang Li Ping Ma, Changfeng Yan, Fuyuan Lang. The Application of Fracture for Middle Carbon Steel in Extra-low Cycle Rotating Bending Fatigue Loading [J]. Key Engineering Materials,2004,261-263:1153-1158.
    [156]Youtang Li Changfeng Yan, Yaobing Wei. Application of Fracture for Middle Carbon Steel in Extra-low Cycle Inverse Rotating Bending Fatigue Loading [J]. Key Engineering Materials,2004,261-263 1147-1152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700