光学相关运动目标识别技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用光学相关原理的联合变换相关器以运算速度快、信息存储容量大以及平行运算等优点广泛应用于模式识别领域中。通过探测目标与模板而得到的相关点为依据,进而确定目标的方位信息,并将这种光电混合系统结合各种计算机编程技术,已经完成了对微光目标、红外目标、复杂背景下目标及小目标等多种静止目标的识别。
     但是在运动目标的光学相关识别中,由于目标自身运动所导致的目标与模板之间存在的畸变问题及周围复杂背景、天气变化和低对比度环境等外在因素对联合变换相关器的干扰,出现了在探测过程中没有相关点或相关点微弱的现象,严重影响运动目标光学相关识别的顺利进行。
     针对运动过程中目标与模板之间存在的大小、旋转及形状等不匹配的问题,提出了瞬态模板更换的方法,选择识别动态序列中的前一帧瞬时状态作为下一帧的模板,这样便可完成实时对模板的更新。
     为了增强相关点的亮度,提高相关器的识别效率,分别将小波、多小波及小波的提升算法引入对运动图像的物面处理技术中。提出了采用形态学膨胀处理的小波边缘提取算法及小波多尺度边缘融合算法;应用多小波所具有的多重多分辨率分析性质,提出了基于多小波变换的边缘提取算法及能分别增强高、低频信息的多小波图像增强技术;并进一步对小波的算法进行提升,给出了基于小波提升算法的边缘提取方法。
     分别将这些物面处理算法与瞬态模板方法相结合应用到光学相关运动目标的识别中,结果表明,基于小波变换的模极大值提取、小波多尺度边缘融合及基于多小波变换的图像增强算法均可提高相关器对低对比度运动目标的识别率。基于多小波变换的边缘提取可完成对运动微光目标及复杂背景下运动小目标的相关识别。而基于小波提升算法的边缘提取方法可实现复杂背景下运动目标的探测,并使运算速度得以提升,运算量减少。大量实验结果验证了应用该算法可实现光学相关运动目标的识别与探测技术。
Joint transform correlator, applying the optical correlation theory, was widely used in the domian of pattern recognition for its merits of parallel, large capacity and high-speed. According to the correlation peaks between the target and the reference template the orientation information of the target can be determined. Applying this opto-electronic hybrid system with computer program technology has realized many stationary targets recognition, such as infrared target, low light level target, target in clutter scene, small target and so on.
     But in the course of the moving target recognition, there are many distortion problems betweem the target and the template because of the moving, and the external factors, such as the cluttered background, weather conditions and the low contrast environment, can also influence the joint transform correlator, so that there are no correlation peaks or low brightness of correlation peaks emerging, which seriously affects the optical correlation recognition of the moving target.
     To solve the size, rotation and shape mismatch problem between the target and the template, temporal template replacement method is proposed, which can take the temporal state of the target former frame as the template for the next frame to reach the purpose of real time template update.
     To enhance the brightness of the correlation peaks and improve the recognition efficiency of correlator, the wavelet, multi-wavelet and wavelet lifting algorithm are introduced in object plane processing technology of the dynamic sequences. The edge extracton based on wavelet combined with morphological dilation and wavelet multi-scale edge fusion algorithm are raised; Appling the multiple multi-resolution analysis property of the multi-wavelet, the edge extraction and image enhancement technology based on multi-wavelet are proposed; in addition, according to the wavelet lifting algorithm, the edge extraction method based on lifting wavelet is presented.
     Applying these object plane processing algorithms with temporal template method to optical correlation recognition of the moving target, the experiments show that edge extraction based on wavelet, wavelet multi-scale edge fusion and image enhancement based on multi-wavelet algorithm all can improve the the low contrast moving target recognition ratio of the correlator. Edge extraction based on multi-wavelet transform can achieve the correlation recognition of the moving low light level target and small moving target in the cluttered background. And the edge extraction based on wavelet lifting method can realize the moving target recognition in cluttered background, which can also improve the calculation speed and greatly reduce the amount of the computation. The large number of experiment results show that applying this algorithm can implement the optical correlation recognition and detection technology of the moving target successfully.
引文
[1]宋菲君.近代光学信息处理.北京:北京大学出版社.1998.
    [2]王文生等.现代光学测试技术.北京:机械工业出版社.2013.
    [3]刘文哲,张婉怡,董会等.光学相关红外目标识别算法的研究.仪器仪表学报.2011,4(32):850-855.
    [4]Qibo Zhang, Su Zhang, Yu Zhang, et al. Optical correlation recognition research of low light level target based on lifting wavelet transform. Key Engineering Materials.2013,552(2013):529-535.
    [5]张肃,于远航,张宇等.小波变换在微光目标探测与识别中的应用.仪器仪表学报.2011,32(12):51-55.
    [6]王冕,王晶晶,王波等.小波变换在光学相关目标识别中的应用.兵工学报.2006,27(5):836-840.
    [7]Fanghan Chen, Wensheng Wang. Target recognition in clutter scene based on wavelet transform. Optics Communications.2009.282(2009):523-526.
    [8]Wang W.. Chen Y., Liang C., et al. Hybrid optoelectronic joint transform correlator for the recognition of targets in cluttered scenes. In:Proc.SPIE.2005,5642:204-212.
    [9]H.A. Kamal, A.K. Cherri. Complementary-reference and complementary-scene for real-time fingerprint verification using joint transform correlator. Optics & Laser Technology.2009,41(2009):643-650.
    [10]Eldar Y. Oppenheim A.. Orthogonal matched filter detection. In:Proc. IEEE 2001,2001:2837-2840.
    [11]Nirmala Saini, Aloka Sinha. Optics based biohashing using joint transform correlator. Optics Communications.2010. 283(2010):894-902.
    [12]Edgar Rueda, John Fredy Barrera. Rodrigo Henao. Lateral shift multiplexing with a modified random mask in a joint transform correlator encrypting architecture. Optical Engineering.2009,48(2):027006-1-027006-6.
    [13]Alpana Bhagatji, Naveen K. Nishchal, Arun K. Gupta, et al. Fractional order Fourier transform-based fringe-adjusting joint transform correlator. Indian Journal of Pure & Applied Physics.2008,46(3):176-186.
    [14]Pitchaya Kaewkasi, Joewono Widjaja, Jun Uozumi. Effects of threshold on single-target detection by using modified amplitude-modulated joint transform correlator. Optics Communications,2007,271(2007):48-58.
    [15]Pitchaya Kaewkasi, Joewono Widjaja, Jun Uozumi. Modified joint transform correlator using smoothed amplitude-modulated filter. Optical Engineering.2008,47(7):077203-1-077203-4.
    [16]Alpana Bhagatji, Naveen K. Nishchal, Arun K. Gupta, et al. Extended fractional wavelet joint transform correlator. Optics Communications.2008,281(2008):44-48.
    [17]郎琪.联合变换相关器相关峰增强技术的研究:[硕士学位论文].长春:长春理工大学光电工程学院.2009.
    [18]Jinzi Mao, David Mould. Sriram Subramanian. Background subtraction for realtime tracking of a tennis ball. In:Proc. VISAPP2007.2007:427-434.
    [19]张旭光,韩广良,孙巍等.复杂背景下运动目标的提取.光电工程.2006.33(4):10-13.
    [20]Junxian Wang, George Bebis, Mircea Nicolescu. Improving target detection by coupling it with tracking. Machine Vision and Applications.2009.20(2009):205-223.
    [21]何卫华,李平,文玉梅等.复杂背景下基于图像融合的运动目标轮廓提取算法.计算机应用.2006,26(1):123-126.
    [22]Massimo Piccardi. Background subtraction techniques:a review. In:Proc. IEEE.2004:3099-3104.
    [23]王成儒,孟凤.快速背景重建的在线运动目标检测.光电工程.2007,34(6):112-115.
    [24]单勇,王润生,杨凡.基于多特征背景模型的运动目标检测算法.计算机工程与科学.2007,29(8):40-42.
    [25]Craciunescu T. Murari A., Alonso A., et al. Application of optical flow method for imaging diagnostic in JET. Journal of Nuclear Materials.2010.400(3):205-212.
    [26]万文静.基于光流的图像目标跟踪方法研究:[硕士学位论文].西安:西北工业大学.2006.
    [27]李晋惠,尚穆杨,薛鹏翔等.基于光流场的动态目标分割.电脑开发与应用.2009,22(12):17-19.
    [28]姚剑敏,孙俊喜,孙中森等.基于粒子滤波的小波特征跟踪方法研究.计算机仿真.2006,23(1):94-96.
    [29]Dorin Comaniciu, Peter Meer. Mean shift:a robust approach toward feature space analysis. In:Proc. IEEE.2002. 24(2002):602-619.
    [30]Dorin Comaniciu, Ramesh V. Peter Meer. Real-time tracking of non-rigid objects using mean shift. In:Proc. IEEE. 2000,2(2000):142-149.
    [31]孙中森,孙俊喜,宋建中等.一种抗遮挡的运动目标跟踪算法.光学精密工程.2007,25(2):268-271.
    [32]任仙怡,廖云涛.张桂林等.一种新的相关跟踪方法研究.中国图像图形学报.2002,7(6):553-557.
    [33]王立新.刘彤宇,李阳.SSDA图像匹配算法的研究及实现.光电技术应用.2005,20(3):53-55.
    [34]苗华.邹听,郎琪等.复杂背景目标自动识别谱面处理技术研究.光学学报.2009,29(2):366-369.
    [35]Gonzales R. C., Woods R. E.. Eddins S. L.. Digital image processing using MATLAB. Beijing:Publishing House of Electronics Industry.2005.
    [36]苗华,陈宇,王文生.提高复杂背景目标探测与识别能力的研究.红外与激光工程.2007,36(增刊):190-192.
    [37]陈武凡.小波分析及其在图像处理中的应用.北京:科学出版社.2002,102-104.
    [38]Naoko Ito, Ryu Kamekura, Yoshihisa Shimazu, et al. The combination of edge detection and region extraction in nonparametric color image segmentation. Information Science.1996,92:277-294.
    [39]勒中鑫.数字图像信息处理.北京:国防工业出版社.2003.
    [40]C. Sidney Burrus, Ramech A. Gopinath, Haitao Guo. Introduction to wavelets and wavelet transforms. Beijing:China Machine Press.2007.
    [41]T. Ishida, S. Itagaki, Y. Sasaki. Application of wavelet transform for extracting edges of paddy fields from remotely sensed images. International Journal of Remote Sensing.2004,25(2):347-357.
    [42]Ronald N. Bracewell. The Fourier Transform and Its Applications. U.S.:The McGraw-Hill Companies.2000: 329-331.
    [43]吕乃光.傅里叶光学.北京:机械工业出版社.2007:125-131.
    [44]J.D. Gaskill. Linear System, Fourier Transforms, and Optics. New York:J. Wiley.1978.
    [45]Joseph W. Goodman. Introduction to Fourier Optics. U.S.:The McGraw-Hill Companies.1996:237-246.
    [46]王文生,郭阳雪.张晔等.光电混合联合变换相关器目标探测与识别.仪器仪表学报.2002,23(5):50-52.
    [47]李志行,张军.气体激光器与激光混合气体.低温与特气.2009,27(5):1-4.
    [48]Ambs Pierre. Oton Joaquin, Millan Maria S., et al. Spatial light modulator for information processing:application and overview. In:AIP Conference Proceedings-American Institute of Physics.2008.949:226-233.
    [49]张强.汪岳峰,姜楠等.脉冲激光对CCD探测器有效干扰距离的研究.激光与红外.2010,40(7):729-735.
    [50]周寿桓.赵鸿.唐小军.高平均功率全固态激光器.中国激光.2009,36(7):1605-1618.
    [51]尉振业.联合变换相关器的结构设计:[硕士学位论文].长春:长春理工大学,2010.
    [52]Ben Said Salem, Kobayashi Toshiyuki, Orsted Bent. Generalized Fourier transform. Comptes Rendus Mathematique. 2009,347(19):1119-1124.
    [53]胡昌华.基于MATLAB的系统分析与设计.4.小波分析.西安:西安电子科技大学出版社.1999.
    [54]Fionn Murtagh. The Haar wavelet transform of a dendrogram. Journal of Classification.2007,24(1):3-32.
    [55]王大凯,彭进业.小波分析及其在信号处理中的应用.北京:电子工业出版社.2006.
    [56]Mallat S., Zhong S.. Characterization of signal from multiscale edges. In:Proc. IEEE.1992,14(7):710-732.
    [57]Hongxia Liu, Wen Zhou, Qianwei Kuang, et al. Defect detection of IC wafer based on two-dimension wavelet transform. Microelectronics Journal.2010,41(2-3):171-177.
    [58]Daubechies I.. Special section on wavelet applications-recent results in wavelet applications. Journal of Electronic Imaging.1998,7(4):719-724.
    [59]S Patsias, W. J. Staszewski, G. R. Tomlinson. Image sequences and wavelets for vibration analysis:part 1:edge detection and extraction of natural frequencies. In:Proc. Instn. Mech. Engrs.2002,216:885-900.
    [60]肖锋.周明全,耿国华.小波多尺度下真彩色图像边缘检测.计算机工程与应用.2011.47(15):25-28.
    [61]Thomas Blumensath. Accelerated iterative hard threshold. Signal Processing.2012,92(3):752-756.
    [62]黄河,李庆武.范习健.采用局部动态阈值的图像分割算法.光电子技术.2011,31(1):10-13.
    [63]鹿传国,冯新喜,孔云波.基于形态学和Hough变换的航迹起始研究.兵工学报.2013.34(6):704-710.
    [64]张肃.王文生.复杂背景下运动目标的光学相关识别.光学学报.2012.32(1):0107001-1-0107001-7.
    [65]连静,王珂.基于多尺度融合技术的图像边缘检测.仪器仪表学报.2007,28(5):853-858.
    [66]Su Zhang, Qibo Zhang, Youjian Wang, et al. Optical correlation recognition technology of small moving target based on wavelet multi-scale edge fusion. Key Engineering Materials.2013.552(2013):536-541.
    [67]Zifan Ali, Moradi Mohammad Hassan. Gharibzadeh Shahriar. Microarray image enhancement by denoising using decimated and undecimated multiwavelet transform. Signal. Image and Video Processing.2010,4(2):177-185.
    [68]陈方涵.王文生,杨坤.基于多小波变换的红外目标探测与识别.光子学报.2011.40(2):295-299.
    [69]沈健,丁艳,常晋义等.一种形态学多小波变换多聚焦图像融合方法.电子技术应用.2011,37(3):118-125.
    [70]张蕊,王学伟,王琳.基于GHM多小波的电力系统故障录波数据压缩算法.电测与仪表.2008.45(514):46-50.
    [71]Charles K. Chui, Jian-ao Lian. A study of orthonormal multi-wavelets. Applied Numerical Mathematics.1996. 20(1996):273-298.
    [72]张随征,张建宇.高立新等.面向一维信号分析的多小波预处理方法研究.机械设计与制造.2012,10:91-93.
    [73]刘明才.小波分析及其应用.北京:清华大学出版社.2005.
    [74]侯正信.王成优,杨爱萍.有限长度信号Mallat算法的边界拓展方法.数据采集与处理.2009,24(6):714-720.
    [75]Pan G. W., Wang K. Gilbert B. K.. Application of multiwavelet to the edge element method. Microwave and Optical Technology Letters.2004,34:96-100.
    [76]周立俭,姬光荣.冯晨.基于多小波的浮游植物细胞图像边缘检测方法.通信技术.2008,41(7):242-246.
    [77]董卫军,周明全,耿国华.一种新的基于多小波变换的图像增强方法.小型微型计算机系统,2007,28(7):1259-1261.
    [78]刘晨.基于多小波变换的图像增强问题研究:[硕士学位论文].济南:山东师范大学.2010.
    [79]成礼智,王红霞,罗永.小波的理论与应用.北京:科学出版社,2005:280-282.
    [80]Zhang Su, Shang Jiyang, Chen Chi, et al. Detection research on low light level target with joint transform correlator. In: Proc. SPIE.2011.8194:819416-1-819416-7.
    [81]程正兴,杨守志,冯晓霞.小波分析的理论算法进展和应用.北京:国防工业出版社.2007.
    [82]Daubechies I., Sweldens W.. Factoring wavelet transforms into lifting steps. The Journal of Fourier Analysis and Application.1998,4(3):247-269.
    [83]蒋韶辉.基于提升小波的图像多尺度边缘检测方法及其应用研究:[硕士学位论文].西安:西北工业大学.2004.
    [84]陈浩.刘艳滢.基于提升小波变换的红外图像融合算法研究.激光与红外.2009,39(1):97-100.
    [85]Tiegang Gao. Qiaolun Gu. Reversible watermarking algorithm based on wavelet lifting scheme. International Journal of Wavelets, Multiresolution and Informaiton Processing.2008,6(4):643-652.
    [86]Malozemov V. N., Solov"eva N. A.. Parameter lifting schemes of wavelet decompositions Journal of Mathematical Sciences.2009,162(3):319-347.
    [87]刘秀平,李小平,孙海峰.提升小波的X射线脉冲星信号降噪.光学学报.2013,33(3):0304002-1-0304002-7.
    [88]Do Quan, Yo-Sung Ho. An effective approach for wavelet lifting based on filter optimization and median operator. International Journal of Imaging Systems and Technology.2010,20(4):359-366.
    [89]杨强,王华军,罗学刚Lifting Scheme的Haar小波在医学图像压缩中的应用研究.苏州科技学院学报(工程技术版).2013,26(2):72-75.
    [90]王巍,杜治芸,曾勇等.9/7提升小波变换图像处理算法的高速FPGA实现.微电子学.2009,39(6):852-856.
    [91]张风彦.史延科.基于提升方案的小波边缘检测算研究.杭州电子科技大学学报.2008,28(6):71-74.
    [92]李庆辉,李艾华,姜柯等.基于提升小波的自适应火灾图像边缘检测.现代计算机.2013.4:35-38.
    [93]王幼松,蒋韶辉,裴承鸣.基于提升小波的震颤图像边缘检测方法研究.机械设计与制造.2005,6:15-17.
    [94]林怡.陈鹰.一种线性提升小波的方向断面边缘检测法.同济大学学报(自然科学版).2007,35(12):1699-1703.
    [95]张肃,王文生,徐春云.低对比度环境下运动目标光学相关检测技术.仪器仪表学报.2013,34(2):319-325.
    [96]Hua Miao, Yu Chen, Fanghan Chen, et al. Tracking technology if moving target with optical correlator. In:Proc.2007, 6837:68371H-1~68371H-7.
    [97]张俊举,常本康,张宝辉等.远距离红外与微光/可见光融合成像系统.红外与激光工程.2012.41(1):20-24.
    [98]Li D. S., Liu S. E.. Hua Z.. Study of a new kind of low light level night vision device. Key Engineering Materials.2010, 439(2010):1601-1605.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700