弹簧糊精制备及关键性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精深加工是提高淀粉附加值,为工业提供不同淀粉衍生物的重要途径。本课题从淀粉分子结构出发,针对常用β环糊精(β-CD)溶解度低及结构刚性的缺陷,创造性的制备出弹簧糊精(Spring Dextrin, SD),并将SD的基本结构与实际应用相结合,探讨SD对淀粉老化的影响、SD的柔性包埋能力和分子识别能力。
     以玉米淀粉为原料,采用正丁醇沉降法结合α淀粉酶限制性水解复合技术,创制出具有柔性包埋功能的一系列窄分子量分布弹簧糊精。以单壁碳纳米管(SWNTs)为客体分子,通过控制溶剂组成设计SWNTs与SD混合体系。采用差示扫描量热(DSC)、红外光谱(FR-IR)和拉曼光谱(Ramam)技术证明SD与SWNTs形成非共价复合物。采用原子力显微镜(AFM)三维成像技术与分子动力学(MD)模拟的方法证明SD以螺旋的形式缠绕于SWNTs的外壁,其柔性空腔随SWNTs直径变化而变化。内径1nm、1.5nm和2nm的SWNTs被SD缠绕一周所对应葡萄糖残基数分别为11、14和17个。
     采用X射线衍射仪(WXRD)和DSC考察了不同分子量大小的SD对玉米直链淀粉老化的影响。结果表明,直链淀粉重结晶速度与SD分子量有关,SD_3((DP|-)36.6)和SD_5((DP|-)25.9)促进直链淀粉短期老化,而SD_7((DP|-)14.7)、SD_9((DP|-)12.5)和SD_(11)((DP|-)11.7)对直链淀粉老化则具有延缓作用。SD对直链淀粉老化影响的表征结果被Avrami方程和MD模拟所印证。同法研究了SD对小麦淀粉和玉米淀粉长期老化的影响,结果表明:SD_7和SD_9延缓淀粉的长期老化,SD_3和SD_5则促进淀粉的长期老化。由此说明SD对淀粉老化的影响与其分子量大小相关。
     采用WXRD、DSC、热重分析(TGA)、扫描电子显微镜(SEM)和MD模拟技术证实(DP|-)62的SD分别与亚油酸(LA)和亚麻酸(ALA)形成包埋复合物,复合物晶型均为VI晶型。氧化稳定性分析和体外降解测试结果表明:ALA和LA在60℃条件下保存72h的过氧化值(POVs)分别为34.1和26.4meq/kg,而SD-ALA和SD-LA的POVs值则远低于未复合的空白样,分别为8.3和7.2meq/kg,且该复合物在模拟小肠环境24h内释放率分别为21.7%和18.5%。因此该类型复合物除可保护LA和ALA外,还具有缓释作用。
     以新型食品生物防腐剂苯乳酸(PLA)为对象,采用手性流动相法,探讨SD的螺旋结构对手性客体分子的识别能力。在反相高效液相色谱(RP-HPLC)上,分别考察糊精种类、柱温、pH及甲醇浓度因素对SD分子识别的影响。最终在Inertsil ODS-SP(150×4.6mm, i.d.5μm)柱上分别用1%SD((DP|-)26,柱温30oC,甲醇10%,流速1.0mL/min)和10mmol/L羟丙基β环糊精(Hp-β-cyclodextrin,柱温20oC,甲醇10%,流速1.0mL/min)作为手性添加剂成功对PLA旋光异构体进行手性拆分。对PLA旋光异构体手性拆分建立了一种特异的、方便的和价格低廉的RP-HPLC方法。
Deep processing is an important method to increase value of starch and provide industrialraw material. On the basic structure of starch, the present research mainly focues on theeffects of spring dextrin (SD) on starch retrogradation, embedding ability and molecularrecognition.
     In present study, amylose was prepared from maize starch and then enzymaticlyhydrolyzed to produce a series of SD. SD has been noncovalently wrapped onto single-wallcarbon nanotubes (SWNTs). Differential scanning calorimetry (DSC), FR-IR and Ramanspectroscopy demonstrated that SD formed supermolecular complex with SWNTs.Furthermore, Atomic force microscope (AFM) micrograph and molecular dynamic (MD)simulation indicated that SD wrap around SWNTs into helical superstructures. The space ofhelix cavity changed with different diameter of SWNTs, and SD wrapped around SWNTs(1nm,1.5nm and2nm) were11,14and17glucose units per turn, respectively.
     The effects of SD on amylose recrystallization were investigated by wide-angle X-raydiffraction (WXRD) and differential scanning calorimetry (DSC) in the present study. Resultsindicated that recrystallinity of amylose was related with molecular weight of SD(Recrystallinity of amylose was reduced in terms of adding SD_7((DP|-)14.7), SD_9((DP|-)12.5) orSD_(11)((DP|-)11.7). Alternatively,((DP|-)36.6) or SD_5((DP|-)25.9) accelerated the degree ofcrystallinity.). The Avrami equation and MD simulation confirmed the results of WXRD andDSC. Furthermore, the same methods were investigated that the influence of SD on thegelatinized starch retrogradation. Results indicated that recrystallinity of wheat and cornstarch gels were reduced with the addition of SD_7or SD_9. Alternatively, SD_3or SD_5accelerated recrystallinity. Based on the obtained results of WXRD, DSC and MD, it wasconcluded that the addition of SDs significantly influences starch long-term retrogradation.
     The encapsulation was formed between SD with a (DP|-) of62and α-linolenic acid (ALA)or linoleic acid (LA) at60°C and characterized by WXRD, DSC, TGA and SEM. Underconditions which simulated the human environment of the gastrointestinal system,21.7%and18.5%of SD-ALA and SD-LA were released, respectively. The work supports the idea thatthese complexes not only can improve the stability of ALA and LA, but also can releaseslowly.
     A sensitive, specific, and inexpensive high-performance liquid chromatography (HPLC)method has been developed for the separation of phenyllactic acid enantiomers. The effects ofdextrin type, pH, column temperature and concentration methanol on enantioselectiveseparation were investigated. Baseline chromatographic separation was achieved on anInertsil ODS-SP (150×4.6mm, i.d.5μm) column with1%SD ((DP|-)26; separationtemperature20℃; mobile phase10%(v/v) methanol/water; Flow rate1.0mL/min) or10mmol/L Hp-β-cyclodextrin (separation temperature20oC; mobile phase10%(v/v)methanol/water; Flow rate1.0mL/min) as chiral mobile phase additive. The methods aresimple and cost-saving, and could be easily applied for chiral discrimination and determination of the racemic phenyllactic acid in an enantioselective study in quality controllaboratory.
引文
1.刘亚伟,淀粉生产及其深加工技术[M].北京:中国轻工出版社,2001.200
    2. Wang, T.L., T.Y. Bogracheva, C.L. Hedley. Starch: as simple as A, B, C?[J]. Journal of ExperimentalBotany,1998,49(320):481-502.
    3. Curá, J.A., P.-E. Jansson, C.R. Krisman. Amylose is not strictly linear[J]. Starch-St rke,1995,47(6):207-209.
    4. Hizukuri, S., Y. Takeda, M. Yasuda, et al. Multi-branched nature of amylose and the action ofdebranching enzymes[J]. Carbohydrate Research,1981,94(2):205-213.
    5. Takeda, Y., C. Takeda, H. Mizukami, et al. Structures of large, medium and small starch granules ofbarley grain[J]. Carbohydrate Polymers,1999,38(2):109-114.
    6. Takeda, Y., T. Shitaozono, S. Hizukuri. Molecular structure of corn starch[J]. Starch-St rke,1988,40(2):51-54.
    7. Shibanuma, K., Y. Takeda, S. Hizukuri, et al. Molecular structures of some wheat starches[J].Carbohydrate Polymers,1994,25(2):111-116.
    8. Hizukuri, S., T. Takagi. Estimation of the distribution of molecular weight for amylose by the lowangle laser light scattering technique combined with high performance gel chromatography[J].Carbohydrate Research,1984,134(1):1-10.
    9. Takeda, Y., N. Maruta, S. Hizukuri. Examination of the structure of amylose by tritium labelling of thereducing terminal[J]. Carbohydrate Research,1992,227:113-120.
    10. Takeda, Y., S. Hizukuri, C. Takeda, et al. Structures of branched molecules of amyloses of variousorigins, and molar fractions of branched and unbranched molecules[J]. Carbohydrate Research,1987,165(1):139-145.
    11. Takeda, Y., T. Shitaozono, S. Hizukuri. Structures of sub-fractions of corn amylose[J]. CarbohydrateResearch,1990,199(2):207-214.
    12. Takeda, Y., N. Maruta, S. Hizukuri. Structures of amylose subfractions with different molecularsizes[J]. Carbohydrate Research,1992,226(2):279-285.
    13. Hayashi, A., K. Kinoshita, Y. Miyake. The conformation of amylose in solution. I[J]. Polymer Journal,1981,13(6):537-541.
    14. Takeo, K., A. Tokumura, T. Kuge. Complexes of starch and its related materials with organiccompounds. Part. X. X-ray diffraction of amylose-fatty acid complexes[J]. Starch-St rke,1973,25(11):357-362.
    15. Zobel, H.F. Starch crystal transformations and their industrial importance[J]. Starch-St rke,1988,40(1):1-7.
    16.刘延奇,肖欣欣,李红等. V型直链淀粉-正己醇复合物的制备及表征[J].中国粮油学报,2012,27(3):24-28.
    17. Kugimiya, M., J.W. Donovan, R.Y. Wong. Phase transitions of amylose-lipid complexes in starches: acalorimetric study[J]. Starch-St rke,1980,32(8):265-270.
    18. Donovan, J.W., C.J. Mapes. Multiple phase transitions of starches and n geli amylodextrins[J]. Starch-St rke,1980,32(6):190-193.
    19. Bulpin, P.V., E.J. Welsh, E.R. Morris. Physical characterization of amylose-fatty acid complexes instarch granules and in solution[J]. Starch-St rke,1982,34(10):335-339.
    20. Wokadala, O.C., S.S. Ray, M.N. Emmambux. Occurrence of amylose–lipid complexes in teff andmaize starch biphasic pastes[J]. Carbohydrate Polymers,2012,90(1):616-622.
    21. Lay Ma, U.V., J.D. Floros, G.R. Ziegler. Formation of inclusion complexes of starch with fatty acidesters of bioactive compounds[J]. Carbohydrate Polymers,2011,83(4):1869-1878.
    22.蔡丽明,高群玉.淀粉-脂类复合物的研究现状及展望[J].粮油加工,2007,(2):85-87.
    23. Nuesslia, J., J.L. Putaux, P. Le Bail, et al. Crystal structure of amylose complexes with smallligands[J]. International Journal of Biological Macromolecules,2003,33(4-5):227-234.
    24. Godet, M.C., V. Tran, M.M. Delage, et al. Molecular modelling of the specific interactions involved inthe amylose complexation by fatty acids[J]. International Journal of Biological Macromolecules,1993,15(1):11-16.
    25. Zhang, Q., Z. Lu, H. Hu, et al. Direct detection of the formation of V-amylose helix by singlemolecule force spectroscopy[J]. Journal of the American Chemical Society,2006,128(29):9387-9393.
    26. Lu, Z., W. Nowak, G. Lee, et al. Elastic properties of single amylose chains in water: a quantummechanical and AFM study[J]. Journal of the American Chemical Society,2004,126(29):9033-9041.
    27. Zhu, F., Y.-J. Wang. Characterization of modified high-amylose maize starch-α-naphthol complexesand their influence on rheological properties of wheat starch[J]. Food Chemistry,2013,138(1):256-262.
    28. Biais, B., P. Le Bail, P. Robert, et al. Structural and stoichiometric studies of complexes betweenaroma compounds and amylose. Polymorphic transitions and quantification in amorphous andcrystalline areas[J]. Carbohydrate Polymers,2006,66(3):306-315.
    29. Yamashita, Y. Single crystals of amylose V complexes[J]. Journal of Polymer Science Part A: GeneralPapers,1965,3(9):3251-3260.
    30. Yamashita, Y., N. Hirai. Single crystals of amylose V complexes. II. Crystals with71helicalconfiguration[J]. Journal of Polymer Science Part A-2: Polymer Physics,1966,4(2):161-171.
    31. Yamashita, Y., K. Monobe. Single crystals of amylose V complexes. III. Crystals with81helicalconfiguration[J]. Journal of Polymer Science Part A-2: Polymer Physics,1971,9(8):1471-1481.
    32. YAMASHITA, Y.-h., J. RYUGO, K. MONOBE. An electron microscopie study on crystals of amyloseV complexes[J]. Journal of Electron Microscopy,1973,22(1):19-26.
    33.刘延奇,郑苗苗,肖欣欣等.结晶温度对V-型直链淀粉-单甘酯复合物结构的影响研究[J].粮食与饲料工业,2011,(10):22-25.
    34. Leloup, V.M., P. Colonna, S.G. Ring, et al. Microstructure of amylose gels[J]. Carbohydrate Polymers,1992,18(3):189-197.
    35. Miles, M.J., V.J. Morris, S.G. Ring. Some recent observations on the retrogradation of amylose[J].Carbohydrate Polymers,1984,4(1):73-77.
    36. Miles, M.J., V.J. Morris, S.G. Ring. Gelation of amylose[J]. Carbohydrate Research,1985,135(2):257-269.
    37. Wild, D.L., J.M.V. Blanshard. The relationship of the crystal structure of amylose polymorphs to thestructure of the starch granule[J]. Carbohydrate Polymers,1986,6(2):121-143.
    38. Gidley, M.J., P.V. Bulpin. Crystallisation of malto-oligosaccharides as models of the crystalline formsof starch: minimum chain-length requirement for the formation of double helices[J]. CarbohydrateResearch,1987,161(2):291-300.
    39. Gidley, M.J., P.V. Bulpin. Aggregation of amylose in aqueous systems: the effect of chain length onphase behavior and aggregation kinetics[J]. Macromolecules,1989,22(1):341-346.
    40. Gidley, M.J. Molecular mechanisms underlying amylose aggregation and gelation[J]. Macromolecules,1989,22(1):351-358.
    41. Zobel, H.F. Molecules to granules: a comprehensive starch review[J]. Starch-St rke,1988,40(2):44-50.
    42.王红强,李庆余,陈美超等.以木薯淀粉为原料制备B型淀粉球晶[J].食品工业科技,2008,(2):175-176.
    43.刘延奇,于九皋,孙秀萍. A-型淀粉球晶的制备及表征[J].中国粮油学报,2004,19(1):31-34.
    44. Pfannemüller, B. Influence of chain length of short monodisperse amyloses on the formation of A-andB-type X-ray diffraction patterns[J]. International Journal of Biological Macromolecules,1987,9(2):105-108.
    45. Imberty, A., H. Chanzy, S. Pérez, et al. The double-helical nature of the crystalline part of A-starch[J].Journal of Molecular Biology,1988,201(2):365-378.
    46. Imberty, A., S. Perez. A revisit to the three-dimensional structure of B-type starch[J]. Biopolymers,1988,27(8):1205-1221.
    47. Gidley, M.J. Factors affecting the crystalline type (A---C) of native starches and model compounds: arationalisation of observed effects in terms of polymorphic structures[J]. Carbohydrate Research,1987,161(2):301-304.
    48. Rolland-Sabaté, A., P. Colonna, M.G. Mendez-Montealvo, et al. Branching features of amylopectinsand glycogen determined by asymmetrical flow field flow fractionation coupled with multiangle laserlight scattering[J]. Biomacromolecules,2007,8(8):2520-2532.
    49. Nikuni, Z. Studies on starch granules[J]. Starch-St rke,1978,30(4):105-111.
    50. Hizukuri, S. Polymodal distribution of the chain lengths of amylopectins, and its significance[J].Carbohydrate Research,1986,147(2):342-347.
    51. Bender, H., R. Siebert, A. Stadler-Sz ke. Can cyclodextrin glycosyltransferase be useful for theinvestigation of the fine structure of amylopectins?: Characterisation of highly branched clustersisolated from digests with potato and maize starches[J]. Carbohydrate Research,1982,110(2):245-259.
    52. Finch, P., D.W. Sebesta. The amylase of Pseudomonas stutzeri as a probe of the structure ofamylopectin[J]. Carbohydrate Research,1992,227: C1-C4.
    53. Gérard, C., V. Planchot, P. Colonna, et al. Relationship between branching density and crystallinestructure of A-and B-type maize mutant starches[J]. Carbohydrate Research,2000,326(2):130-144.
    54. Bertoft, E. Investigation of the fine structure of amylopectin using alpha-and beta-amylase[J].Carbohydrate Research,1989,189:195-207.
    55. Bertoft, E., Q. Zhu, H. Andtfolk, et al. Structural heterogeneity in waxy-rice starch[J]. CarbohydratePolymers,1999,38(4):349-359.
    56. Bertoft, E. Composition of clusters and their arrangement in potato amylopectin[J]. CarbohydratePolymers,2007,68(3):433-446.
    57. Kong, X., H. Corke, E. Bertoft. Fine structure characterization of amylopectins from grain amaranthstarch[J]. Carbohydrate Research,2009,344(13):1701-1708.
    58. Laohaphatanaleart, K., K. Piyachomkwan, K. Sriroth, et al. The fine structure of cassava starchamylopectin: Part1: Organization of clusters[J]. International Journal of Biological Macromolecules,2010,47(3):317-324.
    59.赵凯,淀粉非化学改性技术[M].北京:化学工业出版社,2009.138
    60. Whelan, W.J., P.J.P. Roberts. Action of salivary [alpha]-amylase on amylopectin and glycogen[J].Nature,1952,170(4331):748-749.
    61.张晶,刘亚伟,方宏兵.修饰麦芽糊精在食品工业中的应用[J].食品工业科技,2010,31(10):426-429.
    62. CL, J., L. DG, H. SH. Characterization of cyclodextrin glycosyltransferase of the same gene expressedfrom Bacillus macerans, Bacillus subtilis, and Escherichia coli.[J]. Journal of Agricultural and FoodChemistry,2005,53(16):6301-6304.
    63. Szente, L., J. Szejtli. Cyclodextrins as food ingredients[J]. Trends in Food Science&Technology,2004,15(3–4):137-142.
    64. Hu, X., B. Wei, H. Li, et al. Preparation of the β-cyclodextrin-vitamin C (β-CD-Vc) inclusion complexunder high hydrostatic pressure (HHP)[J]. Carbohydrate Polymers,2012,90(2):1193-1196.
    65. Tellez-Diaz, A.Y., M.T. Cruz-Victoria, M.L.H.-D. Jesus, et al. Solubility and stability of the naturalpigment neocandenatone microdispersions prepared with several surfactants and cyclodextrins[J].Journal of Biotechnology,2010,150, Supplement:328.
    66.金征宇,徐学明,陈寒清等,环糊精化学:制备与应用[M].北京:化学工业出版社,2009.17
    67.唐书泽,李福谦,张志森.葡萄糖当量及聚合度与麦芽糊精的性质[J].食品与机械,2007,23(3):3.
    68.刘文慧,王颉,王静等.麦芽糊精在食品工业中的应用现状[J].中国食品添加剂,2007,(2):183-186.
    69.陈龙然,袁唐培,王雅芬等.环糊精的性能、生产及其在食品工业中的应用[J].食品科学,2003,24(8):268-271.
    70.谭静,姜子涛.环糊精及其衍生物在食品领域中的应用[J].食品研究与开发,2008,29(11):178-181.
    71. Sansone, F., T. Mencherini, P. Picerno, et al. Maltodextrin/pectin microparticles by spray drying ascarrier for nutraceutical extracts[J]. Journal of Food Engineering,2011,105(3):468-476.
    72. Solval, K.M., S. Sundararajan, L. Alfaro, et al. Development of cantaloupe (Cucumis melo) juicepowders using spray drying technology[J]. LWT-Food Science and Technology,2012,46(1):287-293.
    73. Kha, T.C., M.H. Nguyen, P.D. Roach. Effects of spray drying conditions on the physicochemical andantioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder[J]. Journal of FoodEngineering,2010,98(3):385-392.
    74. Dzondo-Gadet, M., J.M. Nzikou, A. Etoumongo, et al. Encapsulation and storage of safou pulp oil in6DE maltodextrins[J]. Process Biochemistry,2005,40(1):265-271.
    75. Kurozawa, L.E., K.J. Park, M.D. Hubinger. Effect of maltodextrin and gum arabic on water sorptionand glass transition temperature of spray dried chicken meat hydrolysate protein[J]. Journal of FoodEngineering,2009,91(2):287-296.
    76. Fang, Z., B. Bhandari. Comparing the efficiency of protein and maltodextrin on spray drying ofbayberry juice[J]. Food Research International,2012,48(2):478-483.
    77. Fazaeli, M., Z. Emam-Djomeh, A. Kalbasi Ashtari, et al. Effect of spray drying conditions and feedcomposition on the physical properties of black mulberry juice powder[J]. Food and BioproductsProcessing,2012,90(4):667-675.
    78. Sartorio, C., P. Lin, J. Burri, et al. Complete, nutritionally balanced coffee drink[P].美国专利,US19980203466.1998-12-02
    79. Sartorio, C., P. Lin, J. Burri, et al. Method for manufacturing a balanced, nutritionally complete coffeecomposition[P].美国专利,08/815899.1997-3-12
    80. Roland, A.M., L.G. Phillips, K.J. Boor. Effects of fat replacers on the sensory properties, color,melting, and hardness of ice cream[J]. Journal of Dairy Science,1999,82(10):2094-2100.
    81. Baer, R.J., N. Krishnaswamy, K.M. Kasperson. Effect of emulsifiers and food gum on nonfat icecream[J]. Journal of Dairy Science,1999,82(7):1416-1424.
    82. Neri, L., P. Pittia, G. Bertolo, et al. Influence of water activity and molecular mobility on peroxidaseactivity in salt and sorbitol–maltodextrin systems[J]. Journal of Food Engineering,2010,101(3):289-295.
    83. Belghith, H., S. Ellouz Chaabouni, A. Gargouri. Stabilization of penicillium occitanis cellulases byspray drying in presence of maltodextrin[J]. Enzyme and Microbial Technology,2001,28(2–3):253-258.
    84. López-Nicolás, J.M., E. Nú ez-Delicado, á. Sánchez-Ferrer, et al. Kinetic model of apple juiceenzymatic browning in the presence of cyclodextrins: The use of maltosyl-β-cyclodextrin as secondaryantioxidant[J]. Food Chemistry,2007,101(3):1164-1171.
    85. JM, L.-N., P.-L. AJ, C.-B. A, et al. Kinetic study of the activation of banana juice enzymatic browningby the addition of maltosyl-beta-cyclodextrin[J]. Journal of Agricultural and Food Chemistry,2007,55(23):9655-9662.
    86. Sajilata, M.G., R.S. Singhal. Isolation and stabilisation of natural pigments for food applications[J].Stewart Postharvest Review,2006,2(5):1-29.
    87. Astray, G., J.C. Mejuto, J. Morales, et al. Factors controlling flavors binding constants to cyclodextrinsand their applications in foods[J]. Food Research International,2010,43(4):1212-1218.
    88. Gonnet, M., L. Lethuaut, F. Boury. New trends in encapsulation of liposoluble vitamins[J]. Journal ofControlled Release,2010,146(3):276-290.
    89. Shaw, P.E., J.H. Tatum, C.W. Wilson III. Improved flavor of navel orange and grapefruit juices byremoval of bitter components with. beta.-cyclodextrin polymer[J]. Journal of Agricultural and FoodChemistry,1984,32(4):832-836.
    90. Yang, Y., Z. Gu, G. Zhang. Delivery of bioactive conjugated linoleic acid with self-assembledamylose CLA complex[J]. Journal of Agricultural and Food Chemistry,2009,57(15):7125-7130.
    91. Imberty, A., A. Buléon, V. Tran, et al. Recent advances in knowledge of starch structure[J]. Starch-St rke,1991,43(10):375-384.
    92. Lagrain, B., P. Leman, H. Goesaert, et al. Impact of thermostable amylases during bread making onwheat bread crumb structure and texture[J]. Food Research International,2008,41(8):819-827.
    93. Gujral, H.S., M. Haros, C.M. Rosell. Starch hydrolyzing enzymes for retarding the staling of ricebread[J]. Cereal Chemistry,2003,80(6):750-754.
    94. Leon, A.E., E. Duran, C.B. de Barber. Utilization of enzyme mixtures to retard bread crumb firming[J].Journal of Agricultural and Food Chemistry,2002,50(6):1416-1419.
    95. Goesaert, H., P. Leman, A. Bijttebier, et al. Antifirming effects of starch degrading enzymes in breadcrumb[J]. Journal of Agricultural and Food Chemistry,2009,57(6):2346-2355.
    96. Witczak, M., J. Korus, R. Ziobro, et al. The effects of maltodextrins on gluten-free dough and qualityof bread[J]. Journal of Food Engineering,2010,96(2):258-265.
    97. Miyazaki, M., T. Maeda, N. Morita. Effect of various dextrin substitutions for wheat flour on doughproperties and bread qualities[J]. Food Research International,2004,37(1):59-65.
    98. Rojas, J.A., C.M. Rosell, C. Benedito de Barber. Role of maltodextrins in the staling of starch gels[J].European Food Research and Technology,2001,212(3):364-368.
    99.张骅骞.荞麦淀粉抗老化研究及应用[D]:[硕士学位论文].天津:天津科技大学,2007
    100. Tian, Y.Q., Y. Li, Z.Y. Jin, et al. β-Cyclodextrin (β-CD): A new approach in bread staling[J].Thermochimica Acta,2009,489(1-2):22-26.
    101.田耀旗,徐学明,金征宇等. β-环糊精抑制淀粉回生初探[J].食品科学,2008,29(6):49-51.
    102. Ziani, K., Y. Fang, D.J. McClements. Encapsulation of functional lipophilic components insurfactant-based colloidal delivery systems: Vitamin E, vitamin D, and lemon oil[J]. Food Chemistry,2012,134(2):1106–1112.
    103. Mourtzinos, I., F. Salta, K. Yannakopoulou, et al. Encapsulation of olive leaf extract inβ-cyclodextrin[J]. Journal ofAgricultural and Food Chemistry,2007,55(20):8088-8094.
    104. Mourtzinos, I., N. Kalogeropoulos, S.E. Papadakis, et al. Encapsulation of nutraceutical monoterpenesin β-cyclodextrin and modified Starch[J]. Journal of Food Science,2008,73(1): S89-S94.
    105. Kayaci, F., T. Uyar. Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinylalcohol (PVA) nanowebs: Prolonged shelf-life and high temperature stability of vanillin[J]. FoodChemistry,2012,133(3):641-649.
    106.李延啸.大蒜素β-环糊精微胶囊制备工艺及其稳定性研究[J].食品工业科技,2012,33(5):194-197.
    107. Silva, K.A., M.A.Z. Coelho, V.M.A. Calado, et al. Olive oil and lemon salad dressingmicroencapsulated by freeze-drying[J]. LWT-Food Science and Technology,2013,50(2):569-574.
    108. Gandía-Herrero, F., M. Jiménez-Atiénzar, J. Cabanes, et al. Stabilization of the bioactive pigment ofopuntia fruits through maltodextrin encapsulation[J]. Journal of Agricultural and Food Chemistry,2010,58(19):10646-10652.
    109. Chang, D., S. Abbas, K. Hayat, et al. Encapsulation of ascorbic acid in amorphous maltodextrinemploying extrusion as affected by matrix/core ratio and water content[J]. International Journal ofFood Science&Technology,2010,45(9):1895-1901.
    110.康云峰,何俊萍,赵红梅等.微胶囊包埋技术在番茄胡萝卜复合粉中的应用[J].现代食品科技,2006,22(4):67-70.
    111. Tong, S., Y.-X. Guan, J. Yan, et al. Enantiomeric separation of (R, S)-naproxen by recycling highspeed counter-current chromatography with hydroxypropyl-β-cyclodextrin as chiral selector[J].Journal of Chromatography A,2011,1218(32):5434-5440.
    112. Ma, S., S. Shen, N. Haddad, et al. Chromatographic and spectroscopic studies on the chiralrecognition of sulfated β-cyclodextrin as chiral mobile phase additive: Enantiomeric separation of achiral amine[J]. Journal of Chromatography A,2009,1216(8):1232-1240.
    113. Elbashir, A.A., F.E.O. Suliman, B. Saad, et al. Determination of aminoglutethimide enantiomers inpharmaceutical formulations by capillary electrophoresis using methylated-β-cyclodextrin as a chiralselector and computational calculation for their respective inclusion complexes[J]. Talanta,2009,77(4):1388-1393.
    114. Kim, I.W., H.M. Choi, H.J. Yoon, et al. β-Cyclodextrin-hexamethylene diisocyanate copolymer-coatedzirconia for separation of racemic2,4-dinitrophenyl amino acids in reversed-phase liquidchromatography[J]. Analytica Chimica Acta,2006,569(1–2):151-156.
    115.陈云艳,黄文武,孔德云. β-环糊精及其衍生物用于天然产物分析的研究进展[J].中国医药工业杂志,2011,42(11):851-855.
    116. Fakhari, A.R., H. Tabani, H. Behdad, et al. Electrically-enhanced microextraction combined withmaltodextrin-modified capillary electrophoresis for quantification of tolterodine enantiomers inbiological samples[J]. Microchemical Journal,2013,106(0):186-193.
    117. Watanabe, T., K. Takahashi, M. Horiuchi, et al. Chiral separation and quantitation of pentazocineenantiomers in pharmaceuticals by capillary zone electrophoresis using maltodextrins[J]. Journal ofPharmaceutical and Biomedical Analysis,1999,21(1):75-81.
    118. Nishi, H., S. Izumoto, K. Nakamura, et al. Dextran and dextrin as chiral selectors in capillary zoneelectrophoresis[J]. Chromatographia,1996,42(11):617-630.
    119. Wei, W., B. Guo, J.-M. Lin. Helical-and ahelical-dependent chiral recognition mechanisms incapillary electrophoresis using amylose as the selector[J]. ELECTROPHORESIS,2009,30(8):1380-1387.
    120.姚惠源.回眸"十五"粮食深加工所取得的重大成果展望"十一五"粮食深加工科技发展的趋势[J].粮食加工,2006,31(3):4.
    121.石彦忠,张浩东.淀粉深加工产业结构与发展状况[J].吉林工商学院学报,2008,24(5):88-91.
    122. Linert, W., P. Margl, F. Renz. Solute-solvent interactions between cyclodextrin and water: a molecularmechanical study[J]. Chemical Physics,1992,161(3):327-338.
    123. REINECCIUS, G.A. Carbohydrates for flavor encapsulation[J].1991,45(3):144–147.
    124. Bangs, W.E., G.A. Reineccius. Influence of dryer infeed matrices on the retention of volatile flavorcompounds during spray drying[J]. Journal of Food Science,1981,47(1):254-259.
    125.唐书泽,李福谦,张志森.葡萄糖当量及聚合度与麦芽糊精的性质[J].食品与机械,2007,23(3):175-177.
    126. Godet, M.C., H. Bizot, A. Buléon. Crystallization of amylose—fatty acid complexes prepared withdifferent amylose chain lengths[J]. Carbohydrate Polymers,1995,27(1):47-52.
    127.赵娅,顾正彪.麦芽糊精溶液稳定性的研究[J].中国粮油学报,2008,23(4):96-101.
    128.刘晓欣,顾正彪,洪雁.麦芽糊精糖分组成和分子量分布的研究及其对性质的影响[J].食品工业科技,2006,27(2):97-100.
    129. Balasubramanian, D., B. Raman, C.S. Sundari. Polysaccharides as amphiphiles[J]. Journal of theAmerican Chemical Society,1993,115(1):74-77.
    130. Sivakama Sundari, C., B. Raman, D. Balasubramanian. Hydrophobic surfaces in oligosaccharides:linear dextrims are amphiphilic chains[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,1991,1065(1):35-41.
    131. Gelders, G.G., T.C. Vanderstukken, H. Goesaert, et al. Amylose–lipid complexation: a newfractionation method[J]. Carbohydrate Polymers,2004,56(4):447-458.
    132. Xu, J., W. Zhao, Y. Ning, et al. Improved stability and controlled release of ω3/ω6polyunsaturatedfatty acids by spring dextrin encapsulation[J]. Carbohydrate Polymers,2013,92(2):1633-1640.
    133. Xu, J., W. Zhao, Y. Ning, et al. Can helical spring dextrin be composed of higher eight glucose unitsper turn?[J]. Journal of Molecular Structure,2013,1036:274–278.
    134. Xu, J., W. Zhao, Y. Ning, et al. Comparative study of spring dextrin impact on amyloseretrogradation[J]. Journal of Agricultural and Food Chemistry,2012,60(19):4970-4976.
    135. Takeda, Y., S. Hizukuri, B.O. Juliano. Purification and structure of amylose from rice starch[J].Carbohydrate Research,1986,148(2):299-308.
    136. DuBois, M., K.A. Gilles, J.K. Hamilton, et al. Colorimetric method for determination of sugars andrelated substances[J]. Analytical Chemistry,1956,28(3):350-356.
    137.吉宏武,丁霄霖.马铃薯直链淀粉与支链淀粉的分离方法[J].食品科技,2000,(6):6-7.
    138. Banks, W., C.T. Greenwood, K.M. Khan. The interaction of linear, amylose oligomers with iodine[J].Carbohydrate Research,1971,17(1):25-33.
    139. White, D.R., P. Hudson, J.T. Adamson. Dextrin characterization by high-performance anion-exchangechromatography-pulsed amperometric detection and size-exclusion chromatography-multi-angle lightscattering-refractive index detection[J]. Journal of Chromatography A,2003,997(1-2):79-85.
    140. Chung, H.-J., Q. Liu. Impact of molecular structure of amylopectin and amylose on amylose chainassociation during cooling[J]. Carbohydrate Polymers,2009,77(4):807-815.
    141.李海普,李彬,欧阳明等.直链淀粉和支链淀粉的表征[J].食品科学,2010,(11):273-277.
    142.李彬,李海普,张莎莎等.玉米直链淀粉、支链淀粉的分离、表征及浮选应用[J].矿产保护与利用,2011,(5):64-68.
    143. Andersson, L., U. Rydberg, H. Larsson, et al. Preparation and characterisation of linear dextrins andtheir use as substrates in in vitro studies of starch branching enzymes[J]. Carbohydrate Polymers,2002,47(1):53-58.
    144. Siitonen, A.J., D.A. Tsyboulski, S.M. Bachilo, et al. Surfactant-dependent exciton mobility insingle-walled carbon nanotubes studied by single-molecule reactions[J]. Nano Letters,2010,10(5):1595-1599.
    145. Porter, A.E., M. Gass, J.S. Bendall, et al. Uptake of noncytotoxic acid-treated single-walled carbonnanotubes into the cytoplasm of human macrophage cells[J]. Acs Nano,2009,3(6):1485-1492.
    146. Baskaran, D., J.W. Mays, X.P. Zhang, et al. Carbon nanotubes with covalently linked porphyrinantennae: Photoinduced electron transfer[J]. Journal of the American Chemical Society,2005,127(19):6916-6917.
    147. Hu, H., B. Zhao, M.A. Hamon, et al. Sidewall functionalization of single-walled carbon nanotubes byaddition of dichlorocarbene[J]. Journal of the American Chemical Society,2003,125(48):14893-14900.
    148. Georgakilas, V., K. Kordatos, M. Prato, et al. Organic functionalization of carbon nanotubes[J].Journal of the American Chemical Society,2002,124(5):760-761.
    149. Florent, M., R. Shvartzman-Cohen, D. Goldfarb, et al. Self-assembly of pluronic block copolymers inaqueous dispersions of single-wall carbon nanotubes as observed by spin probe EPR[J]. Langmuir,2008,24(8):3773-3779.
    150. Ogoshi, T., Y. Takashima, H. Yamaguchi, et al. Chemically-responsive sol gel transition ofsupramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs andcyclodextrins[J]. Journal of the American Chemical Society,2007,129(16):4878-4879.
    151.伏传龙.单壁碳纳米管功能化的研究[D]:[博士学位论文].上海交通大学,2008
    152.张晓科.碳纳米管作为生物支架和胞内给药载体材料的研究[D]:[博士学位论文].上海交通大学,2009
    153. Lalush, I., H. Bar, I. Zakaria, et al. Utilization of amylose lipid complexes as molecular nanocapsulesfor conjugated linoleic acid[J]. Biomacromolecules,2004,6(1):121-130.
    154. Richardson, G., S. Kidman, M. Langton, et al. Differences in amylose aggregation and starch gelformation with emulsifiers[J]. Carbohydrate Polymers,2004,58(1):7-13.
    155. Kim, J.-Y., S.-T. Lim. Preparation of nano-sized starch particles by complex formation withn-butanol[J]. Carbohydrate Polymers,2009,76(1):110-116.
    156. Rodríguez, S.D., D.L. Bernik, R. Méreau, et al. Amylose–vanillin complexation assessed by a jointexperimental and theoretical analysis[J]. The Journal of Physical Chemistry C,2011,115(47):23315-23322.
    157. Manley, R.S.J. Chain folding in amylose crystals[J]. Journal of Polymer Science Part A: GeneralPapers,1964,2(10):4503-4515.
    158. Nishiyama, Y., K. Mazeau, M. Morin, et al. Molecular and crystal structure of7-fold V-amylosecomplexed with2-propanol[J]. Macromolecules,2010,43(20):8628-8636.
    159.魏为力,林金明.二级有序结构在直链淀粉手性识别中的作用[J].分析化学,2009,37(增刊):D066.
    160. Liu, Y., C. Chipot, X. Shao, et al. Edge effects control helical wrapping of carbon nanotubes bypolysaccharides[J]. Nanoscale,2012,4(8):2584-9.
    161. Kim, O.-K., J. Je, J.W. Baldwin, et al. Solubilization of single-wall carbon nanotubes bysupramolecular encapsulation of helical amylose[J]. Journal of the American Chemical Society,2003,125(15):4426-4427.
    162. Chambers, G., C. Carroll, G.F. Farrell, et al. Characterization of the interaction of gamma cyclodextrinwith single-walled carbon nanotubes[J]. Nano Letters,2003,3(6):843-846.
    163. López, C.A., A.J. Rzepiela, A.H. de Vries, et al. Martini coarse-grained force field: extension tocarbohydrates[J]. Journal of Chemical Theory and Computation,2009,5(12):3195-3210.
    164. Chang, R., A. Violi. Insights into the effect of combustion-generated carbon nanoparticles onbiological membranes: A computer simulation study[J]. The Journal of Physical Chemistry B,2006,110(10):5073-5083.
    165. Tian, Y., Y. Li, F.A. Manthey, et al. Influence of β-cyclodextrin on the short-term retrogradation of ricestarch[J]. Food Chemistry,2009,116(1):54-58.
    166. Yousef, F., M. Zughul, A. Badwan. The modes of complexation of benzimidazole with aqueousβ-cyclodextrin explored by phase solubility, potentiometric titration,<sup>1</sup>H-NMR and molecular modeling studies[J]. Journal of InclusionPhenomena and Macrocyclic Chemistry,2007,57(1):519-523.
    167. Kuttel, M.M., K.J. Naidoo. Free energy surfaces for the α(1→4)-glycosidic linkage: Implications forpolysaccharide solution structure and dynamics[J]. The Journal of Physical Chemistry B,2005,109(15):7468-7474.
    168. Kuttel, M., K.J. Naidoo. Glycosidic linkage rotations determine amylose stretching mechanism[J].Journal of the American Chemical Society,2004,127(1):12-13.
    169. Xie, Y.H., A.K. Soh. Investigation of non-covalent association of single-walled carbon nanotube withamylose by molecular dynamics simulation[J]. Materials Letters,2005,59(8-9):971-975.
    170. Wulff, G., S. Kubik. Helical amylose complexes with organic complexands,1. Microcalorimetric andcircular dichroitic investigations[J]. Die Makromolekulare Chemie,1992,193(5):1071-1080.
    171. Lu, Z., W. Nowak, G. Lee, et al. Elastic Properties of Single Amylose Chains in Water: A QuantumMechanical and AFM Study[J]. Journal of the American Chemical Society,2004,126(29):9033-9041.
    172. Zhang, X., L. Meng, Q. Lu. Cell behaviors on polysaccharide-wrapped single-wall carbon nanotubes:A quantitative study of the surface properties of biomimetic nanofibrous scaffolds[J]. Acs Nano,2009,3(10):3200-3206.
    173. Orford, P.D., S.G. Ring, V. Carroll, et al. The effect of concentration and botanical source on thegelation and retrogradation of starch[J]. Journal of the Science of Food and Agriculture,1987,39(2):169-177.
    174. Davis, J.P., N. Supatcharee, R.L. Khandelwal, et al. Synthesis of novel starches in planta:opportunities and challenges[J]. Starch-St rke,2003,55(3-4):107-120.
    175. Gudmundsson, M., A.C. Eliasson. Retrogradation of amylopectin and the effects of amylose andadded surfactants/emulsifiers[J]. Carbohydrate Polymers,1990,13(3):295-315.
    176. Khanna, S., R.F. Tester. Influence of purified konjac glucomannan on the gelatinisation andretrogradation properties of maize and potato starches[J]. Food Hydrocolloids,2006,20(5):567-576.
    177. Gudmundsson, M. Retrogradation of starch and the role of its components[J]. Thermochimica Acta,1994,246(2):329-341.
    178. Kalichevsky, M.T., P.D. Orford, S.G. Ring. The retrogradation and gelation of amylopectins fromvarious botanical sources[J]. Carbohydrate Research,1990,198(1):49-55.
    179. Silverio, J., H. Fredriksson, R. Andersson, et al. The effect of temperature cycling on the amylopectinretrogradation of starches with different amylopectin unit-chain length distribution[J]. CarbohydratePolymers,2000,42(2):175-184.
    180. Funami, T., Y. Kataoka, T. Omoto, et al. Effects of non-ionic polysaccharides on the gelatinization andretrogradation behavior of wheat starch[J]. Food Hydrocolloids,2005,19(1):1-13.
    181. Funami, T., Y. Kataoka, T. Omoto, et al. Food hydrocolloids control the gelatinization andretrogradation behavior of starch.2b. Functions of guar gums with different molecular weights on theretrogradation behavior of corn starch[J]. Food Hydrocolloids,2005,19(1):25-36.
    182. Zhou, Z., K. Robards, S. Helliwell, et al. Effect of the addition of fatty acids on rice starchproperties[J]. Food Research International,2007,40(2):209-214.
    183.丁文平,王月慧,夏文水.淀粉的回生机理及其测定方法[J].粮食与饲料工业,2004,(12):28-30.
    184. Goesaert, H., P. Leman, A. Bijttebier, et al. Antifirming effects of wtarch degrading enzymes in breadcrumb[J]. Journal of Agricultural and Food Chemistry,2009,57(6):2346-2355.
    185. Palacios, H.R., P.B. Schwarz, B.L. D'Appolonia. Effect of α-amylases from different sources on theretrogradation and recrystallization of concentrated wheat starch gels: relationship to bread staling[J].Journal of Agricultural and Food Chemistry,2004,52(19):5978-5986.
    186. Jiang, Z., X. Li, S. Yang, et al. Improvement of the breadmaking quality of wheat flour by thehyperthermophilic xylanase B from Thermotoga maritima[J]. Food Research International,2005,38(1):37-43.
    187.丹尼斯克有限公司.利用新型淀粉酶改善发酵面制品的品质[J].中国食品添加剂,2008,(增刊):207-209.
    188. Roccia, P., P.D. Ribotta, G.T. Pérez, et al. Influence of soy protein on rheological properties and waterretention capacity of wheat gluten[J]. LWT-Food Science and Technology,2009,42(1):358-362.
    189. Indrani, D., P. Prabhasankar, J. Rajiv, et al. Influence of whey protein concentrate on the rheologicalcharacteristics of dough, microstructure and quality of unleavened flat bread (parotta)[J]. FoodResearch International,2007,40(10):1254-1260.
    190. Bárcenas, M.E., C.M. Rosell. Effect of HPMC addition on the microstructure, quality and aging ofwheat bread[J]. Food Hydrocolloids,2005,19(6):1037-1043.
    191. Cairns, P., M.J. Miles, V.J. Morris. Studies of the effect of the sugars ribose, xylose and fructose on theretrogradation of wheat starch gels by x-ray diffraction[J]. Carbohydrate Polymers,1991,16(4):355-365.
    192. Peter L, R. A kinetic study of bread staling by differential scanning calorimetry and compressibilitymeasurements. The effect of added monoglyceride[J]. Journal of Cereal Science,1983,1(4):297-303.
    193.邱泼,李喜宏,韩文凤等.生物酶法抑制淀粉回生机理研究进展[J].粮食加工,2006,31(6):59-61.
    194. Conn, J.F., J.A. Johnson, B.S. Miller. An investigation of commercial fugal and bacterial alphaamylase preparations in baking[J]. Cereal Chemistry,1950,27:191-205.
    195. Dragsdorf, R.D., E. Varriano-Marston. Bread staling: X-ray diffraction studies on bread supplementedwith alpha-amylases from different sources[J]. Cereal Chemistry,1980,57(5):310-314.
    196.Martin, M.L., R.C. Hoseney. A mechanism of bread firming. II. role of starch hydrolyzing enzymes.[J].Cereal Chem1991,(68):503-507.
    197. Gerrard, J.A., D. Every, K.H. Sutton, et al. The role of maltodextrins in the staling of bread[J]. Journalof Cereal Science,1997,26(2):201-209.
    198. León, A., E. Durán, C.B.d. Barber. Firming of starch gels and amylopectin retrogradation as related todextrin production by α-amylase [J]. Zeitschrift für Lebensmitteluntersuchung und-Forschung A,1997,205(2):4.
    199. Akers, A.A., R.C. Hoseney. Water-Soluble Dextrins from alpha-Amylase-Treated Bread and TheirRelationship to Bread Firming[J]. Cereal Chemistry,1994,71(3):223-226.
    200. Durán, E., A. León, B. Barber, et al. Effect of low molecular weight dextrins on gelatinization andretrogradation of starch[J]. European Food Research and Technology,2001,212(2):203-207.
    201. León, A.E., E. Durán, C. Benedito de Barber. Utilization of enzyme mixtures to retard bread crumbfirming[J]. Journal of Agricultural and Food Chemistry,2002,50(6):1416-1419.
    202. Akers, A.A., R.C. Hoseney. Water soluble dextrins from alpha-treate water soluble dextrins fromdbread and their relationship to bread firming[J]. Cereal Chemistry,1994,71(3):223-226.
    203. Tian, Y., Y. Li, Z. Jin, et al. Comparison tests of hydroxylpropyl β-cyclodextrin (HPβ-CD) andβ-cyclodextrin (β-CD) on retrogradation of rice amylose[J]. LWT-Food Science and Technology,2010,43(3):488-491.
    204. Komiya, T., S. Nara. Changes in crystallinity and gelatinization phenomena of potato starch by acidtreatment[J]. Starch-St rke,1986,38(1):9-13.
    205. Lu, T.-j., J.-I. Jane, P.L. Keeling. Temperature effect on retrogradation rate and crystalline structure ofamylose[J]. Carbohydrate Polymers,1997,33(1):19-26.
    206. Lalush, I., H. Bar, I. Zakaria, et al. Utilization of amylose lipid complexes as molecular nanocapsulesfor conjugated linoleic acid[J]. Biomacromolecules,2005,6(1):121-130.
    207. Nishiyama, Y., J.-l. Putaux, N. Montesanti, et al. B→A allomorphic transition in native starch andamylose spherocrystals monitored by in situ synchrotron X-ray diffraction[J]. Biomacromolecules,2010,11(1):76-87.
    208. Roulet, P., W.M. MacInnes, P. Würsch, et al. A comparative study of the retrogradation kinetics ofgelatinized wheat starch in gel and powder form using X-rays, differential scanning calorimetry anddynamic mechanical analysis[J]. Food Hydrocolloids,1988,2(5):381-396.
    209. Klucinec, J.D., D.B. Thompson. Amylose and amylopectin interact in retrogradation of dispersedhigh-amylose starches[J]. Cereal Chemistry Journal,1999,76(2):282-291.
    210. Kohyama, K., J. Matsuki, T. Yasui, et al. A differential thermal analysis of the gelatinization andretrogradation of wheat starches with different amylopectin chain lengths[J]. Carbohydrate Polymers,2004,58(1):71-77.
    211. Motawia, M.S., I. Damager, C.E. Olsen, et al. Comparative study of small linear and branchedα-glucans using size exclusion chromatography and static and dynamic light scattering[J].Biomacromolecules,2004,6(1):143-151.
    212. Yao, Y., J. Zhang, X. Ding. Structure retrogradation relationship of rice starch in purified starches andcooked rice grains: a statistical investigation[J]. Journal of Agricultural and Food Chemistry,2002,50(25):7420-7425.
    213. Mua, J.P., D.S. Jackson. Retrogradation and Gel Textural Attributes of Corn Starch Amylose andAmylopectin Fractions[J]. Journal of Cereal Science,1998,27(2):157-166.
    214. Iturriaga, L.B., B. Lopez de Mishima, M.C. A on. A study of the retrogradation process in fiveargentine rice starches[J]. LWT-Food Science and Technology,2010,43(4):670-674.
    215. Mestres, C., F. Ribeyre, B. Pons, et al. Sensory texture of cooked rice is rather linked to chemical thanto physical characteristics of raw grain[J]. Journal of Cereal Science,2011,53(1):81-89.
    216. Creek, J.A., G.R. Ziegler, J. Runt. Amylose crystallization from concentrated aqueous solution[J].Biomacromolecules,2006,7(3):761-770.
    217. Cui, R., C.G. Oates. The effect of retrogradation on enzyme susceptibility of sago starch[J].Carbohydrate Polymers,1997,32(1):65-72.
    218. Liu, H., L. Yu, L. Chen, et al. Retrogradation of corn starch after thermal treatment at differenttemperatures[J]. Carbohydrate Polymers,2007,69(4):756-762.
    219. Ottenhof, M.-A., S.E. Hill, I.A. Farhat. Comparative study of the retrogradation of intermediate watercontent waxy maize, wheat, and potato starches[J]. Journal of Agricultural and Food Chemistry,2005,53(3):631-638.
    220. Ottenhof, M.A., I.A. Farhat. The effect of gluten on the retrogradation of wheat starch[J]. Journal ofCereal Science,2004,40(3):269-274.
    221. Würsch, P., D. Gumy. Inhibition of amylopectin retrogradation by partial beta-amylolysis[J].Carbohydrate Research,1994,256(1):129-137.
    222.Sasaki, T., J. Matsuki. Effect of wheat starch structure on swelling power[J]. Cereal Chemistry Journal,1998,75(4):525-529.
    223. Liu, Q., D.B. Thompson. Retrogradation of du wx and su2wx maize starches after differentgelatinization heat treatments[J]. Cereal Chemistry Journal,1998,75(6):868-874.
    224. Ward, K.E.J., R.C. Hoseney, P.A. Seib. Retrogradation of amylopectin from maize and wheatstarches[J]. Cereal Chemistry,1994,71:150-155.
    225. Ogura, I., T. Yamamoto. Molecular dynamics simulation of large deformation in an amorphouspolymer[J]. Polymer,1995,36(7):1375-1381.
    226. I'Anson, K.J., M.J. Miles, V.J. Morris, et al. A study of amylose gelation using a synchrotron X-raysource[J]. Carbohydrate Polymers,1988,8(1):45-53.
    227. Pérez, S., E. Bertoft. The molecular structures of starch components and their contribution to thearchitecture of starch granules: A comprehensive review[J]. Starch-St rke,2010,62(8):389-420.
    228. Kapoor, R., Y.-S. Huang. Gamma linolenic acid: An antiinflammatory omega-6fatty acid [J]. CurrentPharmaceutical Biotechnology,2006,7(6):531-534.
    229.鲍建民.多不饱和脂肪酸的生理功能及安全性[J].中国食物与营养,2006,(1):45-46.
    230.吴酉芝,李保国,冯琼.香精微胶囊壁材及微胶囊控制释放[J].中国食品添加剂,2008,(6):75-80.
    231.田云,卢向阳,何小解等.微胶囊制备技术及其应用研究[J].科学技术与工程,2005,5(1):44-47.
    232. Augustin, M.A., Y. Hemar. Nano-and micro-structured assemblies for encapsulation of foodingredients[J]. Chemical Society Reviews,2009,38(4):902-912.
    233. Champagne, C.P., P. Fustier. Microencapsulation for the improved delivery of bioactive compoundsinto foods[J]. Current Opinion in Biotechnology,2007,18(2):184-190.
    234. Panichpakdee, J., P. Supaphol. Use of2-hydroxypropyl-β-cyclodextrin as adjuvant for enhancingencapsulation and release characteristics of asiaticoside within and from cellulose acetate films[J].Carbohydrate Polymers,2011,85(1):251-260.
    235. Trapani, G., A. Lopedota, G. Boghetich, et al. Encapsulation and release of the hypnotic agentzolpidem from biodegradable polymer microparticles containing Hp-β-cyclodextrin[J]. InternationalJournal of Pharmaceutics,2003,268(1–2):47-57.
    236. Dick, D.L., T.V.S. Rao, D. Sukumaran, et al. Molecular encapsulation: cyclodextrin-based analogs ofheme-containing proteins[J]. Journal of the American Chemical Society,1992,114(7):2664-2669.
    237. Nair, B.U., G.C. Dismukes. Models for the photosynthetic water oxidizing enzyme.1. A binuclearmanganese(III)-β-cyclodextrin complex[J]. Journal of the American Chemical Society,1983,105(1):124-125.
    238. Neoh, T.-L., H. Yoshii, T. Furuta. Encapsulation and release characteristics of carbon dioxide inα-cyclodextrin[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2006,56(1):125-133.
    239. Bom, A., M. Bradley, K. Cameron, et al. A novel concept of reversing neuromuscular block: Chemicalencapsulation of rocuronium bromide by a cyclodextrin-based synthetic host[J]. Angewandte Chemie,2002,114(2):275-280.
    240. Choi, M.-J., U. Ruktanonchai, S.-G. Min, et al. Physical characteristics of fish oil encapsulated byβ-cyclodextrin using an aggregation method or polycaprolactone using an emulsion–diffusionmethod[J]. Food Chemistry,2010,119(4):1694-1703.
    241.Purkayastha, P., D. Das, S. Syed Jaffer. Differential encapsulation of trans-2-[4-(dimethylamino) styryl]benzothiazole in cyclodextrin hosts: Application towards nanotubular suprastructure formation[J].Journal of Molecular Structure,2008,892(1–3):461-465.
    242. Astray, G., C. Gonzalez-Barreiro, J.C. Mejuto, et al. A review on the use of cyclodextrins in foods[J].Food Hydrocolloids,2009,23(7):1631-1640.
    243. Fanta, G.F., J.A. Kenar, J.A. Byars, et al. Properties of aqueous dispersions of amylose–sodiumpalmitate complexes prepared by steam jet cooking[J]. Carbohydrate Polymers,2010,81(3):645-651.
    244. Jouquand, C., V. Ducruet, P. Le Bail. Formation of amylose complexes with C6-aroma compounds instarch dispersions and its impact on retention[J]. Food Chemistry,2006,96(3):461-470.
    245. Arvisenet, G., P. Le Bail, A. Voilley, et al. Influence of physicochemical interactions between amyloseand aroma compounds on the retention of aroma in food-like matrices[J]. Journal of Agricultural andFood Chemistry,2002,50(24):7088-7093.
    246. Mikus, F.F., R.M. Hixon, R.E. Rundle. The complexes of fatty acids with amylose[J]. Journal of theAmerican Chemical Society,1946,68(6):1115-1123.
    247. Zabar, S., U. Lesmes, I. Katz, et al. Structural characterization of amylose-long chain fatty acidcomplexes produced via the acidification method[J]. Food Hydrocolloids,2010,24(4):347-357.
    248. Lesmes, U., S.H. Cohen, Y. Shener, et al. Effects of long chain fatty acid unsaturation on the structureand controlled release properties of amylose complexes[J]. Food Hydrocolloids,2009,23(3):667-675.
    249. Jane, J.-L., J.F. Robyt. Structure studies of amylose-V complexes and retro-graded amylose by actionof alpha amylases, and a new method for preparing amylodextrins[J]. Carbohydrate Research,1984,132(1):105-118.
    250. Heinemann, C., M. Zinsli, A. Renggli, et al. Influence of amylose-flavor complexation on build-upand breakdown of starch structures in aqueous food model systems[J]. LWT-Food Science andTechnology,2005,38(8):885-894.
    251. Gelders, G.G., J.P. Duyck, H. Goesaert, et al. Enzyme and acid resistance of amylose-lipid complexesdiffering in amylose chain length, lipid and complexation temperature[J]. Carbohydrate Polymers,2005,60(3):379-389.
    252. Conde-Petit, B., F. Escher, J. Nuessli. Structural features of starch-flavor complexation in food modelsystems[J]. Trends in Food Science&Technology,2006,17(5):227-235.
    253. Dimantov, A., M. Greenberg, E. Kesselman, et al. Study of high amylose corn starch as food gradeenteric coating in a microcapsule model system[J]. Innovative Food Science&EmergingTechnologies,2004,5(1):93-100.
    254. Mazeau, K., M. Rinaudo. The prediction of the characteristics of some polysaccharides frommolecular modeling. Comparison with effective behavior[J]. Food Hydrocolloids,2004,18(6):885-898.
    255. Eliasson, A.C., N. Krog. Physical properties of amylose-monoglyceride complexes[J]. Journal ofCereal Science,1985,3(3):239-248.
    256. Le Bail, P., C. Rondeau, A. Buléon. Structural investigation of amylose complexes with small ligands:helical conformation, crystalline structure and thermostability[J]. International Journal of BiologicalMacromolecules,2005,35(1-2):1-7.
    257. Zabar, S., U. Lesmes, I. Katz, et al. Studying different dimensions of amylose-long chain fatty acidcomplexes: Molecular, nano and micro level characteristics[J]. Food Hydrocolloids,2009,23(7):1918-1925.
    258. Gelders, G.G., H. Goesaert, J.A. Delcour. Amylose lipid complexes as controlled lipid release agentsduring starch gelatinization and pasting[J]. Journal of Agricultural and Food Chemistry,2006,54(4):1493-1499.
    259. Putseys, J.A., L.J. Derde, L. Lamberts, et al. Production of tailor made short chain amylose–lipidcomplexes using varying reaction conditions[J]. Carbohydrate Polymers,2009,78(4):854-861.
    260. Karkalas, J., S. Ma, W.R. Morrison, et al. Some factors determining the thermal properties of amyloseinclusion complexes with fatty acids[J]. Carbohydrate Research,1995,268(2):233-247.
    261. Morrison, W.R. The stability of wheat starch lipids in untreated and chlorine-treated cake flours[J].Journal of the Science of Food and Agriculture,1978,29(4):365-371.
    262. G kmen, V., B.A. Mogol, R.B. Lumaga, et al. Development of functional bread containingnanoencapsulated omega-3fatty acids[J]. Journal of Food Engineering,2011,105(4):585-591.
    263. Ye, Y.K., R.W. Stringham. The effect of acidic and basic additives on the enantioseparation of basicdrugs using polysaccharide-based chiral stationary phases[J]. Chirality,2006,18(7):519-530.
    264.张哲峰,杨更亮,梁贵键等. RP-HPLC手性流动相添加剂法拆分甲磺酸帕珠沙星对映体的研究[J].中国抗生素杂志,2004,29(1):19-22.
    265.宁凤容,黄可龙,焦飞鹏. HP-β-CD手性流动相HPLC法拆分萘普生对映体的色谱保留机制和拆分机理研究[J].化学通报,2006,69(6):425-429.
    266.王世刚,单亚.国内对映体色谱手性分离模式的研究进展[J].安徽医药,2007,11(9):771-773.
    267. Debowski, J., J. Jurczak, D. Sybilska. Resolution of some chiral mandelic acid derivatives intoenantiomers by reversed-phase high-performance liquid chromatography via [alpha]-and[beta]-cyclodextrin inclusion complexes[J]. Journal of Chromatography A,1983,282:83-88.
    268. Amin, N.C.C., M.-D. Blanchin, M. Aké, et al. Capillary electrophoresis methods for the analysis ofantimalarials. Part I. Chiral separation methods[J]. Journal of Chromatography A,2012,1264(0):1-12.
    269. Strom, K., J. Sjogren, A. Broberg, et al. Lactobacillus plantarum MiLAB393produces the antifungalcyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and3-phenyllactic acid[J].Applied and Environmental Microbiology,2002,68(9):4322-4327.
    270. D. Abell, A., J. W. Blunt, G. J. Foulds, et al. Chemistry of the mycalamides: antiviral and antitumourcompounds from a New Zealand marine sponge. Part6.1-3The synthesis and testing of analogues ofthe C(7)-C(10) fragment[J]. Journal of the Chemical Society, Perkin Transactions1,1997,(11):1647-1654.
    271. Taniguchi, M., K.-i. Suzumura, K. Nagai, et al. Structure of YM-254890, a novel Gq/11inhibitor fromchromobacterium sp. QS3666[J]. Tetrahedron,2003,59(25):4533-4538.
    272. Tekewe, A., S. Singh, M. Singh, et al. Development and validation of HPLC method for the resolutionof drug intermediates: DL-3-phenyllactic acid, DL-O-acetyl-3-phenyllactic acid and (+/-)-mexiletineacetamide enantiomers[J]. Talanta,2008,75(1):239-245.
    273. Gavioli, E., N.M. Maier, C. Minguillón, et al. Preparative enantiomer separation of dichlorprop with acinchona-derived chiral selector employing centrifugal partition chromatography andhigh-performance liquid chromatography: A comparative study[J]. Analytical Chemistry,2004,76(19):5837-5848.
    274. Yeole, R.D., A.S. Jadhav, K.R. Patil, et al. Validated chiral high-performance liquid chromatographymethod for a novel anti-methicillin-resistant staphylococcus aureus fluoroquinolone WCK771[J].Journal of Chromatography A,2006,1108(1):38-42.
    275. Kano, K., K. Minami, K. Horiguchi, et al. Ability of non-cyclic oligosaccharides to form molecularcomplexes and its use for chiral separation by capillary zone electrophoresis[J]. Journal ofChromatography A,1995,694(1):307-313.
    276. Ameyibor, E., J.T. Stewart. HPLC determination of ketoprofen enantiomers in human serum using anonporous octadecylsilane1.5μm column with hydroxypropyl [beta]-cyclodextrin as mobile phaseadditive[J]. Journal of Pharmaceutical and Biomedical Analysis,1998,17(1):83-88.
    277. Ameyibor, E., J.T. Stewart. Enantiomeric HPLC separation of selected chiral drugs using native andderivatized β-cyclodextrins as chiral mobile phase additives[J]. Journal of Liquid Chromatography&Related Technologies,1997,20(6):855-869.
    278. Peng, Z.-L., F. Yi, B. Guo, et al. Temperature effects on the enantioselectivity of basic analytes incapillary EKC using sulfated β-CDs as chiral selectors[J]. Electrophoresis,2007,28(20):3753-3758.
    279. Hinze, W.L., T.E. Riehl, D.W. Armstrong, et al. Liquid chromatographic separation of enantiomersusing a chiral.beta.-cyclodextrin-bonded stationary phase and conventional aqueous-organic mobilephases[J]. Analytical Chemistry,1985,57(1):237-242.
    280. Lamparczyk, H., P.K. Zarzycki, J. Nowakowska. Effect of temperature on separation of norgestrelenantiomers by high-performance liquid chromatography[J]. Journal of Chromatography A,1994,668(2):413-417.
    281. Lavermicocca, P., F. Valerio, A. Visconti. Antifungal activity of phenyllactic acid against moldsisolated from bakery products[J]. Applied and Environmental Microbiology,2003,69(1):634-640.
    282. Ye, J., W. Yu, G. Chen, et al. Enantiomeric separation of2-arylpropionic acid nonsteroidalanti-inflammatory drugs by HPLC with hydroxypropyl-β-cyclodextrin as chiral mobile phaseadditive[J]. Biomedical Chromatography,2010,24(8):799-807.
    283. Chen, J., C.M. Ohnmacht, D.S. Hage. Characterization of drug interactions with soluble[beta]-cyclodextrin by high-performance affinity chromatography[J]. Journal of Chromatography A,2004,1033(1):115-126.
    284. Deng, Y., W. Maruyama, M. Kawai, et al. Assay for the (R)-and (S)-enantiomers of salsolinols inbiological samples and foods with ion-pair high-performance liquid chromatography using[beta]-cyclodextrin as a chiral mobile phase additive[J]. Journal of Chromatography B: BiomedicalSciences and Applications,1997,689(2):313-320.
    285. Blanco, M., J. Coello, H. Iturriaga, et al. Circular dichroism spectra of cyclodextrins-ketoprofeninclusion complexes: Determination of enantiomeric purity[J]. Analytica Chimica Acta,2000,407(1-2):233-245.
    286. Purdie, N., K.A. Swallows. Direct determination of.beta.-lactam antibiotics by circular dichroism[J].Analytical Chemistry,1987,59(9):1349-1351.
    287. Gergely, A., G. Szász. Use of circular dichroism spectroscopy for the determination of oily injectionscontaining a [Delta]4-3-ketosteroid[J]. Journal of Pharmaceutical and Biomedical Analysis,1986,4(4):517-521.
    288. Kawada, J., R.H. Marchessault. Solid state NMR and X-ray studies on amylose complexes with smallorganic molecules[J]. Starch-St rke,2004,56(1):13-19.
    289.陈立仁,液相色谱手性分离[M].北京:科学出版社,2006.30-31
    290. Foulon, C., J. Tedou, T. Queruau Lamerie, et al. Assessment of the complexation degree ofcamptothecin derivatives and cyclodextrins using spectroscopic and separative methodologies[J].Tetrahedron: Asymmetry,2009,20(21):2482-2489.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700