非饱和土地基与基础的动力响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹性半空间地基与基础的动力响应问题研究涉及到数学、力学和岩土工程等多个学科,它不仅对弹性动力学的发展有着重要的学术价值,又在建筑工程、水利工程、道路工程和动力机器基础等工程领域有着广泛而重要的应用价值。以往的研究多将土作为单相或两相介质(饱和土)对待,本文以三相多孔介质模型来建立非饱和土的动力控制方程,充分考虑了土骨架与孔隙中水和气之间的黏性和惯性耦合。以此为基础,系统地研究了非饱和土半空间在表面荷载作用下的稳态和瞬态动力响应,并分析了非饱和土地基上刚性和弹性圆板基础的垂直振动问题,主要工作和成果有:
     1)在分析和比较已有非饱和多孔介质动力模型的基础上,建立了一组比较实用的非饱和土波动方程。主要改进包括:土水特征曲线采用V-G模型,孔隙流体相对渗透系数根据Mualem理论得到,从而使建立的方程能准确退化到经典的饱和土Biot波动方程;考虑了饱和度对土体动剪切模量的影响,并提出了一个适用于粘性土的动剪切模量与饱和度的关系式。求解波动方程,得到了体波传播的弥散方程,结果表明非饱和土中存在三种压缩波和一种剪切波。通过数值计算,系统地研究了非饱和土中四种体波的传播特性,考察了各主要参数对体波波速和衰减的影响。
     2)研究了非饱和土半空间表面在垂直集中力作用下的Lamb问题。利用Hankel变换技术,在圆柱坐标系下求解了非饱和土满足的波动方程,得到了轴对称情况下土体骨架位移、应力分量及孔隙流体压力在变换域内的一般解。考虑表面排水、排气和不排水、不排气两种边界条件,给出了非饱和土半空间表面在垂直集中力作用下动力响应的积分形式解。数值分析表明:在索状饱和状态,地表位移幅值随饱和度的升高而增大;当土体接近完全饱和时,随着饱和度的升高,位移幅值反而出现下降;渗透率、排水(气)条件只有在饱和度非常高时才会对地表位移产生显著的影响。
     3)在直角坐标系下研究了非饱和土半空间体的稳态动力响应问题。通过引入位移函数,将波动方程解耦,进而利用双重Fourier变换,化偏微分方程为常微分方程求解,得到了非饱和土半空间表面在任意分布的简谐荷载作用下的稳态动力响应解答。
     4)研究了层状非饱和土地基的轴对称和非轴对称稳态动力响应问题。对于轴对称问题,通过引入一组状态向量,在圆柱坐标系下将波动方程转化为一组状态方程,利用Hankel变换对方程进行求解。对于非轴对称问题,通过引入一组状态向量,在直角坐标系下将波动方程转化为一组状态方程,利用双重Fourier变换对方程进行求解。数值算例分析表明:地表动位移主要受临界深度范围内土层的影响,该临界深度大约为10倍荷载作用区域的边长或直径;软硬土层在地层中的相对次序对地表动位移有显著的影响,硬土层靠近地表时位移相对较小。
     5)在时间域内研究了非饱和土半空间体在表面垂直荷载作用下的瞬态动力响应问题。利用Laplace-Hankel联合变换,对控制非饱和土振动的偏微分方程组进行解耦,得到了轴对称情况下土体骨架位移的积分形式解。数值算例生动地演示了非饱和土半空间内波的传播过程,结果表明:在索状饱和状态,饱和度增加时,横波波速明显降低,同时地表垂直位移和径向位移幅值明显增加。
     6)研究了非饱和土地基上刚性圆板及弹性圆薄板基础的垂直振动问题。首先利用Hankel变换技术得到了变换域内表面位移和应力的关系式,然后按混合边值条件分别建立了非饱和土地基上刚性圆板和弹性圆薄板垂直振动时的对偶积分方程,通过Abel变换,将对偶积分方程化为易于数值求解的第二类Fredholm积分方程,得到了刚性圆板和弹性圆薄板垂直振动的半解析解。结果表明:饱和度对基础板的振动有显著的影响,通常情况下,饱和度越高,地基的刚度越低,阻尼越大;但当土体接近完全饱和时,其变化规律则刚好相反,而且此时饱和度的轻微变化即可对板的振动幅度产生明显的影响。
Studies on dynamic response of subgrade and foundation relate to many subjects, such as mathematics, mechanics and geotechnical engineering etc. It not only has great academic values on development of elastic dynamics, but also is applied widely in fields such as building engineering, hydraulic engineering, road engineering and dynamic machine foundation, etc. In former studies on this subject, soils were taken majorly as one-phase or two-phrase media (saturated soils). In present study, dynamic governing equations for unsaturated soils are established by taking soils as three-phase porous media, and considering the viscous and inertial coupling between pore fluids and soil skeleton. Based on which, we systematically study the steady state and transient dynamic response of unsaturated half space under surface loads, and analyze the vertical vibration of rigid and elastic circular plate on unsaturated soils. The major works and achievements are as follow:
     1)After analyzing and comparing the existed dynamic models for unsaturated porous media, a group of practical wave equations for unsaturated soils are established in present. Major improvements include: 1. V-G model for SWCC(soil-water characteristic curve ) is adopted and relative permeability of pore fluids is deduced based on Mualem theory, which make the equations established can be degenerated exactly to the classical Biot’s wave equations for saturated soils. 2. the influence of saturation on dynamic shear modulus is considered and a formula to calculate dynamic shear modulus of unsaturated clay with arbitary saturation is raised. Solving wave equations, dispersive equations of body waves propagation are obtained, which indicate that there are three compressive waves and one shear wave in unsaturated soils. Numerical analysis is performed to study the propogation characteristic of body waves in unsaturated soils. Influences of some parameters on waves velocity and attenuation are examined.
     2)Lamb’s problem for unsaturated half-space under vertical surface point load is analyzed. With the help of Hankel transform, solving wave equations in cylindrical coordinates, general solutions of displacement, stress and pore fluids pressure are obtained. Thus the integral solutions are gotten both in the case of drained surface and in the case of undrained surface excited by vertical concentrated harmonic resources. Numerical results indicate that displacement amplitude of ground surface increases with saturation when soils are in the state of funicular saturation. While soils approach completely saturated, with saturation rising, displacement amplitude decreases. And permeability, drainage conditions have significant influence on displacement only when saturation is very high.
     3)Analysis about the steady state dynamic response of unsaturated half-space is also performed in Cartesian coordinate. By introducing displacement function, decoupling the wave equations, and then converting partial differential equations into constant differential equations with the help of double Fourier transform, the solutions of steady state dynamic response of unsaturated soils under arbitary distributed loads are presented.
     4)The work is extented to axisymmetrical and non-axisymmetrical steady state dynamic response of layered unsaturated soils. In the case of axisymmetrical problem, wave equations are transformed into a group of state equations in cylindrical coordinates by introducing a group of state vectors, then solutions are obtained with the help of Hankel transform. In the case of non-axisymmetrical problem, wave equations are transformed into a group of state equations in the Cartesian coordinates by introducing a group of state vectors, then solutions are obtained by means of double Fourier transform. Numerical results indicate that displacement of ground surface is influenced mainly by stratum in critical depth. The critical depth is about 10 times of side length or diameter of the area which loads exerted on. The relative position of soft and hard strata has significant influence on displacement, which is relatively small when hard stratum lies close to ground surface.
     5)Transient dynamic response of unsaturated half-space under vertical surface loads is presented in time domain. Using Laplace-Hankel transfer to decouple the partial differential equations of unsaturated soils, the integral solutions of displacement for axisymmetrical problem are obtained. Numerical examples show vividly the propagation process of waves in unsaturated half-space. The results indicate that, with saturation rising, the speed of shear wave decreases obviously, and the vertical and radial displacement amplitude increases significantly at the same time when soils are in the state of funicular saturation.
     6)Vertical vibration of rigid circular plate and elastic circular thin plate on unsaturated subgrade are invesgated. By using Hankel transform technology, the relations between surface displacement and stress are obtained firstly. Considering mixed boundary value conditions, the dual integral equations for vertical vibration of rigid circular plate and elastic thin circular thin plate on unsaturated subgrade are established. Then by means of Abel transform, the dual integral equations are transformed into Fredholm integral equation of the second kind, which can be solved easily by numerical methods. At last, the semi-analytical solutions for vertical vibration of rigid circular plate and elastic thin circular thin plates are obtained. Numerical results indicate that saturation has significant influence on vibration of plate. In general cases, with saturation increasing, the stiffness of subgrade decreases, and the damping increases. But when soils approaches completely saturated, the change is just on the contrary, furthermore, a slight change of saturation will make significant influence on vibration amplitude of plate.
引文
[1] Wolf J P.土—结构动力相互作用[M].吴世明,唐有职等译,北京:地震出版社, 1989
    [2]熊建国.土—结构动力相互作用问题的新进展(Ⅰ)[J].世界地震工程, 1992, 3: 22-29
    [3]熊建国.土—结构动力相互作用问题的新进展(Ⅱ)[J].世界地震工程, 1992, 4: 17-25
    [4]李辉.土—结动力相互作用[D].重庆:重庆建筑大学, 1999
    [5]王小岗.土与基础结构动力相互作用的饱和弹性半空间理论[D].西安:西安建筑科技大学, 2004
    [6]王开顺等.土与结构相互作用地震反应研究及实用计算[J].建筑结构学报, 1986, 7( 2): 64-76
    [7]严人觉,王贻荪,韩清宇.动力基础半空间理论概论[M].北京:中国建筑工业出版社, 1981
    [8] Simon N E, Minzies B K. A short course in foundation on engineering[M]. 2nd ed. NewYork: Wiley, 1975
    [9] King G J K. An introduction to interaction[R]. s. 1. Uniuersity of Roorkee, 1997
    [10] Selvadurai A P S. Elastic analysis of a soil-structure interaction[M]. NewJersey: Preenice Ha11, 1978
    [11] Wass G, Riggs H R, Werkle H. Displacement solutions for dynamic loads in transversely-isotropic stratified media[J]. EESD, 1985, 13: 173-193
    [12] Tsvankin I. Body-wave radiation patterns and AVO in transversely isotropic media[J]. Geophys, 1995, 60: 1409-1425
    [13] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid( I.low-frequency range)[J]. J. Acoust. Soc. Am., 1956, 28(2): 168-178
    [14] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid(Ⅱ.higher-frequency range)[J]. J. Acoust. Soc. Am., 1956, 28(2): 179-191
    [15] Biot M A . Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33(4): 1482-1498
    [16] Allen F A, Richart F E, Woods R D. Fluid wave propagation in saturated and nearly saturated sands[J]. Journal of Geotechnical Engineering, ASCE, 1980, 106 (3): 235-254
    [17] Cadoret T, Marion D, Zinszner B. Influence of frequency and fluid distribution on elastic wave velocity in partially saturated limestones[J]. Journal of Geophysical Research,1995, 100(B6): 9789-9803
    [18] Cadoret T, Mavko G, Zinszner B. Fluid distribution effect on sonic attenuation in partially saturated limestones[J]. Geophysics, 1998, 63(1): 154-160
    [19] Knight R, Nolen-Hoeksema R. A laboratory study of the dependence of elastic wave velocities on pore scale fluid distribution[J]. Geophysical Research Letters, 1990. 17(10): 1529-1532
    [20] Knight R, Dvorkin J, Nur, A. Acoustic signatures of partial saturation[J]. Geophysics, 1998. 63(1): 132-138
    [21] Lamb H G. On the propagation of tremors over the surface of an elastic solid[A]. Philosophical Transaction of the Royal Society of London[C], 1904, 203 (A): 1-42
    [22] Graff K F. Wave Motion in Elastic Solids[M]. Ohio State University Press, 1975
    [23] Aki K, Richard P G. Quantitative seismology, theory and methods[M]. Freeman W H and Co., New York, 1980
    [24] Pal P C. A note on the torsional body forces in a visco-elastic half-space[J]. Indian J. Pure Appl. Math., 2000, 31: 207-213
    [25] Pal P C. Effect of dynamic visco-elasticity on vertical and torsional vibrations of a half-space[J]. Sadhana, 2001, 26(4): 371-377
    [26] De Hoop A T. A modification of Cagniard's method for solving seismic pulse problems[J]. Appl. Sci. Res., 1959, 349-356
    [27] Pekeris C L. The seismic surface pulse[J]. Proc. Nat. Acad. Sci., 1955, 41: 469-480
    [28] Pekeris C L. The seismic surface pulse[J]. Proc. Nat. Acad. Sci., 1955, 41: 629-638
    [29] Pekeris C L, Lifson H. Motion of the surface of a uniform elastic half-space produced by a buried pulse[J]. J. Acoust Soc. Am., 1957, 29(11): 1233-1238
    [30] Eason G. The displacements produced in an elastic half-space by a suddenly applied surface force[J]. IMA Journal of Applied Mathematics, 1966, 2(4): 299-326
    [31] Eason G . On the torsional impulsive loading of an elastic half space[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1964, 17(3): 279-292
    [32]王贻荪.半无限体表面在竖向集中谐和力作用下表面竖向位移的精确解[J].力学学报, 1980, 4: 386-391
    [33]王可成,王贻荪.弹性半空间内的突加竖向集中力所产生的表面位移[J].固体力学学报, 1983, 3: 427-434
    [34]金波,徐植信.静刚性分布的动力荷载下半空间的动力响应[J].同济大学学报, 1997, 25(l): 6-10
    [35] Jin B. Elastic half space under impulsive, distributed, vertical loading at the surface: exact solution at the center for a punch-like distribution[J]. Soil Dynamics and Earthquake Engineering, 1998, 17: 311-315
    [36] Jin B, Liu H. Exact solution for horizontal displacement at center of the surface of an elastic half space under horizontal impulsive punch loading[J]. Soil Dynamics and Earthquake Engineering, 1999, 18: 495-498
    [37] Takemiya H, Guan F. Transient Lamb's solution for surface strip impulses[J]. Journal of Engineering Mechanics, ASCE, 1993, 119: 2385-2403
    [38] Guan F, Novak M. Transient response of an elastic homogeneous half-space to suddenly applied rectangular loading[J]. J. Appl. Mech., ASME, 1994, 61(2): 256-263
    [39] Guan F, Moore I D, Spyrakos C C. Two dimensional transient fundamental solution due to suddenly applied load in a half-space[J]. Soil Dynamics and Earthquake Engineering, 1998, 17: 269-277
    [40] Davis T G, Banerjee P K. The displancement field due to a point load at the interface of a two layer elastic half-space[J]. Geotechnique, 1978, 28(1): 43-56
    [41] Luco J E, Apsel R J. On the Green's Funcitons for a Layered Halfspace[J]. Bull. Seism. Soc. Am., 1983, 73(4): 909-929
    [42] Apsel R J, Luco J E. On the Green's functions for a layered half-space[J]. Bull. Seism. Soc. Am., 1983, 73(4):931-951
    [43] Kausel E, Roesset J M, Wass G. Dynamic analysis of circular foundation[J]. Journal of Engineering Mechanics, ASCE, 1975, 101(3): 679-693
    [44] Kausel E, Peek R. Dynamic loads in the interior of a layered stratum: an explicit solution[J]. Bull. Seim. Soc. Am., 1982, 72(5): 1459-1481
    [45] Kausel E, Seale S H. Static loads in layered half-spaces[J]. J. Appl. Mech., ASME, 1987, 54(2): 403-408
    [46] Seale S H, Kausel E. Point loads in cross-anisotropic layered half-spaces[J]. Journal of Engineering Mechanics, ASCE, 1989, 115: 509-524
    [47] Vostroukhov A V, Verichev S N, Kok A W M, et al. Steady-state response of a stratified subjected to a horizontal arbitrary buried uniform load applied at a circular area[J]. Soil Dynamics and Earthquake Engineering, 2004. 24: 449-459
    [48]王林生.求解成层地基半空间轴对称问题的初参数法[J].力学学报, 1986, 18(6): 57-64
    [49]曾三平,曹志远.多层地基的瞬态波动解[J].地震工程与工程振动, 1991, 11(3):33-44
    [50]曾三平,曹志远.层状弹性半空间轴对称动力问题的奇异解[J].力学学报, 1992, 24(4): 446-457
    [51] Cavanagh B C, Cook B D. Numerical evaluation of Hankel transforms via Gaussian-Laguerre polynomial expansions[J]. Speech and Singal Processing, IEEE Transactions on Acoustics, 1979, 27(4): 361-366
    [52] Candel S M. Simultaneous calculation of Fourier-Bessel transforms up to order N [J]. Journal of Computational Physics, 1981, 44: 243-261
    [53] Durbin F. Numerical inversion of laplace transforms: an efficient improvement to Dubner and Abate’s method[J]. The Computer Journal. 1974, 17(4): 371-376
    [54]罗松南,郭平.粘弹性层状半空间的动力响应及其在动力基础中的应用[J].湖南大学学报, 1993, 20(1): 57-64
    [55]钟阳,王哲人,郭大智.求解多层弹性半空间轴对称问题的传递矩阵法[J].土木工程学报, 1992. 25(6): 37-43
    [56]孟凡顺等.层状弹性半空间非轴对称动力问题的奇异解[J].力学学报, 1996, 2(8): 670-681
    [57]栾茂田,金崇磐,林皋.非均质地基振动特性及地震反应分析[J].大连理工大学学报, 1992, 32(1): 81-87
    [58]栾茂田,刘占阁.成层场地振动特性及地震反应简化解析解的完整形式[J].岩土工程学报, 2003, 25(6); 747-749
    [59]高玉峰,金建新,谢康和等.成层地基一维土层地震反应解析解[J].岩土工程学报, 1999, 21(4): 97-102
    [60]高玉峰.对成层地基一维土层地震反应解析解讨论的答复[J].岩土工程学报, 2003, 25(3): 378
    [61]王春玲,黄义.关于成层地基一维土层地震反应解析解的讨论[J].岩土工程学报, 2003, 25(3): 377-378
    [62] Eringen A C, Sukubi E S. Elastodynamics (Vol 2: Linear Theory)[M]. New York: Academic Press, 1975
    [63] Rajapakse R K N D, Wang Y. Elastodynamic Green's functions of orthotropic half space[J]. Journal of Engineering Mechanics, ASCE, 1991, 117(3): 588-604
    [64] Rajapakse R K N D, Wang Y. Green's function for transversely istropic elastic half space[J]. Journal of Geotechnical Engineering, ASCE, 1993, 119(9): 1724-1746
    [65] Wang Y, Rajapakse R K N D. Transient fundamental solutions for a transversely isotropic elastic half-space[A]. Proceeding of the Royal Society of London [C], 1993, 442(A): 505-531
    [66] Tsvankin I. Body-wave radiation patterns and AVO in transversely isotropic media[J]. Geophysics, 1995, 60: 1409-1425
    [67]靳平,许果明等.点力源在横观各向同性弹性半空间介质中激发的弹性波[J].地球物理学报, 1998, 41(4): 526-536
    [68]陈熔,薛松涛,陈竹昌.横观各向同性层状弹性场地格林函数的数值解[J].应用数学和力学,2000, 21(1); 45-52
    [69] Johnes J P. Rayleigh waves in a porous elastic saturated solid[J]. J. Acoust. Soc. Am. , 1961, 33(7): 959-962
    [70] Geertsma J, Smith D. Some aspects of elastic wave propagation in a liquid-saturated porous solids[J]. Geophysics, 1961, 26: 169-181
    [71] Deresiewicz H. The effect of boundaries on wave propagation in a liquid-filled porous solid (II): Love waves in a porous layer[J]. Bull. Seim. Soc. Am., 1961, 51(1): 51-59
    [72] Deresiewicz H. The effect of boundaries on wave propagation in a liquid-saturated porous solid IV : Surface wave in half-space[J]. Bull. Seim. Soc. Am., 1962, 52(3): 627-638
    [73] Deresiewicz H, Rice J T. The effect of boundaries on wave propagation in a liquid-filled porous solid (III): Reflection of plane waves at free plane boundary (general case)[J]. Bull. Seim. Soc. Am., 1962, 52(3): 595-625
    [74]陈龙珠.饱和土中弹性波的传播速度及其应用[D]. .杭州:浙江大学, 1987
    [75]陈龙珠,吴世明,曾国熙.弹性波在饱和土层中的传播[J].力学学报, 1987, 19(3): 276-283
    [76]陈龙珠,黄秋菊,夏唐代.饱和地基中瑞利波的弥散特性[J].岩土工程学报. 1998, 20(3): 6-9
    [77] Paul H S. On the disturbance produced in a semi-infinite poroelastic medium by a surface load[J]. Pure Appl. Geophys, 1976, 114(4): 615-627
    [78] Philippacopoulos A J. Lamb's problem for fluid-saturated porous media[J]. Bull. Seim. Soc. Am., 1988, 78(2): 908-923
    [79] Kaynia A M, Banerjee P K. Fundamental solutions of Biot's equations of dynamic poroelasticity[J]. International Journal of Engineering Science, 1993, 31(5): 817-830
    [80] Senjuntichai T, Rajapakse R K N D. Dynamic Green's functions of homogeneousporoelastic half-space[J]. Journal of Engineering Mechanics, ASCE, 1994, 120(11): 2381-2404
    [81] Philippacopoulos A J. Buried point source in a poroelastic half-space[J]. Journal of Engineering Mechanics, 1997, 123(8): 860-869
    [82]王立忠,陈云敏,吴世明,等.饱和弹性半空间在低频谐和集中力下的积分形式解[J].水利学报, 1996, 2: 84-88
    [83]丁伯阳,樊良本,吴建华.两相饱和介质中的集中力点源位移场解与应用[J].地球物理学报, 1999, 42(6): 800-807
    [84]陆建飞,王建华,沈为平.半空间饱和土在内部简谐水平力作用下的Green函数[J].地震学报, 2001, 23(2): 185-191
    [85]王建华,陆建飞,沈为平.半空间饱和土在内部简谐垂直力作用下的Green函数[J].水利学报,2001, 3: 54-58
    [86]陈胜立,张建民,陈龙珠.饱和地基中埋置点源荷载动力Green函数[J].岩土工程学报, 2001, 23(4); 423-426
    [87]黄义,张玉红.饱和土三维非轴对称Lamb问题[J].中国科学(E辑), 2000, 30(4): 375-384
    [88] Cai Y Q, Meng K, Xu C J. Stable response of axisymmetric two-phase water-saturated soil[J]. Journal of Zhejiang Uninversity SCIENCE, 2004. 5(9): 1022-1027
    [89] Chen J. Time domain fundamental solution to Biot's complete equations of dynamic poroelasticity, part I: two-dimensional solution[J]. Int. J. Solids Structure, 1994, 31(10): 1447-1490
    [90] Chen J. Time domain fundamental solution to Biot's complete equations of dynamic poroelasticity, part II:three-dimensional solution [J]. Int. J. Solids Structure, 1994, 31(2): 169-202
    [91] Gajo A, Mongiovi L. An analytical solution for the transient response of saturated linear elastic porous media[J]. International Journal for Numberical and Analytical Methods in Geomechanics, 1995, 19: 399-413
    [92] Gajo A. Influence of viscous coupling in propagation of elastic waves in saturated soil[J]. Journal of Geotechnical Engineering, ASCE, 1995, 121(9): 636-644
    [93]徐长节,蔡袁强,吴世明.饱和土中球空腔的瞬态动力响应[[J].力学学报, 2000, 32(4): 473-480
    [94] Zhou X L, Wang J H, Lu J F. Transient foundation solution of saturated soil to impulsiveconcentrated loading[J]. Soil Dynamics and Earthquake Engineering, 2002, 22: 273-281
    [95] Zhou X L, Wang J H, Lu J F. Transient dynamic response of poroelastic medium subjected to impulsive loading[J]. Computers and Geotechnics, 2003, 30: 109-120
    [96]周香莲,王建华,陆建飞.饱和土表面在水平集中荷载作用下的瞬态反应[J].岩土力学, 2002, 23(3): 387-391
    [97] Philippacopoulos A J. Waves in a partially saturated layered half space: analytic formulation[J]. Bull. Seim. Soc. Am., 1987, 77(5): 1838-1853
    [98] Philippacopoulos A J. Waves in partially saturated medium due to surface loads[J]. Journal of Engineering Mechanics, ASCE, 1988, 114(10): 1740-1759
    [99] Rajapakse R K N D, Senjuntichai T. Dynamic response of a multi-layered proelastic medium[J]. Earthquake Engineering and Structural Dynamics, 1995, 24: 703-722
    [100]顾尧章,金波.轴对称荷载下多层地基的Biot固结及其变形[J].工程力学, 1992, 9(3): 81-94
    [101]蔡袁强,孟楷,徐长节.成层地基在轴对称荷载下的稳态振动分析[J].岩土力学, 2004, 25(12): 1994-1998
    [102]蔡袁强,徐长节,祝波恩,等.周期荷载作用下成层饱和地基二维稳态响应[J].浙江大学学报(工学版), 2004, 38(10): 1310-1320
    [103] Schmitt P D. Acoustic multipole logging in transversely isotropic poroelastic formations[J]. J. Acoust Soc. Am., 1989, 86(6): 2397-2421
    [104] Kazi A, Guy B, Paul J. Green's functionin a infinite transversely isotropic saturated poroelastic medium[J]. J. Acoust. Soc. Am., 1988, 84(5): 1883-1889
    [105] Sharma M D, Gogna M L. Wave propagation in transversely isotropic liquid-saturated porous soids[J]. J. Acoust. Soc. Am., 1991, 90(2): 1068-1073
    [106]刘银斌,李幼铭,吴如山.横观各向同性多孔介质中的地震波的传播[J].地球物理学报, 1994, 37(4): 499-513
    [107]汪越胜,章梓茂.横观各向同性液体饱和多孔介质中平面波的传播[J].力学学报, 1997, 29(3): 257-268
    [108]胡亚元,王立忠等.横观各向同性饱和土体的实用波动方程[J].振动工程学报, 1998, 12(2): 170-176
    [109] Tanguchi I, Kurashige M. Fundamental solutions for a fluid-saturated transversely isotropic, poroelastic solid[J]. International Journal for Numberical and Analytical Methods in Geomechanics, 2002. 26(3): 299-321
    [110]张引科,黄义.横观各向同性饱和弹性多孔介质的非轴对称动力响应[J].应用数学和力学, 2001, 22(1): 56-70
    [111]黄义,王小岗.直角坐标下横观各向同性饱和半空间体动力响应问题的解析解[J].力学季刊, 2003, 24(4): 552-559
    [112]黄义,王小刚.横观各向同性饱和弹性多孔介质三维非对称Lamb问题[J].中国科学(E辑), 2004, 39(4): 1037-1060
    [113] Brutsaert W. The propagation of elastic waves in unconsolidated unsaturated granular mediums. Journal of Geophysical Research, 1964, 69(2): 243–257
    [114] Domenico S N. Effect of water saturation on seismic reflectivity of sand reservoirs encased in shale[J]. Geophysics, 1974, 39(6): 759-769
    [115] Mochizuki S. Attenuation in partially saturated rocks[J]. Journal of Geophysical Research, 1982, 87(B10): 8598-8604
    [116] Yang J. Influence of water saturation on horizontal and vertical motion at a porous soil interface induced by incident P wave[J]. Soil Dynamics and Earthquake Engineering, 2000, 19(5): 575-581
    [117] Yang J, Santo T. Influence of water saturation on horizontal and vertical motion at a porous soil interface induced by incident SV Wave[J]. Soil Dynamics and Earthquake Engineering, 2000, 19(3): 339-346
    [118] Yang J. Saturation Effects of Soils on Ground Motion at Free Surface Due to Incident SV Waves[J]. Journal of Engineering Mechanics, ASCE, 2002, 128(12): 1295-1303
    [119] Brutsaert W, Luthin J N. The velocity of sound in soils near the surface as a function of the moisture content[J]. Journal of Geophysical Research, 1964, 69(4): 643-652
    [120] Murphy W F. Effects of partial water saturation on attenuation in Massilon sandstone and Vycor porous glass[J]. J. Acoust. Soc. Am., 1982, 71(6): 1458-1468
    [121] White J E. Computed seismic speeds and attenuation in rocks with partial gas saturation[J]. Geophysics, 1975, 40(2): 224-232
    [122] Carcione J M, Helle H B, Pham N H. White’s model for wave propogation in partianlly saturated rocks: comparison with poroelastic numerical experiments[J]. Geophysics, 2003, 68(4): 1 389-1 398
    [123] Berryman J G, Thigpen L, Chin R C Y. Bulk elastic wave propagation in partially saturated porous solids. J. Acoust. Soc. Am., 1988, 84(1):360-373
    [124] Santos J E, Corbero J M, Douglas J. Static and dynamic behavior of a porous solid saturated by a two fluid[J]. J. Acoust. Soc. Am., 1990, 87(4): 1428-1438
    [125] Santos J E, Douglas J, Corbero J M, et al. A model for wave propagation in a porous medium saturated by a two-phase fluid[J]. J. Acoust. Soc. Am., 1990, 87(4): 1439-1448
    [126] Santos J E, Ravazzoli C L, Gauzellino P M, et al. Simulation of waves in poro-viscoelastic rocks saturated by immiscible fluids-Numerical evidence of a second slow wave[J]. J. Comput. Acoust., 2004, 12(1): 1-21
    [127] Carcione J M, Cavallini F, Santos J E, et al. Wave propagation in partially saturated porous media: Simulation of second slow wave[J]. Wave Motion, 2004, 39: 227-240
    [128]李保忠.非饱和多孔介质中波的传播[D].杭州:浙江大学, 2007
    [129] Lo W C, Sposito G, Majer E. Wave propagation through elastic porous media containing two immiscible fluids[J]. Water Resources Research, 2005, 41(2): 1-20
    [130] Lo W C, Sposito G, Majer E. Immiscible two-phase ?uid ?ows in deformable porous media. Advances in Water Resources, 2002, 25(8–12): 1105-1117
    [131] Lo W C. Decoupling of the coupled poroelastic equations for quasistatic ?ow in deformable porous media containing two immiscible ?uids. Advances in Water Resources, 2006, 29(12): 1893-1900
    [132] Lo W C, Sposito G, Majer E. Low-frequency dilatational wave propagation through unsaturated porous media containing two immiscible ?uids. Transport in Porous Media, 2007, 68(1): 91–105
    [133] Lo W C, Sposito G, Majer E. Analytical decoupling of poroelasticity equations for acoustic-wave propagation and attenuation in a porous medium containing two immiscible ?uids[J]. Journal of Engineering Mathematics, 2009, 64(2): 219-235
    [134] Tuncay K, Corapcioglu M Y. Body waves in poroelastic media saturated by two immiscible fluids[J]. Journal of Geophysical Research, 1996, 111(B11): 25 149-25 159
    [135] Tuncay K, Corapcioglu M Y. Wave propagation in poroelastic media saturated by two fluids[J]. J. Appl. Mech., ASME, 1997, 64(2): 313-320
    [136] Bowen R M. Theory of mixture[M]. Continuum Physics 3, New York: Academic Press, 1976
    [137] Garg S K, Nayfeh A H. Compressional wave propagation in liquid and/or gas saturated elastic porous media. Journal of Applied Physics, 1986, 60(9):3045-3055
    [138] Vardoulakis I, Beskos D E. Dynamic behavior of nearly saturated porous media[J]. Mechanics of Materials, 1986, 5: 87-108
    [139]徐长节,史焱永.非饱和土中波的传播特性[J].岩土力学, 2004, 25(3): 354-358
    [140]徐长节.非饱和土及准饱和土中波的传播[D].杭州:浙江大学, 1997
    [141]张引科.非饱和土混合物理论及其应用[D].西安:西安建筑科技大学, 2001
    [142]黄义,张引科.非饱和土本构关系的混合物理论(Ⅰ)—非线性本构方程和场方程[J].应用数学和力学, 2003, 24(2): 111-123
    [143]黄义,张引科.非饱和土本构关系的混合物理论(Ⅱ)—线性本构方程和场方程[J].应用数学和力学, 2003, 24(2): 124-137
    [144] Wei C F, Muraleetharan K K. A continuum theory of porous media saturated by multiple immiscible ?uids: I. Linear poroelasticity[J]. International Journal of Engineering Science, 2002, 40(16): 1807-1833
    [145] Wei C F, Muraleetharan K K. A continuum theory of porous media saturated by multiple immiscible ?uids:Ⅱ. Lagrangian description and variational structure[J]. International Journal of Engineering Science, 2002, 40(16):1835-1854
    [146] Wei C F. Static and dynamic behavior of multiphase porous media: governing equations and finite element implementation[D]. Norman: University of Oklahoma, 2001
    [147] Hanyga A. Two-fluid porous flow in a single-temperature approximation[J]. International Journal of Engineering Science, 2004, 42(13-14): 1521-1545
    [148] Hanyga A, Lu J F. Thermal effects in immiscible two-fluid porous flow[J]. International Journal of Engineering Science, 2004, 42(3-4): 291-301
    [149] Lu J F, Hanyga A. Linear dynamic model for porous media saturated by two immiscible fluids[J]. International Journal of Solids and Structures, 2005, 42: 2689-2709
    [150] Quinlan P M. The elastic theory of soil dynamics[A]. Symp. on Dyn. Test. of Soils[C], Philadelphia, 1953, 156: 3-34
    [151] Sung T Y. Vibration in semi-infinite solids due to periodic surface loading[A]. Symposium on Dynamic Testing of Soils[C], Philadelphia, 1953, 156: 35-63
    [152] HsiehT K. Foundation vibration[J]. Proc. institution of Civil Engineers, 1962, 22: 221-226
    [153] Thomson W T, Kobori K. Dynamical compliance of rectangular foundations on an elastic half-space[J]. Journal of Applied Mechanics, ASME, 1963, 30(E): 579-584
    [154] Roberttson I A . Forced vertical vibration of a rigid circular disc on a semi-infinite elastic solid[A]. Proc. Camb Phil Soc [C], 1966, 62: 547-553
    [155] Roberttson I A . On a proposed determination of the shear modulus of an isotropic elastic half-space by the forced torsional oscillations of a circular disc [J]. Appl. Sci.Res., 1967, 17: 305-312
    [156] Awojobi A O, Grootenhuis P. Vibration of rigid bodies on semi-infinite elastic media[A]. Proc. Roy. Soc. [C], 1965, 287: 27-63
    [157] Awojobi A O. Harmonic rocking of a rigid rectangular body on semi-infinite elastic medium[J]. J. Appl. Mech., ASME, 1966, 33(9): 547-552
    [158] Awojobi A O, Tabiowo P H. Vertical vibration of rigid bodies with rectangular bases on elastic media[J]. Earthquake Engineering and Structural Dynamics, 1976, 4: 439-454
    [159] Paul H S. Vibrations of a rigid circular disk on an infinite isotropic elastic plate[J]. J. Acoust. Soc. Am., 1967, 42(2): 412-416
    [160] Paul H S, Muthiyalu N. Sinusoidal rocking of rigid rectangular body on an infinite isotropic elastic plate[J]. J. Appl. Mech., ASME, 1969, 36(2): 648-649
    [161] Luco J E, Westmann R A. Dynamic response of circular footings[J]. Journal of Engineering Mechanics, ASCE, 1971, 97(5): 1381-1395
    [162] Luco J E, Westmann R A. Dynamic response of a rigid footing bonded to an elastic half space[J]. J. Appl. Mech., ASME, 1972, 39(6): 527-534
    [163] Luco J E, Wong H L, Trifunac M D. A note on the dynamic response of rigid embedded foundations[J]. Earthquake Engineering and Structural Dynamics, 1975, 4: 119-127
    [164] Gladwell G M L. Forced tangential and rotatory vibration of a rigid circular disc on a semi-infinite solid[J]. International Journal of Engineering Science, 1968, 6(10): 591-607
    [165] Gladwell G M L. The calculation of mechanical impedances relating to an indenter vibrating on the surface on a semi-infinite elastic body[J]. J. Sound Vib., 1968, 8: 215-228
    [166] Veletsos A S, Wei Y T. Lateral and rocking vibration of footings[J]. J. Soil Mech. Found. Div., ASCE, 1971, 97(9): 1227-1248
    [167] Veletsos A S, Nair V D. Torsional vibration of visco-elastic foundations [J]. Journal of Geotechnical Engineering, ASCE, 1974, 100(3): 225-246
    [168] Wong H L, Luco J E. Dynamic response of rigid foundations of arbitrary shape[J]. Earthquake Engineering and Structural Dynamics, 1976, 4(6): 579-587
    [169] Selvadurai A Y S. Rotary oscillations of a rigid disc inclusion embedded in an isotropic elastic infinite space[J]. Int. J. Solids Structures. 1981, 17(5): 493-498
    [170] Iguchi M, Luco J E. Dynamic response of flexible rectangular foundations on an elastic half-space [J]. Earthquake Engineering and Structural Dynamics, 1981, 9(3): 239-249
    [171] Iguchi M, Luco J E. Vibration of flexible plate on viscoelastic medium[J]. Journal ofEngineering Mechanics, ASCE, 1982, 108(6): 1103-1120
    [172] Gazetas G. Rocking of strip and circular footings[A]. Int. Symp. Dyn. Soil-Structure Interaction[C], Minneapolis, 1984, 9: 4-5
    [173] Triantafyllidis Th. Dynamic stiffness of rigid rectangular foundations on the half-space[J]. Earthquake Engineering and Structural Dynamics, 1986, 14: 391-411
    [174] Rahman M. Fourier-transform solution to the problem of steady-state transonic motion of a line load across the surface of an elastic half space[J]. Applied Mathematics Letters, 2001, 14: 437-441
    [175]蒯行成,王贻荪.联合基础振动计算模型及数值计算方法的研究[J].土木工程学报, 1994, 4: 45-53
    [176]李刚,尚守平,王贻荪.结构与地基动力相互作用的解析分析[J].湖南大学学报, 1999, 26(6): 78-84
    [177]李刚,王贻荪,尚守平.弹性半空间上矩形基础稳态振动积分变换解[J].湖南大学学报(自然科学版), 2000, 27(4): 88-93
    [178] Veletsos A S, Verbic B. Vibration of viscoelastic foundations[J]. Earthquake Engineering and Structural Dynamics, 1973. 2(1): 87-102
    [179] Lin Y J. Dynamic response of circular plates resting on viscoelastic half space[J]. Journal of Applied Mechanics, ASME, 1978, 45(2): 379-384
    [180] Barros F C P D, Luco J E. Dynamic response of a two-dimensional semi-circular foundation embedded in a layered viscoelastic half-space[J]. Soil Dynamics and Earthquake Engineering, 1995, 14(1): 45-57
    [181] Bycroft G N. Forced vibrations of a rigid circular plate on a semi-infinite elastic space and on an elastic stratum[J]. Philo. Trans. Roy. Soc. Series A. 1954, 248: 327-368
    [182] Collins W D. The forced torsional oscillations of an elastic half-space and an elastic stratum[J]. Proc. London Math. Soc., 1962, 3: 226-244
    [183] Gladwell G M L. The forced torsional vibration of an elastic stratum[J]. International Journal of Engineering Science, 1969, 7: 1011-1024
    [184] Awojobi A O. Torsional vibration of a rigid circular body on an infinite elastic stratum[J]. Internation Journal of Solids and Structures, 1969, 5(4): 369-378
    [185] Keer L M, Jabali H H, Chantaramungkorn K. Torsional oscillations of a layer bonded to an elastic half space[J]. Internation Journal of Solids and Structures, 1974, 10(1): 1-13
    [186] Luco J E. Vibrations of a rigid disc on a layered viscoelastic medium[J]. NuclearEngineering and Design, 1976, 36: 325-340
    [187] Gucunski N. Vertical vibrations of circular flexible foundations on layered media[J]. Soil Dynamics and Earthquake Engineering, 1993, 12(3): 183-192
    [188] Snitser R R. Reissner-Sagoci problem for a multilayer foundation containing a cylindrical cavity[J]. Din. Sist., 1994, 13: 55-61
    [189] Snitser A R, Markovskaya N N. Torsional oscillations of a punch on a layer bonded to a half-space containing a cylindrical cavity[J]. Journal of Mathematical Sciences, 2001, 103(1): 95-102
    [190] Jaya K P, Prasad A M. Embedded fundation in layered soil under dynamic excitations[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(6): 485-498
    [191]曲传军,曹志远.矩形基础与无限层土地基的动力相互作用分析[J].建筑结构学报, 1988, 9(6): 66-74
    [192]金波.层状地基及其动力基础的计算[D].杭州:浙江大学, 1994
    [193]金波.层状半空间地基上刚性圆板的垂直振动[J].同济大学学报, 1997, 25(3): 369-373
    [194] Dhawan G K. A mixed boundary value problem of a transversely-isotropic half-space under torsion by a flat annular rigid stamp[J]. Acta Mechanica, 1981, 41: 289-297
    [195] Selvadurai A P S. The statical Reisssner-Sagoci problem for an internally loaded transversely isotropic half-space[J]. Lett. Appl. Engng Sci., 1982. 20(12): 1365-1372
    [196] Constantinou M C, Gazetas G. Torsional vibration on anisotropic halfspace[J]. Journal of Geotechnical Engineering, ASCE, 1984, 110(11): 1549-1558
    [197] Tsai Y M. Torsional vibration of a circular disk on an infinite transversely medium[J]. International Journal of Solids and Structures, 1989, 25(9): 1069-1076
    [198] Hanson M T, Puja L W. The Reissner-Sagoci problem for the transversely isotropic half-space[J]. Journal of Applied Mechanics, ASME, 1997, 64(3): 692-694
    [199] Kassir M K, Bandyopadyay K K, Xu J. Vertical vibration of a circular footing on a saturated half-space[J]. Int. J. Engng. Sci., 1989, 27(4): 353-361
    [200] Kassir M K, Xu J, Bandyopadyay K K. Rotatory and horizontal vibrations of a circular surface footing on a saturated elastic half-space[J]. Int. J. Soilds and Struct., 1996, 33(2): 265-281
    [201] Gazetas G, Petrakis E. Offshore caissons on porous saturated soijs[A] Int. Conf. Recent Adv. Geotech. Eng. Solid. Dyn.[C] University of Missouri, Rolla, 1981
    [202] Kurtanich D G, Christiano P. Plate on poroelastic half-space subjected to seismicwaves[A]. Proc. 4th Eng. Mech. Div. Specialty Conf., ASCE, New York, 1983: 174-177
    [203] Bernardo R J, Rafael G, Dominguez J. Dynamic stiffness of foundations on saturated poroelastic soils[J]. J. Eng. Mech., ASCE, 1997,123(11): 1121-1129
    [204] Halpern M R, Christiano P. Steady-state harmonic response of a rigid plate bearing on a liquid-saturated poroelastic halfspace[J]. Earthquake Engineering and Structural Dynamics, 1986, 14(3): 439-454
    [205]金波,徐植信.多孔饱和半空间上刚体垂直振动的轴对称混合边值问题[J].力学学报, 1997, 29(6): 711-719
    [206] Jin B, Liu H. Vertical response of a disk on a saturated poroelastic half-space[J]. Soil Dynamics and Earthquake Engineering, 1999, 18: 437-443
    [207] Jin B, Liu H. Horizontal vibrations of a disk on a poroelastic half-space[J]. Soil Dynamics and Earthquake Engineering, 2000, 19(4): 269-275
    [208] Jin B, Liu H. Rocking vibrations of rigid disk on saturated poroelastic medium[J]. Soil Dynamics and Earthquake Engineering, 2000, 19(4): 469-472
    [209]金波.具有混合边界透水条件的多孔饱和半空间上刚性圆板的垂直振动[J].固体力学学报, 1999, 20(3): 267-271
    [210]陈胜立,陈龙珠.饱和地基上基础振动分析的计算方法[J].水利学报, 1999, 9: 57-62
    [211]陈胜立,饱和地基上基础与板的竖向振动特性研究[D].杭州:浙江大学, 2000
    [212]陈胜利,陈龙珠.饱和地基上含刚性圆核弹性圆板的竖向振动分析[J].力学学报, 2002, 34(1): 77-86
    [213]陈龙珠,陈胜立.饱和地基上刚性基础的竖向振动分析[J].岩土工程学报, 1999, 21(4): 392-397
    [214]陈龙珠,陈胜利.饱和地基上弹性圆板的动力响应[J].力学学报, 2001, 33(6): 821-827
    [215]王国才,饱和地基上基础的扭转特性研究[D].杭州:浙江大学, 2002
    [216]王国才,陈龙珠.层状饱和地基上刚性圆板的扭转振动及参数分析[J].岩土力学, 2004, 25(supp. 2): 401-404
    [217] Zeng X, Rajapakse R K N D. Dynamic axial load transfer from elastic bar to poroelastic medium[J]. Journal of Engineering Mechanics, ASCE, 1999, 125(9): 1048-1055
    [218] Jin B, Zhou D, Zhong Z. Lateral dynamic compliance of pile embedded in poroelastic half space[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(6): 519-525
    [219]杨军,宋二祥,陈肇元.桩在饱和土中水平振动的辐射阻尼简化算法[J].岩土力学, 2002, 23(2): 179-183
    [220]陆建飞,王建华,沈为平.考虑固结和流变的群桩的积分方程解法[[J].岩土工程学报, 2000, 22(6): 650-653
    [221]李强,王奎华,谢康和.饱和土中端承桩纵向振动特性研究[[J].力学学报, 2004, 36(4): 435-442
    [222] Kassir M K, Xu J. Interaction functions of a rigid strip bonded to saturated elastic half-space[J]. Int. J. Solids Structures, 1988, 24(9): 915-936
    [223] Philippacopoulos A J. Axisymmetric vibration of disk resting on half-space[J]. Journal of Engineering Mechanics, ASCE, 1989, 115(10): 2301-2322
    [224] Bougacha S, Tassoulas J L, Roesset J M. Analysis of foundations on fluid-filled poroelastic stratum[J]. Journal of Engineering Mechanics, ASCE, 1993, 119(8): 1632-1648
    [225] Bougacha S, Roesset J M, Tassoulas J L. Dynamic stiffness of foundations on fluid-filled poroelastic stratum[J]. Joamal of Engineering Mechanics, ASCE, 1993, 119(8): 1649-1662
    [226]陈胜立,张建民,陈龙珠.下卧刚性基岩的饱和地基上基础的动力分析[J].固体力学学报, 2002, 23(3): 325-329
    [227]陈胜立,陈龙珠.上覆单相弹性层的饱和地基上刚性基础竖向振动的轴对称混合边值问题[J].应用数学和力学, 2002, 23(2): 201-206
    [228]张智卿,王奎华,谢康和.非饱和土层中桩的扭转振动响应分析[J].岩土工程学报, 2006, 28(6): 729-734
    [229]张智卿,王奎华,谢康和,等.非饱和土中弹性支承桩的扭转振动响应分析[J].计算力学学报, 2008, 25(4): 552-556
    [230]张智卿,王奎华,谢康和,等.成层非饱和土中桩的纵向振动特性分析[J]. 2007, 23(1): 88-96
    [231] Deresiewicz H. The Effect of Boundaries on Wave Propagation in a Liquid-Filled Porous SolidⅠ: Reflection of Plane Waves at a Free Plane Boundary (nondissipative case)[J]. Bull. Seism, Soc. Am., 1960, 50(4): 599-607
    [232] Deresiewicz H, Rice J T. The Effect of Boundaries on Wave Propagation in aLiquid-Filled Porous SolidⅤ: Transmission across a plane interface [J]. Bull. Seism. Soc. Am., 1964, 54(1): 409-416
    [233] Deresiewicz H. The Effect of Boundaries on Wave Propagation in a Liquid-Filled Porous SolidⅥ: Love Waves in a Double Surface Layer[J]. Bull. Seism. Soc. Am., 1964, 54(1): 417-423
    [234]陈龙珠,吴世明,曾国熙.弹性波在饱和土层中的传播[J].力学学报, 1987, 19(3): 276-282
    [235]吴世明,陈龙珠.饱和土中弹性波的传播速度[J].应用数学和力学, 1989, 10(7): 605-612
    [236]吴世明.土介质中的波[M].北京:科学出版社, 1997
    [237]蔡袁强,李保忠,徐长节.两种不混溶流体饱和岩石中弹性波的传播[J].岩石力学与工程学报, 2006, 25(10): 2009-2016
    [238] Wheeler S J. A conceptual model for soil containing large gas bubbles[J]. Geotechnique, 1988, 38: 389-397
    [239]沈珠江.理论土力学[M].北京:中国水利水电出版社, 2000
    [240]蒋彭年.非饱和土工程性质简论[J].岩土工程学报, 1989, 11(6): 39-59
    [241]黄文熙.土的工程性质[M].北京:水利水电出版社, 1983
    [242] Bicalho K V. Modeling water flow in an unsaturated compacted soil[D]. Colorado: University of Colorado, 1999
    [243] Corey A T. Mechanics of immiscible fluid in porous media[M]. Highlands Ranch, Colorado: Water Resources Publications, 1994
    [244]沈珠江.非饱和土简化固结理论及其应用[J].水利水运工程学报, 2003, 4: 1-6
    [245]弗雷德隆德D G,拉哈尔佐H.非饱和土土力学[M].陈仲颐等译,北京:中国建筑工业出版社, 1997
    [246] Morrow N R. Small scale packing heterogeneities in porous sedimentary rocks[J]. A. A. P. G. Bull., 1974, 55: 514-522
    [247]孔祥言.高等渗流力学[M]合肥:中国科学技术大学出版社, 1999
    [248] Bishop A W, Blight G E. Some aspects of effective stress in saturated and unsaturated soils[J]. Geotechnique, 1963, 13(3): 177-197
    [249] Matyas E L, Radhakrishna H S. Volume change characteristic of partially saturated soils[J]. Geotechnique, 1968, 18(4): 432-448
    [250] Lu N, Griffiths D V. Profiles of steady-state suction stress in unsaturated soils[J].Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(10): 1063-1076
    [251] Bolzon G, Schrefler B A, Zienkiwicz O C. Elastoplastic soil constitutive laws generalized to partially saturated states[J]. Geotechnique, 1996, 46(2): 279-289
    [252] Khalili N, Khabbaz M H. A unique relationship forχfor the determination of the shear strength of unsaturated soils[J]. Geotechnique, 1998, 48(5): 681-687
    [253] Khalili N, Khabbaz M H. An effective stress based approach for shear strength determination of unsaturated soil[A]. In: 2nd Int. Conf. UNSAT’98 Beijing[C]. 1998: 84-89
    [254]陈正汉,王永胜,谢定义.非饱和土的有效应力探讨[J].岩土工程学报, 1994, 16(3): 62-69
    [255]陈正汉.非饱和土的应力状态和应力状态变量[A].第七届土力学及基础工程学术会议论文集[C].北京:中国建筑工业出版社, 1994: 186-191
    [256] Cho G C, Santamarina J C. Unsaturated particulate materials—particle-level studies[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(1): 84-96
    [257]周建.非饱和土本构模型中应力变量选择研究[J].岩石力学与工程学报, 2009, 28(6): 1200-1207
    [258] Blight G E. Effective stress evaluation for unsaturated soils[J]. Journal of the Soil Mechanics and Foundation Division, ASCE, 1967, 93(2): 125-148
    [259] Fredlund D G. Second Canadian Geotechnical Colloquium: Appropriate concepts and technology for unsaturated soils[J]. Can. Geotech. J., 1976, 16(1): 121-139
    [260]邢义川,谢定义,骆亚生.非饱和土有效应力及力学特性研究浅析[J].西北农林科技大学学报(自然科学版), 2003, 31(2): 171-176
    [261] Fredlund D G, Morgenstern N R, Wildger R A. The shear strength of unsaturated soils[J]. Can. Geotech. J., 1978, 15(3): 313-321
    [262] Gan K J, Fredlund D G. Multistage direct shear strength of unsaturated soils[J]. Geotechnical Testing Journal, 1988, 11(2):132-138
    [263] Vanapalli S K, Fredlund D G, Pufahld E, et al. Model for the prediction of shear strength with respect of soil suction[J]. Can. Geotech. J., 1996, 33(3): 379-392
    [264] Oberg A L, Sallfors G. Determination of shear strength parameters of unsaturated silts and based on the water retention curve[J]. Geotechnical Testing Journal, 1997, 20(1): 40-48
    [265] Fredlund D G, Vanapalli S K, Xing A, et al. Predicting the shear strength for unsaturated soils using the soil-water characteristic curve[A]. Proc 1st Int. Conf.Unsaturated Soils[C]. Paris: [s.n.], 1995: 63-69
    [266]陈敬虞, Fredlund D G.非饱和土抗剪强度理论的研究进展[J].岩土力学, 2003, 24(supp.): 655-660
    [267]刘建立,徐绍辉,刘慧.估计土壤水分特征曲线的间接方法研究进展[J].水利学报, 2004, 2: 68-78
    [268]来剑斌,王全九,土壤水分特征曲线模型比较分析[J].水土保持学报, 2003, 17(1): 137-140
    [269] Brooks R H, Corey A T. Hydraulic propertied of porous media[R]. Hydrology Paper No.3, Colorado State Univ., Fort Collins, CO, 1964: 3-27
    [270] Leij F J, Russell W B, Lesch S M. Closed form expressions for water retention and conductivity data [J]. Ground Water, 1997, 35(5): 848-858
    [271] Van Genuchten M Th, Leij F J, Yates S R. The RETC code for quantifying the hydraulic functions of unsaturated soils[R]. USEPA Report 60002-910065, U.S. Enviromental Protection Agency, ada, Oklahoma, 1991
    [272] Vogel T, van Genuchten M Th, Cislerova M. Effect of the shape of the soil hydraulic functions near saturation on variably saturated flow predictions[J]. Advances in Water Resources, 2001, 24: 133-144
    [273] van Genuchten M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J], Soil Science Society of America Journal, 1980, 44(5): 892-898
    [274]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展, 1999, 10(3): 312-318
    [275] Mualem Y. Anewmodel for predicting the hydraulic conductivity of unsaturated porousmedia.Water Resources Research, 1976, 12(3):513–522
    [276] Zhang R, van Genuchten M Th. New methods for unsaturated soil hydraulic properties[J]. Soil Science, 1994, 158:77-85
    [277] Durner W. Hydraulic conductivity estimation for soils with heterogeneous pore structure[J]. Water Resources Research, 1994,30:211-230
    [278] van Genuchten M Th, Nielsen D R. On describing and predicting the hydraulic properties of unsaturated soils[J]. Ann. Geophysics, 1985, 3:615-628
    [279] Hutson J T, Cass A. A retentivity function for use in soil water simulation models[J]. J. Soil Sci., 1987, 38: 105-113
    [280]徐绍辉,张佳宝,刘建立,等.表征土壤水分持留曲线的几种模型的适应性研究[J].土壤学报, 2002, 39(4): 498-504
    [281] Burdine N T. Relative permeability calculations from pore-size distribution data[J]. Petr. Trans., Am. Inst. Mining Metall. Eng., 1953, 198: 71-77
    [282] Hardin B O, Richart F E Jr. Elastic wave velocities in gramular soils [J]. Journal of Soil Mechanics and Foundation Engineering, ASCE, 1963, 89(1): 33~65
    [283] Hardin B O.土的应力—应变行为的本质[M].地震工程和土动力问题译文集,谢君裴,等译.北京:地震出版社, 1985, 111-202
    [284] Seed H B, Idriss I M. Soil moduli and damping factors for dynamic response analysis [R] EERC Report, No.70-10, U.C. Berkeley, Calif., 1970
    [285] Martin P P, Seed H B. One-dimensional dynamic ground response analyses[J]. Journal of Geotechnical Engineering, ASCE, 1982, 108(7): 935-954
    [286]陈国兴,谢君斐,张克绪.土的动模量和阻尼比的经验估计[J].地震工程与工程振动, 1995, 15(1): 73-84
    [287]吴世明.非饱和无粘性土的动剪切模量[J].岩土工程学报, 1985, 7(6): 33-41
    [288]骆亚生,田堪良.非饱和黄土的动剪模量与阻尼比[J].水利学报, 2005, 36(7): 830-834
    [289]尚守平,熊伟,杜运兴,等.饱和场地土动力特性试验研究[J].岩土力学, 2008, 29(1): 24-27
    [290] WU Shi-ming, Gray D H, Richart F E Jr. Capillary effects on dynamic modulus of sands and silts[J]. Journal of Geotechnical Engineering, ASCE, 1984, 110(9): 1188~1203
    [291]钱学德,郭志平.非饱和无粘性土动剪切模量的实用计算方法[J].河海大学学报, 2000, 28(3): 65-72
    [292] Gray W G. Thermodynamics and constitutive theory for multi-phase porous-media flow considering internal geometric constraints[J]. Advances in Water Resources, 1999, 22(5): 521-547
    [293]陈少林,廖振鹏.关于两相介质动力学问题建模的注记[J].地震工程与工程振动, 2002, 22(4): 1-8
    [294] Murphy W F. Effects of microstructure and pore fluids on the acoustic properties of granular[D]. Stanford: Stanford University, 1982
    [295] Murphy W F. Acoustic measures of partial gas saturation in tight sandstone[J]. Journal of Geophysical Research, 1984, 81(B13): 11 549-11 559
    [296]杨峻,吴世明,蔡袁强.饱和土中弹性波的传播特性[J].振动工程学报, 1996, 9(2):128-137
    [297] Paul H S . On the displacements produced in a porous elastic half-space by an impulsive line load (Non-dissipative case)[J]. Pure and Applied Geophysics, 1976, 114(4): 605-614
    [298]陈胜立,张建民,陈龙珠.饱和土埋置力源的三维动力Lamb问题解答[J].固体力学学报, 2004, 25(2); 149-154
    [299]陈龙珠,陈胜立,梁发云.饱和地基竖向振动的衰减特性[J].上海交通大学学报, 2002, 36(3): 376-381
    [300]黄义,张玉红.饱和土三维非轴对称Lamb问题[J].中国科学(E辑), 2000, 30(4): 375-384
    [301]黄义,王小岗.横观各向同性饱和层状地基的三维稳态动力响应[J].固体力学学报, 2006, 27(3): 223-229
    [302]许苗健,王诚,孟楷. Gibson地基在简谐荷载下的竖向振动分析[J].浙江大学学报(工学版), 2004, 38(8): 1015-1019
    [303]王国才,黄晋,王哲,等.简谐集中扭矩作用下饱和半空间的Lamb问题[J].浙江工业大学学报, 2007, 35(2): 218-221
    [304]左迎辉,蔡袁强,徐长节.移动荷载下饱和半空间的动力响应[J].岩石力学与工程学报, 2005, 24(23): 4352-4357
    [305]刘琦,金波.移动简谐力作用下三维多孔饱和半空间的动力问题[J].固体力学学报, 2008, 29(1): 98-103
    [306]蔡袁强,徐长节,郑灶锋,等.轴对称饱和地基竖向振动分析[J].应用数学和力学, 2006, 27(1): 75-81
    [307]王小岗.横观各向同性饱和地基竖向振动的衰减特性[J].岩土力学, 2008, 29(3): 685-690
    [308]张玉红,黄义.两相介质饱和土三维非轴对称稳态响应分析[J].应用力学学报, 2003, 19(3): 85-91
    [309]王小岗,黄义.横观各向同性饱和地基的三维动力响应[J].应用数学和力学, 2005, 26(11): 1278-1286
    [310]杨峻,吴世明,陈云敏.弹性层和饱和半空间体系稳定动力响应[J].土木工程学报, 1997, 30(3): 39-48
    [311]张玉红,黄义,王忠建.层状饱水软土地基三维非轴对称动力响应分析方法[J].地震工程与工程振动, 2002, 22(4): 47-52
    [312]尤红兵,梁建文,赵凤新.含饱和土的层状场地的动力响应[J].岩土力学, 2008, 29(3): 679-683
    [313]蔡袁强,赵国兴,郑灶锋,等.上覆弹性土层横观各向同性饱和地基竖向振动分析[J].浙江大学学报(工学版), 2006, 40(2): 267-271
    [314]王可成,王贻荪.弹性半空间表面在突加竖向集中力作用下的位移[J].应用数学学报, 1981, 4(1): 91-97
    [315]吴大志,蔡袁强,徐长节,等.瞬态扭矩作用下横观各向同性饱和地基的响应[J].浙江大学学报(工学版), 2007, 47(1): 97-103
    [316]王俊林,祝彦知,张天航.横观各向同性含液饱和多孔介质黏弹性瞬态反应[J].岩土力学, 2007, 28(7): 1315-1322
    [317]金波.用第二类Fredholm积分方程求解弹性半空间上弹性板的垂直振动[J].应用数学和力学, 1998, 19(2): 145-150
    [318]金波,徐植信.多孔饱和半空间上弹性圆板的动力分析[J].固体力学学报, 1998, 19(2): 112-119
    [319]金波.多孔饱和半空间上弹性圆板垂直振动的积分方程[J].力学学报, 2000, 32(1): 78-86
    [320]王国才,陈龙珠,陈胜立.上覆单相弹性层的饱和地基上刚性圆板的扭转振动分析[J].固体力学学报, 2003, 24(1): 24-30
    [321]吴大志,张政伟,徐长节,等.下卧基岩双层地基上刚性圆板的扭转振动[J].岩石力学与工程学报, 2005, 24(18): 3316-3321
    [322]吴大志,蔡袁强,徐长节,等.横观各向同性饱和地基上刚性圆板的扭转振动[J].应用数学和力学, 2006, 27(11): 1349-1356
    [323]吴大志,董天,蔡袁强,等.横观各向同性饱和地基中埋置刚性圆柱基础的扭转振动[J].岩土力学, 2007, 28(4): 733-737
    [324]王小岗.层状横观各向同性饱和地基上圆板的非轴对称振动[J].应用数学和力学, 2007, 28(4): 1232-1244
    [325]王小岗.横观各向同性饱和地基上中厚圆板的非轴对称振动[J].应用力学学报, 2007, 24(4): 566-572
    [326]何芳社,黄义.饱和弹性半空间地基与中厚圆板的动力相互作用[J].工程力学,2008, 25(6): 1-5
    [327]何芳社,黄义,蔡东文.横观各向同性饱和多孔半空间与圆板的动力相互作用[J].应用力学学报, 2008, 25(2): 224-229
    [328]周洪峰,朱陆明,徐长节,等.准饱和土地基刚性基础的竖向振动分析[J].哈尔滨工业大学学报, 2006, 38(4): 605-608

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700