高能X射线工业CT气固混合型电子倍增辐射探测器探索研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业计算机层析成像技术(Industrial Computed Tomography,简称工业CT)能直观、清晰、准确地检测被测物体断面内部的结构组成、密度变化以及缺陷的性质、位置及大小,被人们喻为最佳、最具发展前景的无损检测技术之一。高能工业CT采用电子直线加速器为X射线源,具有穿透力更强、检测精度更高、扫描速度更快等特点,满足了航空航天、国防军工以及交通运输(如高速铁路等)、钢铁冶金、地质、石油等行业的大型构件和大型装备的特殊的无损检测需求,是保障这些特殊产品的质量与安全必不可少的重要手段,因而具有巨大的社会价值和应用价值。
     探测器是高能工业CT系统的关键部件,对保证高能工业CT的检测效率、空间分辨率与密度分辨率等关键性能至关重要。然而,由于目前常用的闪烁体探测器存在抗辐射能力差、探测器窜扰大、环境条件要求高、制备复杂价格昂贵、电子学噪声大动态范围受限制等缺点,在很大程度上还不能完全满足高能工业CT的使用要求。气体电离室探测器具有抗辐射能力强、性能稳定可靠、成本低廉、暗电流小动态范围大等优点,但也存在探测效率低和体积大这两大致命缺陷,严重影响高能工业CT的检测效率及分辨率等关键指标。到目前为此,探测器仍是制约高能工业CT技术进一步发展的主要技术瓶颈之一,也是限制这一先进无损检测技术普及和推广的重要原因之一。
     由于闪烁体探测器受工作原理及材料性能等限制,其性能很难有大幅度的提高。气体电离室探测器除了探测效率低和体积大两大缺点外,具有许多闪烁探测器难已比拟的优点,有很大的发展空间和潜能。为攻克气体电离室探测效率低、体积大这两大难题,由国家自然科学基金项目和重庆市科技攻关项目资助,深入研究和探讨了高能X射线辐射探测理论、气体电子倍增(GEM)机理等相关理论,提出了高能工业CT新型气固混合型电子倍增辐射探测器方案,并搭建了实验测试平台,为新型气体电离室探测器的实际应用奠定了理论和实验基础。主要工作如下:
     (1)通过分析高能X射线工业CT目前发展遇到的问题和技术瓶颈,结合我国高能工业CT目前的发展状况,全面地比较、分析和总结了高能工业CT目前常用探测器的优点和不足,提出本论文总体研究思路和研究工作要点。
     (2)通过对电子直线加速器高能脉冲X射线辐射探测理论和气体电子倍增(GEM)机理等相关理论的深入研究和探讨,结合高能工业CT的特殊结构,创新性地提出了新型气固混合型电子倍增辐射探测器方案。通过创新性地采用薄高密度金属片作为光电转换体来提高气体电离室探测器效率,用GEM(电子倍增器)来减小气室体积的全新的气固混和型探测器结构方式,解决了传统气体电离室探测器探测效率低、体积大这两大难题,为高能X射线工业CT提供性能优良、价格低廉的探测器开拓了新的途径。
     (3)建立基于GEM电子倍增原理的高能工业CT气固混合型电子倍增辐射探测器物理模型,用理论分析和计算机仿真相结合的方法,对探测器方案的可行性进行了理论分析和论证。
     (4)根据理论计算和仿真结果,试制了探测器样品,并设计了相关的观察和测试实验。在现有高能工业CT实验研究平台的基础上,搭建了探测器实验平台,并完成了相关的实验测试。实验中用示波器直观地观测到了探测器单元输出模拟信号的波形、幅值大小,测量了探测器输出信号强度与输入的X射线强度变化,表明探测器不仅具备把X射线粒子转换为电信号的基本功能,而且其输出信号强度与X射线强度存在良好的线性关系,证明了探测器方案的可行性。通过实验,也发现了探测器存在诸多问题和不足,为进一步提高探测器性能和最终实现产品化、实用化奠定了基础。
     最后,总结了全文研究工作和创新之处,指出了论文的不足和近期有待进一步研究的问题。
Industrial Computed Tomography(ICT), compared to conventional radiogram technology, produces accurate images of the internal features of objects, as well as information about the defect’s property and position . ICT technology is considered one of the best nondestructive testing methods. The high energy X-ray Industrial Computed Tomography (HECT) system with an electron linear accelerator is developed to image cross-sections of large scale and high density materials. Owing to strong radiation penetrability as well as high spatial resolution and fast scanning speed, HECT is broadly applicable to various fields as an important tool for nondestructive testing (NDT) and nondestructive evaluation(NDE), such as automobile engine, high speed railroad casting and solid fuel rocket motors and so on .
     The detection system is the key parts of HECT because the high spatial resolution, rapid inspects efficiency, flexible scan mode and low price of HECT are determined by the detection system. However, nowadays, the level of the detection technology is not satisfied the requests of the development of HECT. The scintillator detectors which are most commonly used have many shortcomings such as poor radiation resistance, great cross-talk, high environment condition, costliness, narrow dynamic range and so on. The gaseous detectors have many merits such as low cross-talk and wide dynamic range, but some serious defects are their low detection efficiency and big volume. In certain extent, the shortcoming of the detector is the most reason which restricts the development of HECT technology and holds back the broadly applicable to some fields. Currently, the study of the detection technology of HECT became an important part of HECT research work.
     Due to the restriction of the detection principle and the material performance the improvement of scintillator detectors is very hard. However, the gaseous detectors have great development space if we can conquer the two shortcomings, the low detection efficiency and the big volume. In this dissertation, supported by National Natural Science Foundation of China and by Tackling Key Problems of Science and Technology of ChongQing, the principle of the high energy X-ray detection and the mechanism of gaseous detector and gas electron multiplier (GEM) are studied, and a new type of solid-conversion gaseous detector was investigated. Some valuable results have been obtained. The main work is provided as follows:
     ①By analyzing the problems which have been meet in the development of the HECT, and by analyzing the disadvantages of the HECT detectors which have been widely used currently, we put forward key points in this dissertation.
     ②A new type solid-conversion gaseous detector for HECT has been proposed based on the profound analysis of the theory about the pulse X-ray and the GEM. In this detector, a tungsten slab is employed as a radiation conversion medium, and makes the GEM as electron amplifier to resolve the contravention of the size and the detection efficiency of the gas detector.
     ③The feasibility of the solid-conversion gaseous detector is analyzed and demonstrated by the model based on the GEM with theory analysis methods and computer simulation methods.
     ④The sample of the solid-conversion gaseous detector has been designed and produced according to the results of computer simulation and the theoretical calculation . In addition, we set up a trial platform and contrive some experimental schemes. In the experiment, the analog signals waves of the detector unit were shown in distinctly, and the experiments proved that the output of the detector is proportion to the intensity of the incident X-ray. The results of the experiments show that the schemes of gas-solid electron multiplier detector of high energy x-ray industrial CT are reasonable.
     At last, this thesis reviews the whole research work, summing up innovations as well as shortcomings in it, some important issues are expected to be perfected and lucubrated in the near future.
引文
[1] Jiang Hsieh编著.张朝宗,郭志平,王贤刚等译.计算机断层成像技术原理、设计、伪像和进展[M].北京:科学出版社,2006.
    [2]张朝宗,郭志平,张朋等.工业CT技术和原理[M].北京:科学出版社,2009.
    [3]高能X射线工业CT技术的研究进展[J],王召巴等,测试技术学报,2002,(2):79-82.
    [4] S. Izumi, S. Kamata, K. Satoh, etc.. High Energy X-ray Computed Tomography for Industaial Applications[J]. IEEE Transactions on Nuclear Science. 1993, 40(2).
    [5] Trebes J E, Dolan K W, Haddad W S, et al. High Resolution, Large Area, High Energy x-ray Tomography [J]. SPIE, 1997, 3149: 173-176.
    [6] Ramakrishna G S, Urnesh Kumar, Datta S S, et al. Design and Applications of Computed Industrial Tomograpic Imaging System (CTIS)[C]. In: Proceedings of 14th World Conference on NDT[C]. New Delhi, India: 1996, 293-299.
    [7]刘丰林,程森林,王珏.工业CT技术[J].《现代制造工程》,2003,(5):89-90.
    [8]魏彪,先武.工业CT技术及其NDT应用[J].现代物理知识,2000,S1:77-79.
    [9] http://moh.gov.cn
    [10]张朝宗.工业CT技术参数对性能指标的影响[J].无损检测. 2007, 29(1):48-61。
    [11]孙灵霞,叶云长.工业CT技术特点及应用实例[A].全国第五届核仪器及其应用学术会议论文集[C]. 2005年.
    [12]陈志强,李亮,冯建春.高能射线工业CT最新进展[J]. CT理论与应用研究, 2005(04):3-6.
    [13]魏彪,潘银松,先武工业X-CT新型探测器技术,重庆大学学报(自然科学版),2001,24(1):1~3.
    [14]包尚联.现代医学影像物理学理[M].北京:北京大学医学出版社, 2004.
    [15]刘荣臻.固体火箭发动机工业CT检测技术[J].战术导弹技术,2008,(5):92-96.
    [16]卢洪义,杨兴根,孙有田.固体火箭发动机内部缺陷高分辨率检测[J].推进技术. 2003,(1):90-92.
    [17] 2003世界科技发展回顾:空间探索各路诸侯竞相登场. http://www.stdaily.com/gb/pandian /2003-12/31/content_195038.htm, 2006-05-10[EB/OL].
    [18] VARIAN工业CT简介-在汽车工业应用举例,中国总代理:爱派克测试技术(上海)有限公司资料[Z],20090219.
    [19] G..T.赫尔曼.由投影重建图像―CT的理论基础[M].北京:科学出版社,1985.
    [20] H.H.巴雷特,W.斯温德尔等著,庄田戈,周颂凯等译.放射成像-图像形成、检测和处理的理论(第二卷)[M].北京:科学出版社,1998.
    [21] G.T赫尔曼著,严洪范等译.由投影重建像-CT的理论基础[M].北京:科学出版社,1985。
    [22]容观澳编著.计算机图像处理[M].北京:清华大学出版社, 2000.
    [23]阮秋琦编著.数字图像处理[M].北京:电子工业出版社, 2001.
    [24] Zhou Rifeng, Wangjue, Chen Weimin. X-ray Beam Hardening Correction for Measuring Density in Linear Accelerator Industrial Computed Tomography[J]. Chinese Physics C. 2009, 33(7) ,600-603
    [25]周日峰,高富强,张平.工业CT探测器能谱响应不一致校正研究[J].原子能科学技术, 2008, 42(1):83-86.
    [26]周日峰,张平,张泽宏.高能X射线探测器射线串扰模拟研究[J].核技术, 2005, 28(12): 937-939.
    [27] J.柯斯克能原著.荫春涛,高冬编译.线性探测(LDA)的现状及发展趋势[J].CT理论与应用研究, 2002,11(3):12-15.
    [28] Luthi.T. Flisch.A, Wyss.p. WYSS P. Industrial Computed X-ray Tomography [ J ] . NDT International, 1998, 40(3) : 196-197.
    [29] Rapaport M.S. A dual-mode industrial CT[J]. Nuclear Instruments and methods, 1995, A352: 652-658.
    [30] Clarke.R. CCD X-ray detectors:opportunities and challenges[J].Nuclear Instruments and methods, 1994 ,A347 :529-533.
    [31] Smith C.R. Erker J W. Low cost high resolution x-ray detector system for digital radiography and computed tomography [M]. Proc. of SPIE, Vol. 2009, X-ray detector physics and applicationsⅡ,1993. 31-35.
    [32] Mario Ruscev, Lrene Dorion, Alain-Pierre L ilot[S]. United State Patent, 4 785 1681 1988,15.
    [33] D.M. Hoffman,“CT Detector Fabrication Process”[S], United State Patent, 6 953,935 B1 (2005).
    [34] J.S. Iwanczyk, B.E. Patt and E. Nygard,“Pixellated Cadmium Zinc Telluride Based Photon Counting Detector”[S], United State Patent 7,170,049 B2 (2007).
    [35]索林.马尔科维奇;亚历山大.T.博特卡.用于CT的两维X射线探测阵列[S],中国专利, 00135759.X 2001-9-12,US[31]09/461,892.
    [36]张廷华.充气(高压)电离室[J].核技术, 1981, (02).
    [37]安继刚等.气体电离型高能X、γ射线探测器[S].中国专利:93102728.4.
    [38]李毅强,安继刚,邬海峰,王立强.一种新型小像素气体电离室阵列探测器[J],核电子学与探测技术2002,22(3).
    [39]安继刚,邬海峰,卿上玉.高能X或γ辐射成像阵列探测装置的研制与应用[J],核技术,1997,20(9).
    [40]安继刚,卿上玉,邬海峰.充气电离室[M]北京:原子能出版社1997.
    [41]王立强,安继刚,卿上玉.气体电离室时间响应函数的一种测量方法[J]核电子学与探测技术, 2002,(6):515-517.
    [42]刘金汇,安继刚,刘以思.充气电离室动态特性物理模型研究[J]原子能科学技术2002, 25(3):253-256.
    [43] Greene D, Williams P C. Linear Accelerators for Radiation Therapy[M]. Second Edition. Institute of physics publishing Ltd. 1997.
    [44]童德春,靳清秀,林郁正. X波段2MeV驻波电子直线管研制与测试[J].原子能科学技术,1999,33(2):189-191.
    [45]夏正宇,朱产培,舒方武等.高能X射线图像处理系统与KCT [C ].第一届全国加速器无损检测设备及其应用技术交流会论文集.江西庐山:国家科学技术部工业司. 1998, 66-70.
    [46]顾本广.医用加速器[M].北京:科学出版社,2003.
    [47] Mohan R, Wu Q, Wang X., Stein J. Intensity modulation optimization, Lateral transport of radiation and margin[J]. Med. Phys., 1996,23:2011-2022.
    [48] Desobry G E, Boyer A L. Bremsstrahlung review: An analysis of the Schiiff spectrum [J]. Med. Phys. 1991, 18(3): 497-505.
    [49]潘清,胡和平,陈浩,等,9MeV电子直线加速器X射线测量[J].强激光与粒子束, 2004,16(6):805~808.
    [50] R.Mohan,C.Chui,and L.lidofsky, Energy and angular distributions of photons from medical linear accelerators[J], Med, Phys. ,1985,12(2), 592~597.
    [51]张松柏,黄斐增,韩树奎等,6MV医用电子直线加速器轫致辐射谱研究[J],原子能科学技术,2003,37(3):225~229.
    [52] M. Krmar, J. Slivka, I. Bikit, etc. A new method for the measurement of bremsstrahlung spectra [J]. Phys. Med. Biol. ,1993, 38(4), 533~544.
    [53] E. Vandecasteele, D. Van Dyck, J. Sijbers,etc. An energy-based beam hardening model in tomography [J]. Phys. Med. Biol. , 2002, 47(1), 4181~4190.
    [54] Zhou Rifeng, Wangjue, Chen Weimin. X-ray Beam Hardening Correction for Measuring Density in Linear Accelerator Industrial Computed Tomography[J]. Chinese Physics C. 2009, 33(7) .
    [55] Julia Ley-Zaporozhan, Sebastian Ley, Oliver Weinheimer,Quantitative Analysis of emphysema in 3D using MDCT Influence of different reconstruction algorithms[J]. European Journal of Radiology 65 (2008) 228–234.
    [56] [2-13] Baolei Li Quanhong Zhang Junjiang Li A Novel Beam Hardening Correction Methodfor Computed Tomography [J].2007 IEEE/ICME International Conference on Complex Medical Engineering.
    [57] [2-14] Kak AC, Slaney M. Principles of computerized tomographic imaging[M].New York: IEEE Press; 1988.
    [58] [2-15] Shepp L, Logan B. The fourier reconstruction of a head section[J]. IEEE Trans Nucl Sci 1974.21:21~43.
    [59] [2-16] Chye Hwang Yan,Robert T.Whalen, Reconstruction Algorithm for Polychromatic CT Imaging: Application to Beam Hardening Correction, IEEE TRANSACTIONS ON MEDICAL IMAGING. 2000.19(1) 1~11.
    [60]夏元复,新伯,彭郁卿.实验核物理方法[M].北京.科学出版社,1989.
    [61]彭华寿核探测器的进展[J].核电子学与探测技术,1990,10(5):277-282.
    [62]复旦大学、清华大学、北京大学合编.原子核物理实验方法(上册)[M].北京:原子能出版社1981.56-68
    [63] Stephane R. Francis G,Michel G. CdTe and CdZnTe detectors behavior in X-ray computed tomography conditions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 422(1):45-52.
    [64]魏彪,潘银松,先武.工业X-CT新型探测器技术[J].重庆大学学报(自然科学版).2001(1):1-3.
    [65]孙灵霞,叶云长.工业CT技术特点及应用实例[A].全国第五届核仪器及其应用学术会议论文集[C]. 2005.
    [66]陈志强,李亮,冯建春.高能射线工业CT最新进展[J]. CT理论与应用研究, 2005(04):3-6.
    [67]王召巴,金永.高能X射线工业CT技术的研究进展[J].测试技术学报. 2002,16(2):79-82.
    [68]李玉兰,李元景,许荔柏等.狭长闪烁体光传输的研究[J].核电子学与探测技术,2003: 534-537.
    [69] Jussi Koskinen, LIN Chuntao and GAO Dong .LDA Technology Today and Possibilities in the Future[J]. CT Theory and Applications 2002,11(3):12-15.
    [70] LU Jie, DENG Jing-kang, NING Chuan-gang, Study on characteristics and applications of PIN photodiode X-ray detector[J], Nuclear Electronics & Detection Technology,2002,22(1),20-23.
    [71] An Jigang,Wu Haifeng, Qing Shangyu Research and construction of X or gamma radiography array detector for large objects[J]. Journal of Tsinghua University Vol.34 1994(3):56-62.
    [72] www.detectors.saint-gobain.com .
    [73] [2-29]裴鹿成,张孝泽.蒙特卡罗方法及其在粒子输运问题中的应用[M].北京科学出版社.1980,45-55.
    [74]叶华俊,鲍超,刘华锋.光子在闪烁晶体中传输的蒙特卡罗模拟[J].光电工程,2002,29 (4):53-56.
    [75] D. R. Kinloch, W. Noval, P. Raby, and I. Toepke, New Developments in Cadmium Tungstate, IEEE Trans.Nucl.Sci., 1994. 41(4): 752-754.
    [76] Ioannis G. Valais, Christos M. Michail, Stratos L. David et al. Luminescence Emission Properties of (Lu; Y)2SiO5:Ce (LYSO:Ce) and (Lu; Y)AlO3:Ce (LuYAP:Ce) Single Crystal Scintillators Under Medical Imaging Conditions[J] .IEEE Trans.Nucl. Sci. 2008 55(2): 303-312.
    [77] J.S. Iwanczyk, E.Nygard, O. Meirav, et al. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging IEEE Nuclear Science Symposium Conference Record. 2007:2741-2748.
    [78]陈启伟,施鹰,施剑林.陶瓷闪烁材料最新研究进展[J].材料科学与工程学报. 2005,23(1):128-132.
    [79] www.hamamatsu.com[EB/OL].
    [80]安继刚,卿上玉,邬海峰.充气电离室[M]北京:原子能出版社1997.
    [81] ZHANG Chaozong .Effect of Technical Data of an Industrial CT on Its Performance :a Guide for Industrial CT System Selection[J]. NDT 2007, 29(1):48~61
    [82]复旦大学等.原子核物理实验方法(上册)[M].北京:原子能出版社1981.56-68.
    [83]卢希庭原子核物理[M],北京:原子能出版社, 2000.
    [84] Charpak G, et al. Use of multiwire proportional counters to select and localize charged particles [J]. Nucl. Instrun. Methods, 1988, A262: 262-274.
    [85] Oed A. et al. Position-sensitive detector with microstrip anode for electron multiplication with gases [J]. Nucl. Instrun. Methods, 1988,A 263: 351-362.
    [86] Bellazzini R, et al. A new detector for the next generation of high energy, high rate experiments[J ]. Nucl. Instrun. Methods, 1995, A368: 259-263.
    [87] Giomataris Y, et al. M ICROMEGAS: a high granularity posit ion-sensitive gascous detector for high particlep flux environments [J ]. Nucl. Instrun. Methods, 1996, A 376: 29.
    [88] F. Sauli, GEM: A new concept for electron amplification in gas detectors[J]. Nucl. Instrum. Methods in Physics Res. A386 (1997) 531.
    [89] J. Benlloch, A. Bressan, C. Biittne, et al. Development of the Gas Electron Multiplier (GEM)[J]. IEEE TRANSACTTONS ON NUCLEAR SCIENCE, Vol.45(3), JUNE 1998: 234-243.
    [90] A.Bressan, L.Ropelewski, F.Sauli. Development of High Gain GEM Detectors[J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2000, 47(6): 2070-2074.
    [91]苏青峰,夏义本,王林军等.GEM探测器的计数性能研究[J].上海有色金属. 2005, 26(3):110-113.
    [92] J. Benlloch, A. Bressan, C.Biittner. Development of the Gas Electron Multiplier (GEM)[J]. IEEE TRANSACTTONS ON NUCLEAR SCIENCE, 1998, 45(3):234-243.
    [93] J. Benlloch, A. Bressan, M. Capeáns Further development of the gas electron multiplier (GEM), EUROPEAN LABORATORY FOR PARTICLE PHYSICS. 6 March 1998. CERN-EP/98-50.
    [94] J. Benlloch et al., Development of the Gas Electron Multiplier (GEM), CERN-PPE/97-146.
    [95]安继刚,邬海峰,卿上玉.大型客体X或γ辐射成像阵列探测器的研制[J]清华大学学报(自然科学版).Vol.34 1994(3):56~62.
    [96]安继刚编著电离辐射探测器[M].北京:原子能出版社1995.
    [97] H.Γ.古雪夫[苏]主编,华明川,鲍朝晖译,电离辐射防护[M].北京:原子能出版社1988
    [98] Archana Sharma 3D simulation of charge transfer in a Gas Electron Multiplier (GEM) and comparison to experiment [J]. Nuclear Instruments and Methods in Physics Research A454 (2000) 267-271.
    [99] P.R.B. Marinho, G.P. Guedes, A.F. Barbosa. Effects of the electric field on the electron drift velocity in a double-GEM detector in different gas mixtures[J]. Radiation Measurements 39 (2005) 515- 519.
    [100] O.Bouianov, M. Bouianov, R. Orava, V. Tikhonov. Foil geometry effects on GEM characteristics [J]. Nuclear Instruments and Methods in Physics Research A 458 (2001) 698-709.
    [101] Fabio Sauli .Gas detectors: Achievements and trends [J]. Nuclear Instruments and Methods in Physics Research A461 (2001) 47-54.
    [102] A. Buzulutskov, L. Shekhtman, A. Bressan, A. Di Mauro .GEM operation in pure noble gases and the avalanche confinement[J]. Nuclear Instruments and Methods in Physics Research A 433 (1999) 471-475.
    [103] M. Killenberg, S. Lotze, J. Mnich, S. Roth, R. Schulte. Modelling and measurement of charge transfer in multiple GEM structures [J].Nuclear Instruments and Methods in Physics Research A 498 (2003) 369-383.
    [104] W. Blum, L. Rolandi. Particle Detection with Drift Chambers. Springer(1993).
    [105] S. Bachmann et al. Performance of GEM detectors in high intensity particle beams[J].Nucl. Instr. and Meth. A470 (2001): 548.
    [106] S. Bachmann et al. Discharge studies and prevention in the gas electron multiplier(GEM)[J]. Nucl. Instr. and Meth. A479 (2002): 294.
    [107] R.K. Carnegie et al..Resolution studies of cosmic ray tracks in a TPC with GEM readout”, Nucl. Instr. and Meth. A538 (2005) :372.
    [108]伊亨云朱金明孙荣恒等概率论与数理统计[M].重庆重庆大学出版社1995.
    [109]杨洪礼鲍承友张序萍等主编概率论与数理统计[M].北京北京邮电大学2007 .
    [110]庄楚强何春雄编著应用数理统计[M].广州华南理工大学2006.
    [111]裴鹿成,张孝泽.蒙特卡罗方法及其在粒子输运问题中的应用[M].北京科学出版社.1980.(2):45-55.
    [112]朱冬梅,丁蓉,周洪楠.实验物理学中的Monte Carl方法[J].南京师大学报(自然科学版).1998,(214):36-40.
    [113] J.Chavanelle,A.Pousse, et al.Scintillator Crystal Optimization by Monte Carlo Simulation for Photodiode Matrix Detector[J].IEEE Transactions on Nuclear Science,2001:2016-2019.
    [114] G.Tzanakosand T.Thireou.A simulation study of the performance characteristics of a YAP:Ce detector for positron emission tomography[J].Proceeding of the 20 Annual International Conference of the IEEE Engineering in Medicine and Biology Society,1998:755-758.
    [115] D. Karlen, P. Poffenberg, G. Rosenbaum. TPC Performance in Magnetic fields with GEM and Pad Readout”; Nucl. Instr. and Meth. A555 (2005) :80.
    [116] O. Bouianov, M. Bouianov, R. Orava, P. Progress in GEM simulation[J] . Nuclear Instruments and Methods in Physics Research A 450 (2000): 277-287.
    [117]周意,李澄,安少辉GEM电极的三维电场分布计算[J].高能物理与核物理. V28.2004(3): 299-303.
    [118]叶华俊,鲍超,刘华锋.光子在闪烁晶体中传输的蒙特卡罗模拟[J].光电工程,2002,29 (4):53-56 .
    [119]李金升,刘桂林等.利用EGS4蒙特卡罗计算程序对阵列电离室若干性能的研究[J].核电子学与探测技术.1996, 16 (5):361-364.
    [120] ZHANG Yi ,ZHANG Xiao-Dong, WANG Wen-Xin. Monte Carlo studies of micromegas as a neutron detector and its track reconstruction[J], Chinese Physics C,2009,33(1):42-46.
    [121] R.D. Luggar,M.J. Key,E.J. Morton,Energy dispersive X-ray scatter for measurement of oil/water ratios[J],Nuclera Instruments and Methods in Physics Research ,1999,A422:938-941.
    [122]李荣华. Monte Carl方法及原理[M].北京科学出版社.1985.
    [123]许淑艳,蒙特卡罗方法在实验核物理中的应用[M].北京:原子能出版社1996.
    [124] I. Kawrakow and D.W.O.Rogers. The EGSnrc Code System:Monte Carlo simulation of electron and photon transport. Technical Report PIRS–701 (4th printing), National Research Council of Canada, Ottawa, Canada, 2003.
    [125]黎亚平,吴丽萍基于EGSnrcMP模拟计算X射线在重金属和硅界面的剂量增强因子[J],2008,28(5):296-299.
    [126]王新华,陈渊,郭海萍等. EGSnrc系统在计算闪烁探测器响应函数矩阵中的应用[J],原子能科学技术,2005,39(3):202-204.
    [127]吴爱东吴宜灿. CT图像的体元大小对EGSnrc蒙特卡罗剂量计算的影响[J],核技术2007,30(2):143-146.
    [128] B. R. B. Walters and D. W. O. Rogers. DOSXYZnrc Users Manual. NRC Report PIRS-794 (rev B), National Research Council of Canada, Ottawa, Canada, 2004.
    [129] I. Kawrakow. Accurate condensed history Monte Carlo simulation of electron transport.I. EGSnrc, the new EGS4 version, Med. Phys. 2000(27), 485–498.
    [130] I. Kawrakow. Accurate condensed history Monte Carlo simulation of electron transport.II. Application to ion chamber response simulations, Med. Phys. 2000 (27): 499–513.
    [131] http://www.comsol.com[EB/OL].
    [132]马慧,王刚主编.COMSOL Multiphysics基本操作指南和常见问题解答[M].北京:人民交通出版社. 2009.
    [133]汲长松核辐射探测器及其实验技术手册[M].北京:原子能出版社1990.
    [134] J. Benlloch, A. Bressan, M. Capeáns .etc. Further developments of the gas electron multiplier (GEM). The Wire Chamber Conference Vienna, February 22-26, 1998.
    [135]联宝.电真空器件的钎焊与陶瓷-金属封接[M].北京:国防工业出版社,1987.
    [136]莫纯昌.电真空工艺[M].北京:国防国防工业出版社,1984.
    [137]王晓军,刘天佐,何成旦.钛合金板与不锈钢丝网异质接头焊接[J].焊接学报.2006. 27(8): 91 - 94
    [138]刘春雨,韩伟实,李建平等.高气压电离室的设计研究[J].核动力工程.2006,(6):103~105.
    [139]安继刚,邬海峰.宝石封接件及其在充气电离室中的应用[J].原子能科学技术. 1982, (5):600-604

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700