基于模糊模型的非线性系统镇定控制和H_∞滤波研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的飞速发展,设计者们所研究的控制系统也越来越复杂,以至于很难对其建立足够精确的数学模型.在这种情况下,传统的控制理论便很难奏效.为了解决这类复杂系统的控制问题,人们发明了模糊控制理论并将其成功应用于工业过程控制、信号处理、智能机器、模式识别、医疗等领域.在过去的二十年里,模糊控制理论一直是一个热点研究领域;特别的,基于模糊模型的各种复杂非线性系统的镇定控制和H∞滤波问题吸引了众多研究者们的注意.研究者们致力于对已有方法的不断改进和在理论上的逐步完善等方面的研究且取得了许多优秀的研究成果.需要指出的是,随着控制性能要求的逐步提高,已有的模糊系统镇定控制和H∞滤波设计条件会因为其保守性较大而无法得到应用.因此,探索和研究更有效地模糊镇定控制和H∞滤波条件具有了重要的理论意义和应用价值.本文在总结已有方法的基础之上,进一步深入地研究了基于模糊模型的非线性系统的镇定控制和H∞滤波问题,主要创新工作如下:
     1.钊对连续时间T-S模糊系统的二次镇定控制问题,提出了两种减少T-S模糊控制系统二次镇定条件保守性的新方法.第一种方法通过有效的考虑不同模糊隶属函数之间乘积界的信息,引入了更多的自由矩阵变量,放松了已有二次镇定条件;另外一种方法基于对模糊隶属函数空间进行边界划分的思想,通过提出一种对模糊隶属函数空间进行边界划分的新算法来将整个模糊隶属函数空间人为划分为若干个子空间,然后基于这些子空间基础之上设计一种新型的模糊切换控制器,获得了能够减少连续时间T-S模糊系统二次镇定条件保守性的一种新思路.
     2.针对连续时间T-S模糊系统的稳定性分析和非二次镇定控制问题,提出了基于一种新颖的增广多指标矩阵方法的放松性稳定性条件和非二次镇定条件.在开环T-S模糊系统稳定性条件的推导过程中,先利用了著名的Finsler引理来扩展系统的整个设计空间;然后引入了一种高阶依赖于模糊隶属函数的齐次矩阵多项式型拉格朗日乘子,进而运用一种新颖的增广多指标矩阵方法推导出保守性更小的开环T-S模糊系统稳定性条件.在非二次镇定条件的设计时,提出了一种新型的非-PDC控制律,这种状态反馈控制律高阶依赖于模糊隶属函数,因而能够更好的利用模糊隶属函数的有用信息;然后结合齐次矩阵多项式技术和增广多指标矩阵方法推导出放松性的非二次镇定条件,大大减少了已有结果的保守性.
     3.针对离散时间T-S模糊系统的非二次镇定控制问题,从改进李亚普诺夫函数和设计新型的模糊状态反馈控制律两个方面进行减少结果保守性的探索.设计了一种新型的非-PDC控制律(这里称之为齐次多项式非二次控制律,HPNQCL)来对闭环T-S模糊控制系统进行镇定控制;在控制综合过程中选取了一种模糊隶属函数高阶依赖型李亚普诺夫函数,再结合模糊隶属函数的代数特性将所得的参数化矩阵不等式条件分解成一组线性矩阵不等式条件;并且利用Polya's定理证明了当所选取两个设计变量值足够大时可以得到保证该参数化矩阵不等式成立的充分必要条件.另外,也在理论上与已有的一些相关研究成果进行了比较,从保守性的大小和计算效率的高低两个方面证明了本文所提方法的有效性.
     4.针对一类离散时间T-S模糊系统的H∞滤波问题,提出了一种新型的模糊H∞滤波器的设计方案,即,齐次多项式参数依赖(HPPD)型模糊H∞滤波器.与已有的基于并行分布补偿控制思想下的模糊H∞滤波器不同,本文设计的这种HPPD型H∞滤波器高阶依赖于模糊隶属函数;可以引入了更多的滤波设计矩阵变量,因而具备很大的可以减少滤波设计保守性的潜力.在H∞滤波器设计过程中,还提出了一种可以保证齐次多项参数依赖式型李亚普诺夫矩阵严格正定的放松性线性矩阵不等式方法,有效的利用了模糊隶属函数的信息,进而得到比以往结果保守性更小的模糊H∞滤波条件.
     5.针对一类连续时间非线性随机系统的H∞滤波问题,提出了一种基于模糊双曲正切模型的H∞滤波设计方案.由于模糊双曲正切模型的一些特点,避免了在利用T-S模糊李亚普诺夫函数对连续时间T-S模糊系统进行H∞滤波设计时需要涉及到模糊隶属函数对时间导数的问题,并且所设计的模糊双曲H∞滤波器具有结构简单和性能良好等优点,是当性能指标与所需计算量之间发生矛盾时可以选择的一个理想的折中化设计方案.
     6.针对离散时间Roesser型非线性二维系统的镇定控制问题,提出了三种基于T-S模糊模型的非线性二维系统控制策略.分别设计了用来镇定Roesser型二维T-S模糊系统的PDC控制律、非-PDC控制律和齐次多项式非二次控制律.在控制设计中,还提出了几种针对二维T-S模糊系统镇定条件的松弛矩阵变量方法来减少了相应镇定条件的保守性.最后,又提出一种基于齐次多项式参数依赖型李亚普诺夫函数的Roesser型二维T-S模糊系统镇定方法.与常规的1-D系统不同,针对Roesser型二维系统进行齐次多项式参数依赖型李亚普诺夫函数的差分计算时会产生水平和垂直两个方向前向一步模糊隶属函数.我们在控制综合中克服了这个困难并且利用一些改进的齐次矩阵多项式技术得到了保守性很小的镇定条件.
     最后,指出了基于模糊模型的非线性系统镇定控制和H∞滤波设计方法研究中一些尚未解决的问题,并对接下来的研究工作进行了展望.
With the fast development of the science and technology, control systems inves-tigated by the designers becomes more and more complex, so it is hard to establish its mathematical model with satisfied precisions. In this case, the conventional con-trol theory is not applicable. With the purpose of resolving this problem, people have invented the fuzzy control theory, and it has also been successfully applied to many fields, such as industrial process control, signal processing, intelligent machine, pattern recognition, and medicine. Over the past two decades, fuzzy control theory has been an active research field. In particular, stabilization and H∞filtering of nonlinear systems based on fuzzy models have attracted wide attention from many investigators. They have been applied themselves to the improvement and gener-alization of existing results and many valuable productions have been achieved. It is worth noting that the existing conditions of fuzzy stabilization and H∞filtering will fail to work while the requirement of the control performance index gradually increases. Therefore, the research on exploiting more effective conditions for fuzzy stabilization and H∞, filtering is significant on academic and practical aspects. Based on the precious work of other researchers, this thesis further investigates the prob-lem of stabilization and H∞filtering of nonlinear systems via fuzzy models, and the main contributions of this dissertation are as follows:
     1. For the problem of quadratic stabilization of continuous-time T-S fuzzy sys-tems, two kinds of relaxed quadratic stabilization conditions are proposed. The first one is developed by considering the bounds of different fuzzy mem-bership functions'cross products. More free matrix variables are introduced and hence the conservatism is further reduced. The other one is based on the viewpoint of dividing the fuzzy membership functions space by applying the simplex edgewise subdivision approach. A new simplex edgewise subdivi-sion algorithm is proposed and thus the fuzzy membership functions space is divided into a lot of sub-spaces. Then, a novel kind of fuzzy switching con-troller is designed for relaxing the quadratic stabilization of continuous-time T-S fuzzy systems.
     2. For the problem of stability analysis and non-quadratic stabilization of continuous-time T-S fuzzy systems, relaxed stability conditions and non-quadratic stabilization conditions are proposed by applying a novel kind of augmented multi-indexed matrix approach. In the derivation process of sta-bility analysis of opened-loop T-S fuzzy systems, the famous Finsler lemma is used for enlarging the design space, and homogeneous matrix polynomial-type Lagrange multipliers, which is parameter-dependent on fuzzy membership function with a higher degree, are introduced. Then a new augmented multi-indexed matrix approach is developed for achieving less conservative stability conditions of opened-loop T-S fuzzy systems. In the derivation process of non-quadratic stabilization of closed-loop T-S fuzzy systems, a new kind of non-PDC control scheme, which is parameter-dependent on fuzzy member-ship function with a higher degree, is proposed for making good use of the information of fuzzy membership functions; thus relaxed non-quadratic stabi-lization conditions are obtained by applying both the homogenous polynomial technique and the augmented multi-indexed matrix approach while the con-servatism is further reduced.
     3. For the problem of non-quadratic stabilization of discrete-time T-S fuzzy sys-tems, less conservative non-quadratic stabilization conditions are developed by both improving the form of Lyapunov function and designing new fuzzy state feedback control scheme. A new kind of non-PDC control scheme(named as homogenous polynomial non-quadratic control scheme (HPNQCL) here) is proposed to stabilizing the closed-loop T-S fuzzy control systems; then a Lya-punuov function which is parameter-dependent on fuzzy membership functions with an higher degree is selected for implementing the control synthesis. The algebraic properties of fuzzy membership functions are exploited to convert the attained parameterized matrix inequality into a sequence of linear matrix inequalities. As the values of two design variables tend to sufficiently large, the exactness of ensuring the attained parameterized matrix inequality is cer-tificated by using the Polya's theorem. Moreover, the advantages over those existing ones are also certificated in theory. It shows that the one in this thesis is both less conservative and more efficient in computations.
     4. For the problem of H∞filtering of a class of discrete-time T-S fuzzy systems, a novel fuzzy H∞filter is developed, i.e., homogenous polynomial parameter-dependent (HPPD) H∞filter. Unlike to the usual fuzzy H∞, filters which is motivated by the viewpoint of parallel distributed compensation, the one pro- vided in this thesis is parameter-dependent on fuzzy membership functions with a higher degree; more filtering matrix variables are introduced, and hence it has the potential of further reducing the conservatism. In the process of H^filtering, the positivity of the underlying homogenous polynomial parameter-dependent Lyapunov matrix is ensured by proposing a relaxed linear matrix inequality method; the information of fuzzy membership functions is effectively utilized and less conservative fuzzy H∞filtering condition is obtained.
     5. For the problem of H∞filtering of a class of continuous-time nonlinear stochas-tic systems, a kind of H∞filtering is proposed based on the fuzzy hyperbolic tangent model. Due to some characteristics of the fuzzy hyperbolic tangent model, the problem that the fuzzy membership functions'time derivatives are involved in the process of H∞, filtering via the T-S fuzzy Lyapunov functions are avoided. The obtained fuzzy H∞filter is with a simple structure and nicer performance. This is a good tradeoff between the performance and the required computational burden.
     6. For the problem of stabilization of discrete-time Roesser nonlinear two-dimensional(2-D) system, three kinds of control schemes are proposed based on the T-S fuzzy model, i.e., the PDC control scheme, the non-PDC con-trol scheme and the homogenous polynomial non-quadratic control scheme for2-D T-S fuzzy systems respectively. In the process of control synthesis, sev-eral kinds of new slack matrix variable approaches are proposed for relaxing the stabilization conditions of the Roesser2-D T-S fuzzy systems. Finally, a homogenous polynomial parameter-dependent Lyapunov function is proposed for conceiving relaxed stabilization of the the Roesser2-D T-S fuzzy systems. Unlike to the usual1-D T-S fuzzy system, there will be two different one-step-ahead fuzzy membership functions along the horizonal direction and the vertical direction respectively when the variation of the underlying Lyapunov function is calculated. This obstacle is overcome in control synthesis and some improved homogenous polynomial techniques are also developed for further re-ducing the conservatism.
     Finally, some unsolved problems for control synthesis and H∞filtering of non-linear systems based on fuzzy models are pointed out. Furthermore, the prospects of the future study are also given.
引文
1李士勇.模糊控制、神经控制和智能控制理论[M],哈尔滨:哈尔滨工业大学出版社,1998.
    2 Zadeh L A. Fuzzy sets[J], Information and Control,1965,8(3):338-353.
    3姚尹武,熊金涛.一种神经网络自组织模糊控制[J],控制理论与应用,1996,13(6):738-744.
    4孙增圻.基于模糊状态模型的连续系统控制器设计和稳定性分析[J],自动化学报,1998,24(2):212-216.
    5应浩.关于模糊控制理论与应用的若干问题[J],自动化学报,2001,27(4):591592.
    6张天平.基于一种修改的李亚普诺夫函数的自适应模糊滑模控制[J],自动化学报,2002,28(1):137-142.
    7张化光,王智良,黎明,全永兵,张明君.广义模糊双曲正切模型:一个万能逼近器[J],自动化学报,2004,30(3):416-422.
    8刘亚,胡寿松.不确定非线性系统的模糊鲁棒跟踪控制[J],自动化学报,2004,30(6):949-953.
    9刘华平,孙富春,孙增圻,李春文.给予部分状态信息的模糊控制设计[J],自动化学报,2004,30(6):999-1003.
    10丁宝苍,孙鹤旭,乔玉娥.基于参数Lyapunov函数的T-S模糊控制系统的稳定性分析[J],自动化学报,2005,31(4):651-654.
    11张松涛,任光.基于分段Lyapunov方法的离散模糊系统分析[J],自动化学报,2006,32(5):813-818.
    12张大庆,张庆灵,胡跃冰.TS模糊系统稳定性的一个新的充分条件[J],自动化学报,2007,33(2):222-224.
    13杨珺.非线性系统的模糊控制与网络控制的研究[D].东北大学博士论文,2008.
    14巩诚.T-S模糊时滞系统的鲁棒H∞控制及滤波[D].哈尔滨工业大学博士论文,2008.
    15董久祥.T-S模糊系统的若干控制问题研究[D].东北大学博士论文,2008.
    16李永民.不确定T-S模糊时滞系统的鲁棒控制[D].南京理工大学博士论文,2009.
    17王利魁.离散Takagi-Sugeno模糊控制系统的稳定性研究[D].大连理工大学博士论文,2009.
    18杨军.模糊/随机时滞系统稳定性分析与设计的研究[D].电子科技大学博士论文,2009.
    19 Chen B, Liu X P. Fuzzy guaranteed cost control for nonlinear systems with time-varying delay [J]. IEEE Transactions on Fuzzy Systems,2005,13(2):238-249.
    20 Chen B, Liu X P, Liu K. Robust H∞ control of Takagi-Sugeno fuzzy systems with state and input time delays [J]. Fuzzy Sets and Systems,2009,160(4):403-422.
    21 Zhang H G, Wang Y C, Liu D R. Delay-dependent guaranteed cost control for un-certain stochastic fuzzy systems with multipli time delays [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2008,38(1):126-140.
    22 Zhang H G, Li M, Yang J, Yang D D. Fuzzy model-based robust networked control for a class of nonlinear systems [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,2009,39(2):437-447.
    23 Dong J X, Yang G H. Control synthesis of singularly perturbed fuzzy systems [J]. IEEE Transactions on Fuzzy Systems,2008,16(3):615-629.
    24 Yang G H, Dong J X. H∞ filtering for fuzzy singularly perturbed systems [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 2008,38(5):1371-1389.
    25 Lam H K, Leung F H F. Synchronization of uncertain chaotic systems based on the fuzzy-model-based appoach[J]. Int. J. Bifur. Chaos,2006,15(5):1435-1444.
    26刘云峰,杨小冈,缪栋,袁润平.基于模糊滑模的有限时间混沌同步实现[J].物理学报,2007,56(11):6250-6257.
    27杨东升,张化光,李爱平,孟子怡.基于模糊模型的不同结构的混沌系统同步[J].物理学报,2007,56(6):3121-3126.
    28 Lam H K, Ling W K, Iu H H C, Ling S S H. Synchronization of chaotic systems using time-delayed fuzzy state-feedback controller [J]. IEEE Trans. Circuits Syst. I, Reg. Papers,2008,55(3):893-903.
    29 Zhang H G, Zhao Y, Yu W, Yang D S. A unified approach to fuzzy modelling and robust synchronization of different hyperchaotic systems [J]. Chin. Phys. B, 2008,17(11):4056-4066.
    30 Zhang H G, Yang D D, Chai T Y. Guaranteed cost networked control for T-S fuzzy systems with time delay [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C,2007,37(2):160-172.
    31 Zhang H G, Cai L L, Bien Z. A fuzzy basis function vector-based multivari-able adaptive fuzzy controller for nonlinear systems [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2000,30(1):210-217.
    32 Zhang H G, Cai L L. Nonlinear adaptive control using the Fourier integral and its application to CSTR Systems [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2002,32(3):367-372.
    33 Zhang H G, Cai L L. Decentralized nonlinear control of a HVAC system [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C,2002,32(4):493-498.
    34 Liu X R, Zhang H G, Dai J. Delay-dependent robust and reliable H-infinite fuzzy hyperbolic decentralized control for a class of nonlinear large-scale systems [J]. Fuzzy Sets and Systems,2010,161(6):872-892.
    35 Wang Y C, Zhang H G, Wang Y Z. Fuzzy adaptive control of stochastic nonlin-ear systems with uncertain virtual control gain functions[J]. ACTA Automatica Sinica,2006,32(2):170-178.
    36刘曙光,王志宏,费佩燕.模糊控制的发展和展望[J],机电工程,2000,17(1):9-12.
    37王立新.模糊系统与模糊控制教程[M],北京:清华大学出版社,2003.
    38 Pedrycz W. An approach to the analysis of fuzzy systems[J]. Internatinoal Jornal of Control,1981,34(3):403-421.
    39陈建勤,吕剑虹,陈来九.模糊控制系统的闭环模型及稳定性分析[J],自动化学报,1994,20(1):1-9.
    40 Wang L X, Mendel J M. Fuzzy basis functions, universal approximation, and orthogonal least squares learning [J]. IEEE Transactions on Neural Networks, 1992,3(5):807-814.
    41 Su C Y, Stepanenko Y. Adaptive control of a class of nonlinear systems with fuzzy logic [J]. IEEE Transactions on Fuzzy Systems,1994,2(4):285-294.
    42 Chen B S, Lee C H, Chang Y C. H∞ tracking design of uncertain nonlinear SISO systems:Adaptive fuzzy approach[J]. IEEE Transactions on Fuzzy Systems, 1996,4(2):32-43.
    43 Spooner J T, Passino K M. Stable adaptive control using fuzzy systems and neural networks[J]. IEEE Transactions on Fuzzy Systems,1996,4(3):339-359.
    44 Tong S C, Li Q G, Chai T Y. Fuzzy adaptive control for a class of nonlinear systems[J]. Fuzzy Sets and Systems,1999,101(1):31-39.
    45 Chai T Y, Tong S C. Fuzzy direct adaptive control for a class of nonlinear systems,1999,103(3):379-387.
    46 Tong S C, Tang J T, Wang T. Fuzzy adaptive control of multivariable nonlinear systems[J]. Fuzzy Sets and Systems,2000,111(2):153-167.
    47 Yang Y C. Robust tracking control for nonlinear MIMO systems via fuzzy ap-proaches[J]. Automatica,2000,36(10):1535-1545.
    48 Li H X, Tong S C. A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems [J]. IEEE Transactions on Fuzzy Systems,2003,11(1):34-34.
    49 Golea N, Golea A, Benmahammed K. Stable indirect fuzzy adaptive control[J]. Fuzzy Sets and Systems,2003,137(3):353-366.
    50 Yang Y S, Zhou C J. Adaptive fuzzy H∞ stabilization for strictfeedback canonical nonlinear systems via backstepping and small-gain approach [J]. IEEE Transac-tions on Fuzzy Systems,2005,13(1):104-114.
    51 Zhou S S, Feng G, Feng C B. Robust control for a class of uncertain nonlinear systems:Adaptive fuzzy approach based on backstepping [J]. Fuzzy Sets and Systems,2005,151(1):1-20.
    52 Chen B, Liu X P. Fuzzy approximate disturbance decoupling of MIMO non-linear systems by backstepping and application to chemical processes[J]. IEEE Transactions on Fuzzy Systems,2005,13(6):832-847.
    53 Chiu C S. Mixed feedforward/feedback based adaptive fuzzy control for a class of MIMO nonlinear systems [J]. IEEE Transactions on Fuzzy Systems,2006,14(6): 716-727.
    54 Wang M, Chen B. Direct adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear systems [J]. Fuzzy Sets and Systems,2007,158(24): 2655-2670.
    55 Tong S C, He X L, Zhang H G. A combined backstepping and small-gain ap-proach to robust adaptive fuzzy output feedback control [J]. IEEE Transactions on Fuzzy Systems,2009,17(5):1059-1069.
    56 Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985,15(1):116-132.
    57 Tanaka T, Sugeno M. Stability analysis and design of fuzzy control systems[J]. Fuzzy Sets and Systems,1992,45(2):135-156.
    58 Takagi T, Sugeno M. A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer [J]. IEEE Transactions on Fuzzy Systems,1994,2(2):119-133.
    59 Cao S G, Rees N W, Feng G. Stability analysis of fuzzy control systems[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 1996,26(1):201-204.
    60 Cao S G, Rees N W, Feng G. Analysis and design for a class of complex control systems Part Ⅰ:Fuzzy modelling and identification [J]. Automatica,1997,33(6): 1017-1028.
    61 Cao S G, Rees N W, Feng G. Analysis and design for a class of complex control systems part Ⅱ:Fuzzy controller design [J]. Automatica,1997,33(6):1029-1039.
    62 Cao S G, Rees N W, Feng G. Stability analysis and design for a class of continuous-time fuzzy control systems [J]. International Journal of Control,1996, 64(6):1069-1087.
    63 Feng G, Cao S G, Rees N W. Design of fuzzy control systems with guaranteed stability [J]. Fuzzy Sets and Systems,1997,85(1):1-10.
    64 Zhang H G, Quan Y B. Modeling, identification and control of a class of nonlinear system [J]. IEEE Transactions on Fuzzy Systems,2001,9(2):349-354.
    65张化光,全永兵.模糊双曲正切模型的建模方法与控制器设计[J],自动化学报,2000,26(6):729-735.
    66全永兵.非线性系统的模糊建模与控制方法研究[D].东北大学博士论文,2001.
    67 Wang H O, Tanaka K, Griffin M F. An approach to fuzzy control of nonlinear systems:stability and design issues [J]. IEEE Transactions on Fuzzy Systems, 1996,4(1):14-23.
    68 Boyd S, Ghauoi L E, Ferin E, et. al. Linear matrix inequalities in system and control theory[M]. Philadelphia, PA:SIAN,1994.
    69 Tanaka K, Ikeda T, Wang H O. Robust stabilization of a class of uncertain nonlinear systems via fuzzy control:quadratic stabilizability, H∞ control theory, and linear matrix inequalities [J]. IEEE Transactions on Fuzzy Systems,1996, 4(1):1-13.
    70 Tanaka K, Wang H O. Fuzzy control systems design and analysis:A linear matrix inequality approach[M]. John Wiley & Sons, Inc.2001.
    71 Kim E, Lee H. New approaches to relaxed quadratic stability condition of fuzzy control systems [J]. IEEE Transactions on Fuzzy Systems,2000,8(5):523-534.
    72 Tuan H D, Apkarian P, Narikiyo T, Yamamoto Y. Paramterized linear matrix inequalities in fuzzy control system design[J]. IEEE Transactions on Fuzzy Sys-tems,2001,9(2):324-332.
    73 Teixeira M C M, Assuncao E, Avellar R G. On relaxed LMI-based designs for fuzzy regulators and fuzzy observers [J]. IEEE Transactions on Fuzzy Systems, 2003,11(5):613-623.
    74 Liu X D, Zhang Q L. Approaches to quadratic stability conditions and H∞ control designs for T-S fuzzy systems[J]. IEEE Transactions on Fuzzy Systems, 2003,11(6):830-839.
    75 Liu X D, Zhang Q L. New approaches to controller designs based on fuzzy ob-serceers for T-S fuzzy systems via LMI[J]. Automatica,2003,39(9):1571-1582.
    76 Fang C H, Liu Y S, Kau S W, Hong L, Lee C H. A new LMI-based approach to relaxed quadratic stabilization of Takagi-Sugeno fuzzy control systems [J]. IEEE Transactions on Fuzzy Systems,2006,14(3):386-397.
    77 Sala A T, Guerra T M, Babuska R. Perspectives of fuzzy systems and control[J]. Fuzzy Sets and Systems,2005,156(3):432-444.
    78 Delmotte F, Guerra T M, Ksantini M. Continuous Takagi-Sugeno's models:re-duction of the number of LMI conditions in various fuzzy control design tech-nics[J]. IEEE Transactions on Fuzzy Systems,2009,17(3):426-438.
    79 Sala A T, Arino C. Asymptotically necessary and sufficient conditions for stabil-ity and performance in fuzzy control:Applications of Poly's theorem [J]. Fuzzy Sets and Systems,2007,158(24):2671-2686.
    80 Montagner V F, Oliveira R C L F, Peres P L D. Convergent LMI relaxtions for quadratic stabilizability and H∞ control of Takagi-Sugeno fuzzy systems[J]. IEEE Transactions on Fuzzy Systems,2009,17(4):863-873.
    81 Johansson M, Rantzer A, Arzen K. Piecewise quadratic stability of fuzzy sys-tems[J]. IEEE Transactions on Fuzzy Systems,1999,7(6):713-722.
    82 Feng G. Controller synthesis of fuzzy dynamical systems based on peicewise Lyapunov functions[J]. IEEE Transactions on Fuzzy Systems,2003,11(5):605-612.
    83 Feng G, Sun D. Generalized H2 controller synthesis of fuzzy dynamic systems based on piecewise lyapunov functions [J]. IEEE Transactions on Circuits and Systems-Ⅰ:Fundamental Theory and Applications,2002,49(12):1843-1850.
    84 Wang L, Feng G. Piecewise H∞ controller design of discrete time fuzzy sys-tems[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cyber-netics,2004,34(1):682-686.
    85 Feng G. H∞ controller design of fuzzy dynamic systems based on piecewise Lya-punov functions [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2004,34(1):283-292.
    86 Feng G, Chen C L, Sun D, Zhu Y. Controller synthesis of fuzzy dynamical systems based on peicewise Lyapunov functions [J]. IEEE Transactions on Fuzzy Systems,2005,13(1):94-103.
    87 Feng G. A survey on analysis and design of model-based fuzzy control systems [J]. IEEE Transactions on Fuzzy Systems,2006,14(5):676-697.
    88 Wang W J, Chen Y J, Sun C H. Relaxed stabilization criteria for discrete-time T-S fuzzy control systems based on a switching fuzzy model and piecewise Lyapunov function[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2007,37(3):551-559.
    89 Daafouz J, Bernussou J. Parameter dependent Lyapunov functions for discrete time systems with time varying parameteric uncertainties [J]. Systems & Control Letters,2001,43(5):355-359.
    90 Guerra T M, Vermeiren L. LMI-based relaxed nonquadratic stabilization condi-tions for nonlinear systems in Takagi-Sugeno form[J]. Automatica,2004,40(5): 823-829.
    91 Ding B C, Sun H X, Yang P. Further studies on LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in Takagi-Sugeno form[J]. Auto-matica,2006,42(3):503-508.
    92 Ding B C. Poly-quadratic stability of discrete-time nonlinear systems in Takagi-Sugeno Model's form[J]. Asian Journal of Control,2009,11(6):610-619.
    93 Ding B C, Huang B. Reformulation of LMI-based stabilization conditions for non-linear systems in Takagi-Sugeno's form[J]. International Journal of Systems Science,2008,39(5):487-496.
    94 Ding B C. Stabilization of Takagi-Sugeno Model via Non-parallel Distributed Compsensation Law[J]. IEEE Transactions on Fuzzy Systems,2010,18(1):188-194.
    95 Wang L K, Liu X D. Stability analysis for discrete-time fuzzy system by utilizing homogeneous polynomial matrix function [J]. Asian Journal of Control,2009, 11(6):700-706.
    96 Lee D H, Park J B, Joo Y H. Improvement on non-quadratic stabilization of discrete-time Takagi-Sugeno fuzzy systems:multiple-parameterization ap-proach[J]. IEEE Transactions on Fuzzy Systems,2010,18(2):425-429.
    97 Lo J C, Tsai C F. LMI relaxations for non-quadratic discrete stablization via Polya theorem [C]. Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, P.R. China,2009,7430-7435.
    98 Ding B C, Zou T. Asymptotically necessary and sufficient stability with re-spect to nonquadratic Lyapunov function for Takagi-Sugeno model[C]. Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, P.R. China,2009,4162-4167.
    99 Kruszewski A, Wang R, Guerra T M. Nonquadratic stabilizations for a class of uncertain nonlinear discrete time TS fuzzy models:a new approach [J]. IEEE Transactions on Automatic Control,2008,53(2):606-611.
    100 Guerra T M, Kruszewski A, Bernal M. Control law proposition for the stabiliza-tion of discrete Takagi-Sugeno modles[J]. IEEE Transactions on Fuzzy Systems, 2009,17(3):724-731.
    101 Guerra T M, Kruszewski A, Lauber J. Discrete Takagi-Sugeno modls for control: where are we?[J]. Annual Reviews in Control,2009,33(1):37-47.
    102 Tanaka K, Hori T, Wang H O. A multiple Lyapunov function approach to stabilization of fuzzy control systems[J]. IEEE Transactions on Fuzzy Systems, 2003,11(4):582-589.
    103 Tanaka K, Hori T, Wang H O. A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions[J]. IEEE Transactions on Fuzzy Systems,2007,15(3):333-341.
    104 Lam H K, Leung F H F. LMI-based stability and performance conditions for continuous-time nonlinear systems in Takagi-Sugeno's form[J]. IEEE Transac-tions on Systems, Man, and Cybernetics-Part B:Cybernetics,2007,37(5):1396-1406.
    105 Lam H K. Stability analysis of T-S fuzzy control systems using parameter-dependent Lyapunov function[J]. IET Control Theory and Applications,2009, 3(6):750-762.
    106 Mozelli L A, Palhares R M, Avellar G S C. A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy sys-tems [J]. Information Sciences,2009,179(8):1149-1162.
    107 Mozelli L A, Palhares R M, Souza F O, Mendes E M A M. Reducing conserva-tiveness in recent stability conditions of TS fuzzy systems [J]. Automatica,2009, 45(6):1580-1583.
    108 Rhee B J, Won S. A new Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[J]. Fuzzy Sets and Systems,2006,157(9):1211-1228.
    109 Li J, Zhou S S, Xu S Y. Fuzzy control system design via fuzzy Lyapunoov functions [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cy-bernetics,2008,38(6):1657-1661.
    110 Ohtake H, Tanaka K, Wang H O. Switching fuzzy controller design based on switching Lyapunov function for a class of nonlinear systems [J]. IEEE Trans-actions on Systems, Man, and Cybernetics-Part B:Cybernetics,2006,36(1): 13-22.
    111 Dong J X, Yang G H. State feedback control of continuous-time T-S fuzzy systems via switched fuzzy controllers [J]. Information Sciences,2008,178(6): 1680-1685.
    112 Dong J X, Yang G H. Dynamic output feedback control synthesis for continuous-time T-S fuzzy systems via a switched fuzzy control scheme[J]. IEEE Trans-actions on Systems, Man, and Cybernetics-Part B:Cybernetics,2008,38(4): 1166-1175.
    113 Dong J X, Yang G H. Dynamic output feedback H∞ control synthesis for discrete-time T-S fuzzy systems via switching fuzzy controllers [J]. Fuzzy Sets and Systems,2009,160(4):482-499.
    114 Dong J X, Yang G H. Static output feedback H∞ control of a class of nonlinear discrete-time systems [J]. Fuzzy Sets and Systems,2009,160(19):2844-2859.
    115 Dong J X, Wang Y Y, Yang G H. Control synthesis of continuous-time T-S fuzzy fystems with local nonlinear models [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2009,39(5):1245-1258.
    116 Yang G H, Dong J X. Switching fuzzy dynamic output feedback H∞ control for nonlinear systems [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2010,40(2):505-516.
    117 Dong J X, Yang G H. H∞ controller synthesis via switched PDC scheme for discrete-time T-S fuzzy systems [J]. IEEE Transactions on Fuzzy Systems,2009, 17(3):544-555.
    118 Sala A, Arino C. Relaxed stability and performace conditions for Takagi-Sugeno fuzzy systems with knowledge on membership function overlap [J]. IEEE Trans-actions on Systems, Man, and Cybernetics-Part B:Cybernetics,2007,37(3): 727-732.
    119 Sala A, Arino C. Relaxed stability and performace conditions for Takagi-Sugeno fuzzy systems with polynomial constraints on membership function shapes [J]. IEEE Transactions on Fuzzy Systems,2008,16(5):1328-1336.
    120 Lian K Y, Tu H W, Liou J J. Stability conditions for LMI-based fuzzy con-trol from viewpoint of membership functions [J]. IEEE Transactions on Fuzzy Systems,2006,14(6):874-884.
    121 Narimani M, Lam H K. Relaxed LMI-based stability conditions for Takagi-Sugeno fuzzy control systems using regional membership-function-shape-dependent analysis approach [J]. IEEE Transactions on Fuzzy Systems,2009, 17(5):1221-1228.
    122 Bernal M, Guerra T M, Kruszewski A. A membership-function-dependent ap-proach for stability analysis and controller synthesis of Takagi-Sugeno models [J]. Fuzzy Sets and Systems,2009,160(19):2776-2795.
    123 Kruszewski A. Sala A. Guerra T M, Arino C. A triangulation approach to asymptotically exact conditions for fuzzy summations [J]. IEEE Transactions on Fuzzy Systems,2009,17(5):985-994.
    124 Parrilo P A. Structure semidefinite programs and semialgebraic geometly meth-ods in robustness and optimization[D]. California Inst. Technol., Pasadena,2000.
    125 Tanaka K, Yoshida H, Ohtake H, Wang H O. A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems[J]. IEEE Transactions on Fuzzy Systems,2009,17(4):911-922.
    126 Sala A, Arino C. Polynomial fuzzy models for nonlinear control:a taylor series approach[J]. IEEE Transactions on Fuzzy Systems,2009,17(6):1284-1295.
    127 Fu M Y. Interpolation approach to H∞ optimal estimation and its intercon-nection to loop transfer recovery [J]. Systems & Control Letters,1991,17(1): 29-36.
    128 Grimble M J, Sayed A E. Solution of the H∞ optimal linear fltering problem for discrete-time systems [J]. IEEE Transactions on Acoustics Speech and Signal Processing,1990,38(7):1092-1104.
    129 Fu M Y, Souza C E, Xie L H. H∞ estimation for uncerain systems[[J]. Interna-tional Journal of Robust and Nonlinear Control,1992,2(2):87-105.
    130 Xie L H, Souza C E, Fu M Y. H∞ estimation for nonlinear discrete time uncer-tain systems [[J]. International Journal of Robust and Nonlinear Control,1991, 1(2):111-123.
    131 Yaesh I, Shaked U. Games theory approach to optimal linear state estimation and its relation to the minimum H∞-norm estimation [J]. IEEE Transactions on Automatic Control,1992,37(6):828-831.
    132 Fridman E, Shaked U. A new H∞ flter design for linear time delay systems [J]. IEEE Transactions on Signal Processing,2001,49(11):2839-2843.
    133 Xu S Y, Chen T W. An LMI approach to the H∞ filter design for uncertain systems with distributed delays[J]. IEEE Transactions on Circuits Syst. II, Exp. Briefs,2004,51(4):195-201.
    134 He Y, Wang Q G, Lin C. An improved H∞ filter design for systems with time-varying interval delay [J]. IEEE Transactions on Circuits Syst. II, Exp. Briefs, 2006,53(11):1235-1239.
    135 Wei G, Wang Z, He X, Shu H. Filtering for networked stochastic time-delay systems with sector nonlinearity[J]. IEEE Transactions on Circuits Syst. II, Exp. Briefs,2009,56(1):71-75.
    136 Tseng C, Chen B. Fuzzy H∞ fuzzy estimation for a class of nonlinear discrete-time dynamic system [J]. IEEE Transactions on Signal Processing,2001,49(10): 2605-2619.
    137 Assawinchaichote W, Nguang S K. H∞ filtering for fuzzy singularly perturbed systems with pole placement constraints:An LMI approach [J]. IEEE Transac-tions on Signal Processing,2004,52(6):1659-1667.
    138 Lin Y, Lo J C. Robust mixed H2/H∞ filtering for time-delay systems with pole placement constraints:An LMI approach[J]. IEEE Transactions on Signal Processing,2006,54(8):2897-2909.
    139 Zhang H G, Lun S X, Liu D R. Fuzzy H∞ design for a class of nonlinear discrete-time systems with multiple time delays[J]. IEEE Transactions on Fuzzy Systems, 2007,15(3):453-469.
    140 Chen B, Lin C, Wang Q G, Lee T. H∞ filter design for nonlinear systems with time-delay through T-S fuzzy model approach[J]. IEEE Transactions on Fuzzy Systems,2008,16(3):739-745.
    141 Zhang J H, Xia Y Q, Tao R. New results on H∞ filtering for fuzzy time-delay systems [J]. IEEE Transactions on Fuzzy Systems,2009,17(1):128-137.
    142 Su Y, Chen B, Lin C, Zhang H. A new fuzzy H∞ filter design for nonlinear continuous-time dynamic systems with time-varying delays[J]. Fuzzy Sets and Systems,2009,160(24):3539-3549.
    143 Feng G. Robust H∞ filtering of fuzzy dynamic system[J]. IEEE Transactions on Electron. Syst.,2005,41(2):295-301.
    144 Chen C L, Liu H, Guan X P. H∞ filtering of time-delay T-S fuzzy systems based on piecewse Lyapunov-Krasovskii functional [J]. Signal Processing,2009,89(9): 1998-2005.
    145 Zhou S S, Lam J, Xue A K. H∞ filtering of discrete-time fuzzy systems via basis-dependent Lyapunov function approach[J]. Fuzzy Sets and Systems,2007, 158(2):180-193.
    146 Li Z, Xu S Y. Fuzzy weighting-dependent approach to robust L2-L∞ filter design for delayed fuzzy systems [J]. Signal Processing,2009,89(2):463-471.
    147 Qiu J B, Feng G, Yang J. A new design of delay-dependent robust H∞ filtering for discrete-time T-S fuzzy systems with time-varying delay [J]. IEEE Transac-tions on Fuzzy Systems,2009,17(5):1044-1058.
    148 Gao H J, Zhao Y, Lam J, Chen K. H∞ fuzzy filtering of nonlinear systems with intermittent measurements [J]. IEEE Transactions on Fuzzy Systems,2009, 17(2):291-300.
    149 Zhang J H, Xia Y Q. New LMI approach to fuzzy H∞ filter designs[J]. IEEE Transactions on Circuits and Systems-Ⅱ: Express Briefs,2009,56(9):739-743.
    150 Lun S X, Zhang H G. Fuzzy H∞ filter design for a class of nonlinear systems with time delays via LMI[J]. Acta Automatica Sinica,2005,31(3):394-401.
    151伦淑娴,张化光.一类非线性时滞离散系统模糊滤波器的设计[J],电子学报,2005,33(2):231-235.
    152伦淑娴.多变量非线性系统的模糊H∞滤波方法研究[D].东北大学博士论文,2005.
    153 Lun S X, Zhang H G, Liu D R. Fuzzy hyperbolic H∞ filter design for a class of nonlinear continuous-time systems[C]. The Proceeding of 43th IEEE Conference on Decision and Control,2004,225-230.
    154杨成梧,邹云.2-D线性离散系统[M],北京:国防工业出版社,1995.
    155 Fornasini E, Marchesini G. State-space realization theory of two-dimensional filters[J]. IEEE Transactions on Automatic Control,1976,21(4):484-492.
    156 Roesser R P. A discrete state-space model for linear image processing[J]. IEEE Transactions on Automatic Control,1975,20(1):1-10.
    157 Fu P L, Chen J, Niculescu S I. Generalized eigenvalue-based stability tests for 2-D linear systems:necessary and sufficient conditions [J]. Automatica,2006, 42(9):1569-1576.
    158 Owens D H, Amann N, Rogers E, French M. Analysis of linear iterative learn-ing control schemes—a 2D systems/repetitive processes approach[J]. Multidimen-sional Systems and Signal Processing,2000,11(1-2):125-177.
    159 Sulikowski B, Galkowski K, Rogers E, Owens D H. Output feedback control of discrtete linear repetitive process [J]. Automatica,2004,40(12):2167-2173.
    160 Sulikowski B, Galkowski K, Rogers E, Owens D H. PI control of discrete linear repetitive processes [J]. Automatica,2006,42(3):877-880.
    161 Xu J M, Yu L. H∞ control for 2-D discrete state delyed systems in the second FM method[J]. ACTA Automatica SINICA,2008,34(7):809-813.
    162徐慧玲,邹云.不确定2-D奇异系统Roesser模型鲁棒能稳的矩阵不等式方法[J],控制与决策,2004,19(11):1318-1320.
    163 Wu L G, Shi P, Gao H J, Wang C H. H∞ filtering for 2D Markovian jump systems[J]. Automatica,2008,44(7):1849-1858.
    164 Singh V. Stability of 2-D discrete systems described by the Fornasini-Marchesini second model with state saturation[J]. IEEE Transactions on Circuits and Systems-Ⅱ:Express Briefs,2008,55(8):793-796.
    165 Galkowski K, Rogers E, Xu S Y, Lam J, Owens D H. LMIs-A fundamental tool in analysis and controller design for discrete linear repeitive process [J]. IEEE Transactions on Automatic Control,2002,49(6):768-778.
    166 Xie X P, Zhang H G. Stabilization of Discrete-time 2-D T-S Fuzzy Systems Based on New Relaxed Conditions [J]. ACTA Automatica SINICA,2010,36(2): 267-273.
    167 Hardy G H, Littlewood J E, Polya G. Inequalities, second ed.[M]. Cambridge Unversity Press, Cambridge, UK,1952.
    168 Xie L H, Fu M Y, De souza C E. H∞ control and quadratic stabilization of systems with parameter uncertainty via output feedback[J]. IEEE Transactions on Automatic Control,1992,37(8):1253-1256.
    169 De Oliveria M C, Skelton R E. Stability tests for constrained linear systems [J]. Prespective in Robust Control, ser. Lecture Notes in Control and Information Science, S. O. rezaMoheimani, Ed. New York:Springer-Verlag,2001,268:241-257.
    170 Edelsbrunner H, Grayson D R. Edgewise subdivision of a simplex[J]. Discrete Comput. Geom.,2000,24:707-719.
    171 Wang Y N, Tan W, Duan F. Robust fuzzy control for chaotic dynamics in Lorenz systems with uncertainties[J]. Chinese Physics,2006,15(1):89-95.
    172 Oliveira R C L F, Peres P L D. Stability of polytopes of matrices via affine parameter-dependent Lyapunov functions:asymptotically exact LMI condi-tions[J]. Linear Algebra and Its applications,2005,405(7):209-228.
    173 Oliveira R C L F, Peres P L D. Parametr-dependent LMIs in robust analysis: characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations [J]. IEEE Transactions on Automatic Control,2007,52(7): 1334-1340.
    174 Sala A, Arino C. Design of multipli-parameterisation PDC controllers via re-laxed conditions for multi-dimensional fuzzy summations[C]. In Proc. IEEE In-ternational Conference on Fuzzy Systems 2007,2007,1-6.
    175 De Oliveira J V, Bernussou J, Geromel J C. A new discrete-time robust stability condition[J]. System & Control Letters,1999,37(4):261-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700