轻型车用柴油机预混合低温燃烧机理及排放控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机的燃烧过程对其动力性、经济性和排放性能有着举足轻重的影响。随着内燃机日益向高效节能与环保方向发展,突破柴油机传统燃烧模式下有害排放物的生成极限,新一代内燃机燃烧理论与技术的创新研究成为了各国内外学者的关注热点。本文针对小缸径轻型车用柴油机燃烧系统结构紧凑、均质混合气制备和燃烧过程组织困难的特点,开展了基于适时早喷结合高比例冷却EGR实现预混合低温燃烧的研究。通过缸内工作过程可视化、缸内压力采集、台架性能试验及燃烧过程三维数值模拟计算,系统的研究了燃油喷射策略、进气系统参数及燃油在燃烧室内的空间分布对预混合低温燃烧过程和污染物排放的影响规律,探索小缸径柴油机均质混合气制备、低温燃烧过程控制的有效途径,以达到高效清洁燃烧的目标,为预混合低温燃烧技术的工程应用奠定理论基础。
     研究首先通过缸内燃烧过程可视化试验,探明提前喷射和降低进气氧浓度对实现预混合燃烧和降低燃烧温度的作用机理,验证实现预混合低温燃烧的可行性。试验结果表明:喷射正时提前有利于延长油气混合时间,显著减少着火和燃烧过程中的扩散火焰,是实现预混合燃烧的有效措施;早喷射策略下,预混合燃烧比例增加,缸内碳烟生成区域显著减小,且高浓度区域所占的比例较低;高比例EGR的引入,使氧浓度减少,进一步延长油气混合时间,提高油气混合质量,减少扩散燃烧;随着进气氧浓度的降低,扩散火焰明亮程度减弱,缸内扩散火焰面积和缸内碳烟生成区域均呈现减少的趋势,但是碳烟高浓度区域所占比例略有上升。
     基于缸内压力采集和台架性能试验,系统研究了喷射正时、喷射压力、进气氧浓度、进气温度等燃烧控制参数对预混合低温燃烧过程和排放性能的影响规律,结果表明:采用提前喷射策略,延长滞燃期、改善滞燃期内的油气混合是降低碳烟排放的关键;降低进气氧浓度能有效控制预混合燃烧温度,抑制NOx污染物生成,推迟预混合燃烧过早的燃烧相位,有利于提高燃烧效率,改善燃油经济性;10%和25%负荷工况下,提高喷射压力能够同时改善预混合低温燃烧模式下的NOx和碳烟的排放,中等负荷工况下,喷射压力的提高导致NOx排放上升和燃油经济性下降;预混合低温燃烧模式下通过降低进气温度推迟过早的燃烧相位,有利于提高燃烧效率,同时降低缸内燃烧温度,抑制NOx的生成,10%负荷工况,适当的提高进气温度有利于减少碳烟排放,25%和50%负荷工况,进气中冷对降低碳烟排放有着显著的效果。
     多次喷射策略是拓展预混合低温燃烧运行区域,改善NOx和碳烟排放Trade-off关系的有效措施。预喷射的引入,减小了主喷油量的同时缩短主喷燃油的着火滞燃期,放热相位提前,放热率峰值下降,能够有效抑制NOx的生成,不同的预喷射参数对碳烟排放有着不同的影响。后喷射的引入对燃烧过程的影响主要是降低主喷燃油的燃烧放热率和提升主喷燃油放热后期缸内温度。引入后喷射后NOx能够得到有效改善,碳烟的排放则与后喷射参数的调节有关,只有在适当的正时下实施适量的后喷射才能同时改善NOx和碳烟排放。通过不同负荷工况下预混合低温燃烧过程和排放的优化,确定了实现高效清洁燃烧的关键控制参数和控制策略。10%、25%和50%负荷工况NOx排放与原机相比分别降低97.8%、80.7%和72.6%,碳烟排放分别降低76.1%、93.9%和74.3%,有效燃油消耗率仅分别上升3.6%、4.7%和2.8%。
     最后从减少试验工作量和提高研究效率的角度出发,借助AVL Fire计算软件建立柴油机预混合低温燃烧数值模拟计算模型,为更加深入有效的开展预混合低温燃烧基础理论和应用研究创造了条件。通过柴油机预混合低温燃烧三维数值模拟计算,研究了燃油油束在燃烧室内的轴向分布对油气混合和污染物排放的影响。研究表明,1450r/min转速,25%负荷工况,155°、150°和145°三个喷射锥角下,NOx排放随着喷射锥角的减小呈现先增加后减小的趋势,而Soot则与之相反;NOx和Soot排放随着有效容积比的变化存在着一定的规律,折衷考虑NOx和Soot的排放,基于适时早喷策略的预混合低温燃烧模式较传统燃烧模式应适当减小有效容积比。
The combustion process of diesel engines has a significant effect on the power, economy and emission performance. As internal combustion engines tend to be highly effective, energy-saving and environmentally friendly, all the scholars of the world in this area concentrate on creatively developing the combustion theories and techniques for the oncoming generation of engines in order to break through the emission limits of conventional diesel engines. Aiming at the difficulties of forming the homogeneous charge and organizing the combustion progress for the compact structure of light-duty vehicle diesel engines, the research in this dissertation is based upon advanced injection combined with high proportion cooling EGR to achieve the low-temperature premixed combustion. Taking advantage of in-cylinder working process visualization, pressure information acquisition, performance bench test and3-D combustion process simulation as well, the effects of fuel injection strategies, intake system parameters and space distribution of fuel inside the chamber on the low-temperature premixed combustion process and pollutants emissions are studied systematically, which explores the effective ways for forming the homogeneous charge and controlling the low-temperature combustion progress so that the theoretical principle of low-temperature premixed combustion techniques for engineering application is built.
     At first, visualization test for in-cylinder combustion process is conducted to investigate the mechanism of action that advancing injection and decreasing the intake oxygen concentration act on realizing premixed combustion and reducing combustion temperature, and to verify the possibility of actualizing low-temperature premixed combustion. The test indicates that advancing the injection timing is an effective way to realizing premixed combustion for it can prolong the time for mixing the fuel and gas so that the diffusion flames will be evidently reduced. With the advanced injection strategy, the proportion of premixed combustion increases, the zone where Soot is generated lessens, and the area ratio of high concentration decreases. The high proportion EGR makes further efforts to extend the fuel-gas mixing time, which cuts down the diffusion combustion and improves the quality of the mixture. With the decrease of the intake oxygen concentration, the diffusion flames darken, the areas of diffusion flames and Soot generating zone are both likely to descend, but the area of high concentration Soot ascends a little.
     Based on in-cylinder pressure information acquisition and performance bench test, the effects of combustion control parameters such as injection timing, injection pressure, intake oxygen concentration and intake temperature on low-temperature premixed combustion process and emission performance are studied. It reveals that taking the advanced injection strategy can prolong the ignition delay period, and improving the fuel-air mixture is the key to reduce the Soot emission. Diminishing the intake oxygen concentration can control the temperature of premixed combustion effectively, restrain the production of the NOX emission, and put the ignition phase of premixed combustion which is too early off, which is beneficial to improving the combustion efficiency and enhancing the fuel economy. Increasing the fuel injection pressure makes the NOx and Soot emissions reduced in the low-temperature combustion mode when the load ratios are10%and25%, while it brings about the increment of the NOx emission and the decrement of the fuel efficiency in a moderate duty. In the low-temperature combustion mode, the combustion efficiency can be dramatically improved by decreasing the intake temperature and putting off the ignition phase, the in-cylinder temperature can be decreased, and the production of NOx is restrained at the same time. The Soot emission can be reduced by raising the intake temperature appropriately when the load ratio is10%, while intake cooling plays an important role in cutting the Soot emission down at the load ratios of25%and50%.
     Multi-injection strategy is an effective method to extend the operating scope of low-temperature combustion and ameliorate the Trade-off relationship between the NOx and Soot emissions. Pre-injection can reduce the main injection amount and shorten the ignition delay period of the main injection fuel. As a result, the exothermic phase advances and the peak value of the heat release rate descend so that the Soot is restrained successfully. What's more, different injection parameters have different effects on the Soot emission. Post injection can reduce the combustion heat release rate of the main injection fuel and promote the in-cylinder temperature after the main injection fuel ignites. The NOx emission can be cut down by adopting post injection, while the Soot emission depends on the parameters of the post injection, which means the NOx and Soot emissions can be modified simultaneously only when appropriate post injection is adopted at a right timing. The primary control parameters and strategies to realize effectively clean combustion are preliminarily ascertained by optimizing the low-temperature premixed combustion process and emissions at different load rates. Compared with the original engine, the NOx emissions decrease by97.8%,80.7%and72.6%respectively when the load rates are10%,25%and50%, and the Soot emissions decrease by76%,93.9%and74.3%, while the brake specific fuel consumptions increase only by3.6%,4.7%and2.8%.
     To improve the research efficiency, numerical calculation model of low-temperature premixed combustion for diesel engines is built by means of AVL Fire, which creates the condition to explore the basic theories and application of low-temperature premixed combustion further. The influence of the axial distribution of the fuel beam inside the chamber on the mixing of the fuel and gas as well as the pollutant emissions is researched via3-D numerical simulation for low-temperature premixed combustion of diesel engines. AS a consequence, when the revolution is1450m/min, the road rate25%and the three injection vertebral angle respectively155°,150°and145°, the NOx emission increases first and then decreases with the diminishing of the injection vertebral angle, while the situation of Soot is opposite. The emissions of the NOx and Soot adhere to the change of the effective volume ratio to some degree. Compromising both the NOx and Soot emissions, it is better to reduce the effective volume ratio in the condition of the low-temperature premixed combustion mode which is based on the advanced injection strategy.
引文
[1]史绍熙.汽车发动机燃烧技术的新进展[J].燃烧科学技术,2001,7(1):1-15
    [2]EIA. Annual energy review 2012[R/OL]. http://www.iea.org
    [3]王晓苏.EIA公布2011年全球石油产量[J].中国能源报,2012,4(23):007
    [4]IEA. World energy outlook 2011 [R/OL]. http://www.iea.org
    [5]BP. BP Statistical review of world energy. http://www.bp.com
    [6]肖宇,李思学.中国石油能源危机原因分析及对策[J].商场现代化,2005,29(12Z):178-179
    [7]张传平,赵蕊蕊.中国石油自给量分析[J].干早区资源与环境,2012,26(6):176-181
    [8]刘湘俊.内燃机的排放与控制[M].北京,机械工业出版社,2002:1-12
    [9]中国内燃机工业协会.中国内燃机工业年鉴[M].上海,上海交通大学出版社,2011:414
    [10]http://www.caam.org.cn
    [11]http://newenergy.in-en.com/html/newenergy-11231123331195032.html
    [12]http://www.caam.org.cn
    [13]潘建亮.我国商用车发动机市场发展分析[J].商用汽车,2011(10):100-103
    [14]聂彦鑫,徐俊芳.我国柴油轿车的发展前景[J].汽车工程师,2009(9):12-14
    [15]节能与新能源汽车产业发展规划[J].中国资源综合利用,2012,30(7):10-14
    [16]曾志伟.中国新能源汽车产业的技术路径选择研究[J].公路与汽运,2012(4):5-10
    [17]崔胜民,韩家军.新能源汽车概论[M].北京:北京大学出版社,2011
    [18]Dicked D W. NOx control in Heavy-Duty Diesel Engines—What is the Limit? SAE Paper 1998,1998-0174
    [19]Stanglmaier R H, Roberts C E. Homogenous Charge Compression Ignition (HCCI):benefits, compromises, and future engine applications [C]. SAE Paper 1999,1999-01-3682
    [20]A Report to the U.S. Congress:"Homogenous Charge Compression Ignition (HCCI) Technology"[R]. U.S. Department of Energy, Energy Efficiency and Renewable Energy Office of Transportation Technologies,2001
    [21]Fuquan(Frank) Zhao, Thomas W A, Dennis N A, et al. Homogenous Charge Compression Ignition(HCCI) Engine:Key Research and Development Issues. Society of Automotive Engineers, Inc.,2003:147-158
    [22]Ryan Ⅲ T W, Callahan T J. Homogeneous charge compression ignition of diesel fuel [C]. SAE Paper 1996,1996-1160
    [23]Naoya Kaneko, Hirokazu Ando, Hideyuki Ogawa, et al. Expansion the operating range with in-cylinder water injection in a premixed charge compression ignition engine [C]. SAE Paper 2002, 2002-01-1743
    [24]Gray Ⅲ A W and Ryan Ⅲ T W. Homogeneous charge compress auto-ignition (hcci) of diesel/fuel [C]. SAE Paper 1997,1997-1676
    [25]Hisakazu Suzuki, Matsuo Odaka and Takahiro Kariya, Effect of start of injection on NOX and smoke emissions in homogeneous charge diesel combustion [C]. JSAE Review 2000,21:390-392
    [26]Matsuo Odaka, Hisakazu Suzuki, Noriyuki Koike, et al. Search for optimizing control method of homogeneous charge diesel combustion [C]. SAE Paper 1999,1999-01-0184
    [27]Yoshiaki Nishijima, Yasuo Asaumi, Yuzo Aoyagi. Premixed Lean Diesel Combustion (PREDIC) Using Impingement Spray System [C]. SAE Paper 2001,2001-01-1892
    [28]Takeshi Hashizume, Takeshi Miyamoto, Hisashi Akagawa. Combustion and Emission Characteristics of Multiple Stage Diesel Combustion [C]. SAE Paper 1998,1998-05-05
    [29]Takeshi Hashizume, Takeshi Miyamoto, Hisashi Akagawa. Emission Characteristics of a MULDIC Combustion Diesel Engine:Effects of EGR [C]. JSAE Review 1999,20,421-438
    [301 Haruyuki Yokota, Hiroshi Nakajima and Toshiaki Kakegawa, A New Concept for Low Emission Diesel Comustion (2nd Rep.:Reduction of HC and CO Emission, and Improvement of Fuel Consumption by EGR and MTBE Blended Fuel) [C]. SAE Paper 1998,1998-19-33
    [31]Sanghoon Kook, Choongsik Bae. The Influence of Charge Dilution and Injection Timing on Low-Temperature Diesel Combustion and Emissions [C]. SAE Paper 2005,2005-01-3837
    [32]B.Walter, B.Gatellier. Near Zero NOx Emissions and High Fuel Efficiency Diesel Engine:the NADI Concept Using Dual Mode Combustion, Oil & Gas Science and Technology-Rev.IFP,2003, 58(1):101-114
    [33]B.Walter, B.Gatellier. Development of the High Power NADI Concept Using Dual Mode Diesel Combustion to Achieve Zero NOx and Particulate Emissions[C]. SAE Paper 2002, 2002-01-1744
    [34]Eiji Aiyoshizawa, Manabu Hasegawa, Jun-ichi Kawashima, et al. Combustion Characteristics of a Small DI Diesel Engine [C]. JSAE Review 21:241-263
    [35]Shuji Kimura, Osamu Aoki, Y. Kitahara. Ultra-clean Combustion Technology Combining a Low-temperature and Premixed Combustion Concept for Meeting Future Emission Standards [C]. SAE Paper 2001,2001-01-0200
    [36]Shuji Kimura. An experimental analysis and future trend of Low-temperature and premixed combustion for Ultra-Clean Diesel [C]. SAE Paper,2005
    [37]Su W H, Zhang X Y, Lin T J, et al. Study of Pulse Spray, Heat Release, Emissions and Efficiencies in A Compound Diesel HCCI Combustion Engine, Proceedings of ASME-ICE ASME Internal Combustion Engine Division 2004 Fall Technical Conference [C].ICEF 2004-927
    [38]Yoshinori Iwabuchi, Kenji Kawai, Takeshi Shoji. Trial of New Concept Diesel Combustion System-Premixed Compression-Ignition Combustion [C]. SAE Paper 1999,1999-01-0185
    [39]Opat R, Ra R. C, Gonzalez D M. A, et al. Investigation of mixing and temperature effects on HC/CO emissions for highly dilute low temperature combustion in a light duty diesel engine [C]. SAE Paper 2007,2007-01-0193
    [40]苏万华,林铁坚,张晓中等MULINBUMP-HCCI复合燃烧放热特征及其对排放和放热率的影响[J].内燃机学报,2004,22(3):193-200
    [41]Su W H, Lin T J, Pei YQ. A Compound Technology for I ICCI Combustion in a DI Diesel Engine Based on the Multi-pulse Injection and the BUMP Combustion Chamber [C]. SAE Paper 2003,2003-01-0741
    [42]Neely G D, Sasaki S, Huang, Y, et al. New Diesel Emission Control Strategy to Meet US Tier 2 Emissions Regulations [C]. SAE Paper 2005,2005-01-1091
    [43]Alriksson M, Gjirja S, Denbratt I. The Effect of Charge Air and Fuel Injection Parameters on Combustion with High Levels of EGR in a HDDI Single Cylinder Diesel Engine [C]. SAE Paper 2007,2007-01-0914
    [44]T. Fang, R. Coverdill. Combustion and Soot Visualization of Low Temperature Combustion within an HSDI Diesel Engine Using Multiple Injection Strategy[C]. SAE Paper 2006, 2006-01-0078
    [45]Okude K, Mori K, Shiino S, Moriya T. Premixed Compression Ignition (PCI) combustion for simultaneous reduction of NOx and soot in diesel engine[C]. SAE Paper 2004,2004-01-1907
    [46]Suzuki T, Kakegawa T, Hikino K, Obata A. Development of diesel combustion for commercial vehicles[C]. SAE Paper 1997,1997-02-0685
    [47]Wahlin F, Cronhjort A. Fuel sprays for premixed compression ignited combustion characteristics of impinging sprays [C]. SAE Paper 2004,2004-01-1776
    [48]Wahlin F, Cronhjort A, Olofsson U, Angstrom H. Effect of injection pressure and engine speed on air/fuel mixing and emissions in a pre-mixed compression ignited (PCI) engine using diesel fuel [C[. SAE Paper 2004,2004-01-2989
    [49| Martin G. C, Mueller C. J., Milam D. M, ct al. Early Direct-Injection, Low-Temperature Combustion of Diesel Fuel in an Optical Engine Utilizing a 15-Hole, Dual-Row, Narrow-Included-Angle Nozzle. SAE Paper 2008,2008-01-2400
    [50]Yoshinori Iwabuchi, Kenji Kawai, Takeshi Shoji. Trial of New Concept Diesel Combustion System-Premixed Compression-Ignition Combustion [C]. SAE Paper 1999,1999-01-0185
    [51]缪雪龙,王先勇,洪建海等.超多喷孔油嘴燃烧性能试验研究[J].内燃机学报.2009,27(5):408-416
    [52]Sun Y, Reitz R D. Adaptive Injection Strategy (AIS) for Diesel Engine [R].University of Wisconsin WARF Patent Application,2007, P07342US
    |53] Y. Takeda, Nakagome keiichi, Niimura Kciichi. Emission Characteristics of Premixed Lean Diesel Combustion with Extremely Early Staged Fuel Injection [C]. SAE Paper 1996,1996-11-63
    [54]Helmantel A, Denbratt I. HCCI Operation of a Passenger Car Common Rail DI Diesel Engine with Early Injection of Conventional Diesel Fuel[C]. SAE Paper 2004,2004-01-0935
    [55]Buchwald R, Brauer M, Blechstein A, et al. Adaption of Injection System Parameters to Homogeneous Diesel Combustion's [C]. SAE Paper 2004,2004-01-0936
    [56]Beatrice C, Belardini P, Bertoli C, et al. Diesel Combustion Control in Common Rail Engines by New Injection Strategies [J]. Int J Engine Res,2002,3(1):23-36
    [57]Hasegawa R, Yanagihara H. HCCI combustion in DI diesel engine [C]. SAE Paper 2003, 2003-01-0745.
    [58]Su W H, Lin T J, Zhao H, et al. Research and Development of an Advanced Combustion System for The Direct Injection Diesel Engine [J]. Automobile Engineering,2005,219(2):241-252
    [59]苏万华,赵华,王建昕等.均质压燃低温燃烧发动机理论与技术[M].北京:科学出版社,2010
    [60]苏万华.高密度-低温柴油机燃烧理论与技的研究与进展[J].内燃机学报,2008,26(93):1-8
    [61]黄豪中,苏万华,裴毅强等.MULINBUMP复合燃烧系统多次脉冲喷油控制参数的优化研究:5次脉冲喷油控制参数的优化[J].内燃机学报,2009,27(4):289-297
    [62]王辉,苏万华,刘斌.多脉冲喷油模式的调制对柴HCCI燃烧特性及热效率和排放的影响[J].汽车工程,2006,28(9):803-308
    [63]Shuji Kimura, Osamu Aoki, Hiroshi Ogawa, et al. New combustion concept for ultra-clean and high-efficiency small DI diesel engines [C]. SAE Paper 1999,1999-01-3681
    [64]Ryan Ⅲ TW, Callahan TJ. Homogeneous charge compression ignition of diesel fuel [C]. SAE Paper 1996,1996-11-0060.
    [65]Peng Z, Zhao H, Tom, Ladommatos N. Characteristics of homogeneous charge compression ignition (HCCI) combustion and emissions of n-heptane [J], Comb Sci Tech 2005, 177(11):2113-50.
    [66]Laguitton O, Crua C, Cowell T, Heikal MR, Gold MR. The effect of compression ratio on exhaust emissions from a PCCI diesel engine [J]. Energy Convers Manage 2007,48:2918-24.
    [67]D. Choi, P. Miles. A Parametric Study of Low-Temperature, Late-Injection Combustion in a HSDI Diesel Engine [J]. JSME International Journal, Series B,2005,48(4):656-664
    [68]Choi D, Miles PC, Yun H, Reitz RD. A parametric study of low-temperature, late-injection combustion in an HSDI diesel engine [C]. JSME Series B 2005,48(4):656-664
    [69]Yun H, Sellnau M, Milovanovic N, Zuelch S. Development of premixed low temperature diesel combustion in a HSDI diesel engine [C]. SAE Paner 2008,2008-01-0639
    [70]C. Noehre, M. Andersson, et al. Characterization of Partially Premixed Combustion [C]. SAE Paper 2006,2006-01-3412
    [71]Carlo Beatrice and Chiara Guido. Benefits and drawbacks of compression ratio reduction in PCCI combustion application in an advanced LD diesel engine[R].14th Diesel Engine-Efficiency and Emissions Research (DEER) Conference, DEER 2008, August 2008
    [72]裴毅强,苏万华,张晓宇等BUMP燃烧室的稀扩散燃烧机理[J].燃烧科学与技术,2006,12(1):41-45
    [73]张晓宇,苏万华,裴毅强等Bump环强化柴油混合过程的数值模拟研究[J].内燃机学报,2005,23(1):1-9
    [74]汪洋,谢辉,苏万华等.激光诱导荧光法研究柴油机新概念燃烧中的喷雾混合过程[J].燃烧科学与技术,2002,8(4):338-341
    [75]裴毅强,苏万华,林铁坚.一种基于稀扩散燃烧的BUMP燃烧室及其对柴油机碳烟和NOx排放影响的实验研究[J].内燃机学报,2002,20(5):381-386
    [76]Zhang X Y, Su W H, Pei Y Q. Mixing-enhanced combustion in the circumstances of diluted combustion indirect-injection diesel engines [C]. SAE Paper 2008,2008-01-0009
    [77]Wanhua Su. Interaction of Kinetics and Mixing in Alternative Combustion of Diesel engines. 2008 ISCE/2008(06):19-21
    [78]袁野,李国岫,李洪萌.进气涡流与油束夹角对柴汕机燃烧性能的影响[J].农业机械学报,2012,43(11):1-6
    [79]赵吕普,宋崇林,张延峰.涡流运动降低柴油机混合气浓度及碳烟排放的数值分析[J].燃烧科学与技术,2004,10(4):489-496
    [80]魏胜利,王忠,毛功平等.直喷式柴油机撞壁喷雾燃烧室的仿真与分析[J].汽车工程,2012,34(5):414-417
    [81]杨德胜,高希彦,张松涛等.柴油机TR燃烧系统实现低温预混合燃烧的研究[J].内燃机学报,2005,23(4):313-321
    [82]Yohan Chi Seungil Park Kyungwon Lee. Der neue V6-3,0-1-Dieselmotor fur SUVs von Hyundai/Kia[J]. Motortechnische Zeitschrift,2008,69(11):934-940
    [83| Abe T, Nagahiro K, Aoki T, et al. Development of New 2.2-liter Turbocharged Diesel Engine for the EURO-Ⅳ Standards[C]. SAE Paper 2004,2004-01-1316
    [84]Masao Suzuki, Naoyuki Tsuzuki, Yoshihiro Teramachi. Development of New 2.2L Direct Injection Diesel Engine [J]. TOYOTA Technical Review 2005,54(1):98-101
    [85]Husberg T, Gjirja S, DenbrattI, et al. Visualization of EGR Influence on Diesel Combustion With Long Ignition Delay in a Heavy-duty Enginc[C]. SAE Paper 2004,2004-01-2947
    [86]Timothy V Johnson. Diesel emission control in reviews [C]. SAE Paper 2006,2006-01-0030
    [87]陈贵升,郑尊清,尧命发.基于EGR技术的国Ⅳ重型柴油机燃烧系统开发[J].内燃机学报,2011,29(5):405-413
    [88]Jasmeet Singh, Yusuf Poonawala, Inderpal Singh. An investigation of the low temperature combustion regime in a small bore HSDI diesel engine [C]. Proceedings of ICES2005, ASME Internal Combustion Engine Division 2005 Spring Technical Conference
    [89]Chad P Koci, Ra Youngchul. Multiple-Event Fuel Injection Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime[C]. SAE Paper 2009,2009-01-0925.
    [90]Yoshihiro Hotta, Minaji Inayoshi, Kiyomi Nakakita. Achieving Lower Exhaust Emissions and Better Performance in a HSDI Diesel Engine with Multiple Injections[C]. SAE Paper 2005, 2005-01-0928
    [91]Sanghoon Kook, Choongsik Bae. Combustion Control Using Two-Stage Diesel Fuel Injection in a Single-Cylinder PCCI Engine [C]. SAE Paper 2004,2004-01-0038
    [92]Kanda T, Hakozaki T, Uchimoto T, et al. PCCI operation with early injection of conventional diesel fuel[C]. SAE Paper 2005,2005-01-0378
    [93]Boyarski NJ, Reitz RD. Premixed Compression Ignition (PCI) combustion with modeling-generated piston bowl geometry in a diesel engine[C]. SAE Paper 2006,2006-01-0198.
    [94]Jacobs TJ, Assanis DN. The attainment of premixed compression ignition lowtemperature combustion in a compression ignition direct injection engine[C].Proc Combust Inst,2007, 31:2913-20
    [95]Jacobs TJ, Bohac SV, Assanis DN, Szymkowicz PG. Lean and rich premixed compression ignition combustion in a light-duty diesel engine[C]. SAE Paper 2005,2005-01-0166
    [96]Iwabuchi Y, Kawai K, Shoji T, Takeda Y. Trial of new concept diesel combustion System-premixed compression-ignited combustion[C]. SAE Paper 1999,1999-01-0185
    [97]Zheng M, Kumar R, Tan Y, Reader G. T. Heat Release Pattern Diagnostics to Improve Diesel Low Temperature Combustion [C]. SAE Paper 2008,2008-01-1726
    [98]S. Kook, C. Bae, et al. The Influence of Charge dilution and Injection Timing on Low Temperature Diesel Combustion and Emissions [C]. SAE Paper 2005,2005-01-3837
    [99]张全长.柴油机低温燃烧基础理论和燃烧控制策略的试验研究[D].天津大学,2010:51-66
    [100]Huang Yiqun. Road Map of Model-based Diesel Engine Control and Techniques for Meeting Stringent Emissions [R]. Houston Advanced Research CenterNov.26,2008
    [101]Shi L, Cui Y, Deng K, Peng H, Chen Y. Study of low emission homogenous charge compression ignition (HCCI) engine using combined internal and external exhaust gas recirculation (EGR) [J]. Energy,2006,31:2665-76.
    [102]Lei Shi, Kangyao Deng, Yi Cui, Study of low emission homogeneous charge compression ignition (HCCI)engine using combined internal and external exhaust gas recirculation (EGR), Energy,2006,31(14):2329-2340
    [103]田径,刘忠长,韩永强.基于EGR耦合多段喷射技术实现超低排放[J].内燃机学报,2010,28(3):228-234
    [104]D T Hountalas, G C Mavropoulos, K B Binder. Effect of exhaust gas recirculation (EGR) temperature for various EGR rates on heavy duty DI diesel engine performance and emissions[J]. Energy,2008,33(2):272-283
    [105]汪映,周杰,何利等.冷EGR对DME PCCI-DI发动机燃烧和排放特性影响的试验研究[J].内燃机工程,2010,31(4):17-20
    [106]Petitjean D, Bernardini L, Middlemass C, et al. Advanced gasoline engine turbo charging technology for fuel economy improvements[C]. SAE Paper,2004,2004-01-0988
    [107]Hyvonen J, Haraldsson G, Johansson B. Supercharging HCCI to extend the operating range in a multi-cylinder VCR-HCCI engine[C]. SAE Paper 2003,2003-01-3214
    [108]Christensen M, Johansson B, Amneus P, Mauss F. Supercharged homogeneous charge compression ignition[C]. SAE Paper 1998,1998-07-0087
    [109]Akagawa H, Miyamoto T, Harada A, et al. Approaches to solve problems of the premixed lean diesel combustion [C]. SAE Paper 1999,1999-01-0183
    [110]Iwabuchi Y, Kawai K, Shoji T, et al. Trial of new concept diesel combustion system-premixed compression-ignited combustion[C]. SAE Paper 1999,1999-01-0185
    [111]Hosseini V, Checkel MD. Intake pressure effects on HCCI combustion in a CFR Engine[C]. Proceedings of the combustion institute, canadian section, spring technical meeting 2007
    [112]Olsson J, Tunestal P, Haraldsson G, Johansson B. A turbo charged dual fuel HCCI Engine[C]. SAE Paper 2001,2001-01-1896
    [113]Olsson J, Tunestal P, Johansson B. Boosting for high load HCCI[C]. SAE Paper 2004, 2004-01-0940
    [114]Buchwald R, Lautrich G, Maiwald O, et al. Boost and EGR System for the Highly Premixed Diesel Combustion [C].SAE Paper 2006,2006-01-0204
    [115]田径,刘忠长,葛思非等.可变几何面增压器/废环对重型型柴油机性能和排放的影响[J].吉林大学学报,2009,39(4):364-368
    [116]马冬,丁焰,刘志华等.轻型汽车实际行驶工况的排放研究[J].安全与环境学报,2008,8(5):66-68
    [117]宫常明,刘巽俊等.车用直喷式柴油机微粒排放与排气烟度、碳氢化合物排放的关系[J].内燃机学报.1997,15(4):424-429
    [118]AVL 415S Smoke Meter Introduction [S].AVL List GmbH Graz,1999
    [119]何旭,马骁,王健昕.光学诊断在柴油机缸内碳烟测试中的应用[J].车用发动机,2007(3):8-12
    [120]A. Boretti, H.C. Watson. Development of adirect injection high efficiency liquid phase LPG spark ignition engine. submitted for presentation to the 2009 SAE Power train Fuel andLubricants Conference, Florence, Italy, and June 2009. SAE P.09SFL-0006
    [121]黄素逸,周怀春.现代热物理测试技术[M].北京:清华大学出版社,2008
    [122]Yukio Matsui.Takeyuki Kamimoto. Shin Matsuoka.A study on the Time and Space Resolved Measuremen to fFlame Temperature and Soot Concentration in a DI.Diesel Engine by the Two-Color Method [C].SAE Paper 790491,1979
    [123]林铁坚.基于多脉冲复合喷射控制的柴油HCCI燃烧过程的研究[M].天津大学,2004:29
    [124]TomohiroKanda, ShinichiKobayashi, RyutaMatsu. PCCI Operation with Early Injection of Conventional Diesel Fuel [C]. SAEPaper,2004-01-1321
    [125]韩永强,赵佳佳.放热率对效率的影响及对HCCI燃烧负荷限值评测[J].内燃机学报,2008,26(2):121-127
    [126]谢茂昭.内燃机计算燃烧学[M].大连:大连理工大学出版社,2005.9
    [127]Amsden A A, et al. KIVA-Ⅱ:A Computer Program for Chemically Reactive Flow with Spray. Los Alamos:LA-11560-MS,1989
    [128]AVL LIST GmbH. AVL Fire User-Functions [M]. Versions,2004
    [129]Magnassen B F, Hjertager B H. On Mathematical Modeling of Turblent Combustion with Special Emphasis on Soot Formation and Combustion.16th Symp. (Int) on Combust.1997
    [130]Abraham J, Bracco F V. Comparisons of Computed and Measured Premixed Charge Engine Combustion. Combustion and Flame,1985(60):309-322

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700