全电流补偿消弧线圈关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市配电网容量的日益增大和非线性负荷及电缆线路的大量增加,接地故障残余电流中的阻性和谐波电流成分随之大幅提高。全电流补偿消弧线圈可有效地解决这些成分的补偿问题,同时抑制电弧接地过电压,保证配电网供电的安全性和可靠性。本文对全电流补偿消弧线圈的关键技术展开研究。
     为了得到接地残流的真实数据,对数十个电网电容电流进行测试。以谢桥矿接地实验为例进行分析和研究,给出了实验结果和分析结论,作为以下各章内容的研究基础。由于现有的对接地残流的研究具有局限性,本文提出需先对双谐波源的单相接地故障系统进行分析,从理论上研究谐波源类型和故障点位置对故障点谐波电压和电流的影响。补偿接地残流的技术问题分别为残流补偿依赖选线结果与对地参数的估算和有源逆变装置的使用会带来系统的不稳定,本文提出的利用系统零序电压作为分析对象的检测方法新思路可以解决这些问题。
     单相接地故障系统模型的准确建立是实现零序电压检测的重要步骤。本文提出全电流补偿消弧线圈系统的动态相量建模方法。该方法可以根据分析需要对模型进行变化,也可以有目的的选择单一频率进行分析。该建模方法不仅适用于接地故障电流暂态分量丰富的情况,而且可应用于含有电力电子装置的全电流补偿消弧线圈系统,仿真结果验证了其可行性。现有的暂态分析研究缺乏对暂态信号特征及故障信息的提取和利用方式方面的内容,本文对故障暂态信号进行频域分析并对系统了进行仿真建模,目的在于得到暂态电压和电流在不同频段内的分布规律。
     主从式全电流补偿消弧线圈结构的本质是传统消弧线圈和逆变器的并联,针对主消弧线圈的不同类型,本文给出了全电流补偿消弧线圈的主从控制思路,并提出了基于动态相量建模的全电流补偿消弧线圈的无源性控制方法。该方法实现了零序电压检测且从全局寻求系统的稳定,响应快速,形式简单、鲁棒性好。仿真和物理实验验证了其可行性与优势。
     本文阐述了主消弧线圈分布安装和增设从消弧线圈的必要性,提出了适合于分布安装的全电流补偿消弧线圈的结构,分析了其电气性能并给出了相应的系统评价,对不同分布安装方式下的系统做仿真对比实验,结果表明分布安装有助于降低接地残流。最后给出了一款基于Matlab仿真环境下可以判断孤立电网运行情况的软件,该软件可以动态地模拟含有各类分布式发电设备的孤网系统并对其能量进行分配与规划。基于适合于分布式安装的全电流补偿消弧线圈的概念,给出了适用于孤网环境的全电流补偿消弧线圈装置的软硬件设计。
Resistive current and harmonic current components of ground residual currentincrease with the increases of city distribution network capacity,city distributionnetwork nonlinear load and cable line. Full current compensation arc suppression coilcan solve the problem of residual current compensation, also can suppress thearc-earthing over-voltage effectively when the network is grounded through anarc-extinguishing coil. It can ensure power supply security and reliability indistribution network.The dissertation carries out research on key technologies on fullcompensation crc suppression coil.
     For getting practical data of ground residual current, dozens of power systemcapacitive current were tested.Grounding experimentals of XieQiao coal mine wereresearched as an example,experimental results and analysis conclusion are given asthe research foundation of the following chapters. Existing research of groundresidual current has limitation, so this dissertation presents that the single phase earthfault system for double harmonic sources need to be analyzed,the influences ofharmonic source types and fault point position on harmonic voltage and current wereanalyzed theoretically. The technical problems of ground residual currentcompensation are residual current compensation is dependent on earthed fault feederdetection results and estimation of the parameters excessively,the system unstableproblem bought by the use of active converter device. Detection method taked zerosequence voltage as analysis object can solve the problems.
     Accurate modeling of single phase earth fault system is a important step forachieving zero sequence voltage detection. Dynamic phasor model method of fullcurrent compensation arc suppression coil is porposed,it can change to react the needsof analysis,also can select a certain signal frequency for analysing on purpose. Thismodeling method is available for the condition that the transient component of groundfault current is rich,also can be applied in full current compensation arc suppressioncoil system contained power electronic equipment,the simulation results prove thefeasibility. Existing research of transient state analysis lacked some contents includedthe transient signal characteristics,extraction and utilization of fault informationdata.In this dissertation, transient fault signals are analysed in frequency domain,andthe system are simulated and modeled, for getting distribution law of transient voltageand current in different frequency bands.
     The essential structure of master-slave full current compensation arc suppressioncoil is the parallel operation of traditional arc suppression coil and inverter.In view ofthe different kinds of master arc suppression coil, a master-slave control strategies offull current compensation arc suppression coil is proposed. A passivity-based controlmethod of full current compensation arc suppression coil based on dynamic phasormodels was proposed. This method achieves zero sequence voltage detection, it cansecure a stable from a global perspective, it also has fast transient response, simpleform and a good ability of robustness. Simulation and experiment results show thatthis method decreases the amplitude of residual current effectively.
     The need for distributing installation of master compensation arc suppression andadding of slave arc suppression coil are described.The proposed structure of fullcurrent compensation arc suppression coil is calculated for distributing installation,electrical properties of it are analyzed,and system evaluation is given. Then,simulation comparison experiments of system under different distributing installationsituations are conducted,simulation results show that distributing installation isbeneficial to decrease ground residual current.Finally, a software which can assess theoperation condition of isolated grid is presented under the environment of Matlab.This software can imitate isolated grid system included varieties of distributedgeneration equipments dynamically, and distribute and plan the energy of isolatedgrid.Based on the concept of full current compensation arc suppression coil useddistributing installation,software design and hardware design of full currentcompensation arc suppression coil device applied to the environment of isolated gridare shown.
引文
[1]要焕年,曹梅月.电力系统谐振接地[M].北京:中国电力出版社,2000.
    [2]余鸿.自动调谐消弧线圈的选线系统研究[D].武汉:华中科技大学,2007.
    [3]李晓波.柔性零残流消弧线圈的研究[D].徐州:中国矿业大学,2010.
    [4]万善良.上海市区配电网络中性点接地方式的技术分析[J].上海电力,2006,11(1):46-53.
    [5]李晓波,刘建华,牟龙华等.6~10kV配电网微机型电容电流测试仪的研制[J].高电压技术,2007,33(3):99-103.
    [6]杨君,王兆安,邱关源.并联型电力有源滤波器直流侧电压的控制[J].电力电子技术,1996(4):48-50.
    [7]李润先.中压电网系统接地实用技术[M].北京:中国电力出版社,2002.
    [8]王崇林.中性点接地方式与消弧线圈[M].徐州:中国矿业大学出版社,1999.
    [9]郝玉山,齐丽芳,尹永生等.零序网络中的谐波电流分布[J].华北电力学院学报,1995,22(3):12-17.
    [10]张立伟.消弧线圈自动补偿调整装置的研究[D].中国矿业大学,1992
    [11] Chaari O,Bastard P.Prony’s method:an effect tool for the analysis of earth fault currents inPetersen-coil-protected networks.IEEE Trans PWRD,1995,10(3):453-458
    [12] Haari O,Meunier M.Wavelets:a new tool for the resonant grounded power distributionsystem relaying.IEEE Trans PWRD,1996,11(3):1301-1308.
    [13] Griffel D,Harmmand Y.A new deal for safety and quality on MV networks.IEEE Trans onPower Delivery,1997,12(4):1428-1433.
    [14] Benato. R,Caldon. R,Paolucci.A. Resonance phenomena on line-to-ground fault currentharmonics in MV networks[C].Eighth International Conference on Harmonics and Quality ofPower System,Oct.14-16,1998,Athens,Greece:359-364.
    [15]黄开长.新型快速可调消弧线圈接地系统的研究[D].重庆:重庆大学,2003
    [16]李园.主辅式消弧线圈控制系统的研究与软件开发[D].北京:华北电力大学,2009.
    [17]程路.变压器负载可控的新型消弧线圈接地系统研究[D].湖北:华中科技大学,2008.
    [18]程路,陈乔夫,张宇等.基于变压器可控负载原理的新型消弧线圈[J].电力系统自动化,2006,30(21):77-81.
    [19]唐轶,王志萍.滞后相接电容自动跟踪漏电流全补偿技术[J].煤矿安全,1995,26(4):10-13.
    [20]唐轶,陈奎,陈庆等.单相接地故障全电流补偿的研究[J].中国矿业大学学报,2003,32(5):558-562.
    [21]董一脉.有源全补偿消弧控制的研究[D].北京:华北电力大学,2007.
    [22]曲轶龙.全电流补偿消弧线圈及其控制方法的研究[D].北京:华北电力大学,2008.
    [23]赵莹.有源全补偿消弧控制H∞控制算法的研究[D].北京:华北电力大学,2008.
    [24]马垚.有源全电流补偿消弧线圈及接地故障电流检测算法研究[D].北京:华北电力大学,2008.
    [25]曲轶龙,董一脉,谭伟璞等.基于单相有源滤波技术的新型消弧线圈的研究[J].继电器,2007,35(3):29-33.
    [26]陈志亮,范春菊.基于5次谐波突变量的小电流接地系统选线[J].电力系统及其自动化学报,2006,18(5):37-41.
    [27]徒有锋,何俊佳,周志成等.基于零序功率及谐波相位综合法的小电流接地系统微机选线装置[J].高压电器,2006,42(3):190-193.
    [28]胡佐,成展鹏,庄泽宏.基于暂态零序电流高次谐波衰减故障选线的新思路[J].低压电器,2007,11:38-41.
    [29]薛永端,高旭,苏永智等.小电流接地故障谐波分析及其对谐波选线的影响[J].电力系统自动化,2011,35(6):60-64.
    [30]薛永端,李长安,徐丙垠.非线性负荷对小电流接地故障谐波选线的影响分析[J].电力系统保护与控制,2010,38(2):44-49.
    [31]李长安.小电流接地故障谐波选线可靠性的研究[D].山东:山东大学,2007.
    [32]薛永端.基于暂态特征信息的配电网单相接地故障检测研究[D].西安:西安交通大学,2003.
    [33]鄂志君,应迪生,陈家荣.动态相量法在电力系统仿真中的应用[J].中国电机工程学报,2008,28(31):42-47.
    [34]鄂志君,房大中,陈家荣.基于晶闸管控制电抗器的FACTS动态相量模型[J].电网技术,2009,33(1):26-30.
    [35] Mattavelli P,Verghese G C,Stankovic A M.Phasor dynamics of thyristor controlled seriescapacitor systems [J].IEEE Trans on Power Systems,1997,12(3):1259-1267.
    [36] Stefanov P C,Stankovic A M.Modeling of UPFC operation under unbalanced conditionswith dynamic phasors [J].IEEE Trans on Power Systems,2002,17(2):395-403.
    [37]戚庆茹,焦连伟,严正.高压直流输电动态相量建模与仿真[J].中国电机工程学报,2003,23(12):28-32.
    [38]刘皓明,戚庆茹,李扬.中点钳位式三电平STATCOM动态相量建模与仿真[J].电力自动化设备,2005,25(8):18-22.
    [39] WU Huaren,LI Xiaohui,STADE D,et al.Arc fault model for low-voltage AC systems.IEEETrans on Power Delivery,2005,20(2):1204-1205.
    [40] HANNINEN S,LEHTONEN M,HAKOLA T.Earth faults and related disturbances indistribution networks[J].IEE Proc-Gene Trans Distr,2002,149(3):283-288.
    [41]束洪春,肖白.配电网单相电弧接地故障选线暂态分析法[J].电力系统自动化,2001,26(21):58-61.
    [42]梁睿.基于故障类型的单相接地故障综合选线研究[D].江苏:中国矿业大学,2010.
    [43]顾荣斌,蔡旭,陈海昆.非有效接地电网单相电弧接地故障的建模及仿真[J].电力系统自动化,2009,33(13):63-67.
    [44]范李平,袁兆强,张凯.基于小波变换的单相接地故障电弧模型及其PSCAD/EMTDC仿真研究[J].电力系统保护与控制,2011,39(5):51-56.
    [45]胡平.可用于分析矿井电网单相电弧性接地过电压的近似电弧模型[J].煤炭学报,1992,17(2):80-88.
    [46]唐轶,陈庆,陈奎.单相接地故障暂态电流方向选线研究[J].中国矿业大学学报,2008,37(2):201-206.
    [47]唐轶,陈庆.基于零序暂态电流方向判断的小电流接地选线方法[J].电网技术,2007,31(19):79-82.
    [48]唐轶,陈奎,陈庆.小电流接地电网单相接地故障的暂态特性[J].高电压技术,2007,33(11):175-179.
    [49]司马文霞,冉锐,袁涛.采用数学形态学的弧光接地过电压识别方法[J].高电压技术,2010,36(4):835-841.
    [50] Chaari O, Meunier M, Brouaye F.Wavelet.A New Tool for the Resonant Grounded PowerDistributed Systems Relaying.IEEE Trans on Power Dlivery,1996,11(3):1301-1308.
    [51]祝纯.电能质量暂态信号检测及谐波源定位方法研究[D].北京:清华大学,2005.
    [52]刘蓉晖.基于小波技术的电网暂态谐波检测[J].低压电器,2011,4:47-50.
    [53]薛蕙,罗红.小波变换与傅里叶变换相结合的暂态谐波分析方法[J].中国农业大学学报,2007,12(6):89-92.
    [54]廖瑞金,孙才新,胡志伟.一种暂态谐波在线监测方法的研究[J].高电压技术,1998,24(2):35-37.
    [55]董新洲,毕见广.配电线路暂态行波的分析和接地选线研究[J].中国电机工程学报,2005,25(4):1-6.
    [56] CHAARI O,BOSTARD P,MEUNIER M.Prony’s method: an efficient tool for the analysis ofearth fault currents in peterson-coil-protected [J].IEEE trans on Power Delivery,1995,10(3):1234-1241.
    [57] LORENC J,MUSIEROWICZ K,KWAPISZ A.Detection of intermittent earth faults incompensa-ted MV network[C].2003IEEE Bologna Power Technology Conference.Bologna,2003:23-26.
    [58]张帆,潘贞存,张慧芬等.基于零序电流暂态极大值的小电流接地选线新判据[J].电力系统自动化,2006,30(4):45-48.
    [59]贾清泉,刘连光,杨以涵,等.应用小波检测故障变换特性实现配电网小电流故障选线保护[J].中国电机工程学报,2001,21(10):78-82.
    [60]高艳,林湘宁,刘沛.基于广义开闭变换的小电流接地选线算法[J].中国电机工程学报,2006,26(14):1-6.
    [61]束洪春,刘娟,王超,等.谐振接地电网故障暂态能量自适应选线新方法[J].电力系统自动化,2006,30(11):72-76.
    [62] Akagi H,KanazawaY,Nabae A.Instantaneous reactive power compensators comprisingswitching devices without energy storage components[J].IEEE Trans on Ind Appl,1984,20(3):625-630.
    [63]王兆安,李民,卓放.三相电路瞬时无功功率理论研究[J].电工技术学报,1992,7(3):55-59.
    [64]李庚银,陈志业,丁巧林等.dq0坐标系下广义瞬时无功功率定义及其补偿[J].中国电机工程学报,1996,16(3):176-179.
    [65]戴先中,唐统一,孙树勤.非正弦三相电路中瞬时无功量的普遍化定义明.中国电机工程学报,1998,18(6):388-394.
    [66] Czarnecki L.S.What is wrong with the Budeanu concept of reactive and distortion p owerand why it should be abandoned[[J].IEEE Trans.IM,1987,36(6):834-837.
    [67] Willems J L.A new interpretation of the Akgai-Nabae power component for nonsinusoidalthree-phases ituations[J].IEEE Trans on IM,1992,41(4):523-527.
    [68] Watanabe E.H,Stephan R.M,Aredes M.New concepts of instantaneous active and reactivepowers in electrical systems with generic loads[J].IEEE Trans Power Delivery,1993,8(2):697-703.
    [69] Lev-Ari H, Stankovic A M. Hilbert space techniques for modeling and compensation ofreactive power in energy processing systems[J].IEEE Trans on Circuits and Systems1:Fundamental Theory andApplications,2003,50(4):540-556.
    [70] Ghassemi F.What's wrong with electric power theory and how it should be modified[C].IEEMetering and Tariffs for Energy Supply Conference Publication,1999,462.
    [71] Furuhashi T,Okuma S,Uchikawa Y.A study on the theory of instantaneous reactivepower[J].IEEE Trans on IE,1990,37(1):86-90.
    [72]王茂海,刘会金.通用瞬时功率定义及广义谐波理论[J].中国电机工程学报,2001,21(9):68-73.
    [73] Saitou M, Shimizu T. Generalized theory of instantaneous active and reactive powers insingle-phase circuits based on Hilbert transform[C].Power Electronics Specialists Conference,IEEE33rdAnnual,2002,Vol.3,1419-1424.
    [74]钱伟,程肇基,钱勇.电力系统中非正弦波功率体系的研究[J]电力系统自动化,1996,20(1):11-15.
    [75]熊元新,陈允平.正弦电路瞬时功率理论研究[J].电网技术,2001,25(6):18-20
    [76]薛永端,徐丙,冯祖仁.基于Hilbert变换的非正弦电路无功及瞬时无功功率定义[J].电力系统自动化,2008,28(12):35-39.
    [77]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,1998.
    [78]张国荣,齐国虎,苏建徽,陈林.三相系统电流分量与p-q功率分量的关系[J].电网技术,2010,34(7):64-69.
    [79]殷波,陈允平.abc坐标系下广义无功电流和功率的定义及补偿[J].电网技术,2003,27(7):43-46.
    [80]唐蕾,陈维荣.瞬时无功功率理论坐标变换的推导及谐波电流检测原理分析[J].电网技术,2008,32(5):66-69.
    [81]刘进军,王兆安.瞬时无功功率与传统功率理论的统一数学描述及物理意义[J].电工技术学报,1998,13(6):6-12.
    [82]王茂海,刘会金.通用瞬时功率定义及广义谐波理论[J].中国电机工程学报,2001,21(9):68-73.
    [83]熊元新,陈允平.正弦电路瞬时功率理论研究[J].电网技术,2001,25(6):18-20.
    [84]殷波,陈允平,邓恒等.α-β坐标系下瞬时无功功率理论与传统功率理论的统一数学描述及物理意义[J].电工技术学报,2003,18(5):42-45.
    [85]葛玉敏,李宝英,邢砾云.基于瞬时无功功率理论的单相电路谐波检测方法的研究[J].电网技术,2006,30(S1):225-229.
    [86]魏磊,张伏生,耿中行等.基于瞬时无功功率理论的电能质量,扰动检测、定位与分类方法[J].电网技术,2004,28(6):53-58.
    [87] Fang Z P,George W O,Adams D J.Harmonic and reactive power compensation based on thegeneralized instantaneous reactive power theory for three-phase four-wire systems[J].IEEETransactions on Power Electronics,1998,13(6):1174-1181.
    [88] Fang Z P,Lai J S.Generalized instantaneous reactive power theory for three-phase powersystems[J].IEEE Transactions on Instrumentation and Measurement,1996,45(1):293-297.
    [89] Watanabe E H,Stephan R M,Aredes M.New concept of instantaneous active and reactivepowers in electrical systems with generic loads[J].IEEE Transactions on Power Delivery,1993,8(2):697-703.
    [90] Afonsojao L,Sepulveda F M J,Martins J S.p-q theory power components calculations[C].IEEE International Symposium on Industrial Electronics,Rio de Janeiro,2003.
    [91]辛占强,席自强,黄文聪.基于p-q和ip-iq的并联有源电力滤波器的研究[J].湖北工业大学学报,2010,25(1):41-44.
    [92]李航.基于ip-iq算法的DSP有源电力滤波器的实现[D].山东:山东大学,2009.
    [93]于惠.基于瞬时无功功率理论的DSP谐波检测的应用研究.山东:山东大学,2006.
    [94]蒋向辉.基于ip-iq算法检测电力谐波的Simulink仿真研究[J].电脑知识与应用,2009,21(5):5885-5886.
    [95] F.Z.Peng,Akagi H.Anew approach to harmonic compensation in power systems-Acombinedsystem of shunt passive and series active filters[J].IEEE Trans.1990,983-990.
    [96] Akagi H.New trends in active filters for power conditioning[J].IEEE Trans on IndustryApplieation.1996,32(6):1312-1321.
    [97]关彬,崔玉龙,王圆月.基于瞬时无功功率理论的谐波检测方法研究[J].2007,44(502):1-4.
    [98]陈菊明,刘锋,梅生伟.基于无源化方法的三相四线制APF控制器策略[J].电力系统自动化,2006,30(8):32-36.
    [99]张振环,刘会金,李琼林.基于欧拉–拉格朗日模型的单相有源电力滤波器无源性控制新方法[J].中国电机工程学报,2008,28(9):37-44.
    [100]武健,何娜,徐殿国.重复控制在并联有源滤波器中的应用[J].中国电机工程学报,2008,28(18):66-72.
    [101]刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业出版社.2006:130-157.
    [102]唐健,邹旭东,何英杰等.三相四线制三电平变换器新型三维矢量调制策略[J].中国电机工程学报,2009,29(36):9-17.
    [103]李刚,罗安,付青,唐欣.一种新型混合型有源滤波器的模糊PI控制[J].电力电子技术,2005,39(4):91-93.
    [104] Tang Jian,Zou Yunping,He Yingjie,Wang Chengzhi and Zhang Yun.Novel DeadbeatControl for3-Level Inverter Based3-Phase4-Wire Active Power Filter[C].33rd AnnualConference of the IEEE Industrial Electronics Society,2007:1857-1862.
    [105] Yong Wang,Miao Guan,Chunlong Li.Study on stability and dynamic performance ofthree-phase aeronautical active power filter based on one-cycle control under simply spacevector[C].4th IEEE Conference on Industrial Electronics andApplications,2009:2897-2901.
    [106] V. M. Cardenas,C. Nunez and N. Vazquez.Analysis and evaluation of control techniques foractive power filters: sliding mode control and proportional-integral control[C].Fourteenth AnnualApplied Power Electronics Conference and Exposition,1999,1:649-654vol.1.
    [107]周柯,罗安,唐杰.基于PI迭代学习的有源滤波器电流跟踪控制[J].电力电子技术,2006,40(4):53-55.
    [108] R. Teodorescu,F. Blaabjerg,M. Liserre and P. C. Loh.Proportional-resonant controllers andfilters for grid-connected voltage-source converters[J].IEE Proceedings-Electric PowerApplications,2006,153(5):750-762.
    [109]江渝,冉立,刘和平.谐振接地系统的新型自动调谐装置[J].电力系统自动化,2006,30(14):76-81.
    [110]齐郑,白芮瑄,杨以涵.智能变电站中自动调谐消弧线圈的设计[J].电力系统自动化,2011,35(20):65-67.
    [111]靳汪一,曾祥君,伍智华.基于IGBT新型消弧线圈自动调谐系统[J].电力科学与技术学报,2010,25(2):56-60.
    [112]朱少林,谢聿琳,叶力行.调谐方式对消弧线圈并联运行的影响[J].电力系统及其自动化学报,2006,18(1):82-85.
    [113]李国峰.超大容量消弧线圈自动调谐技术和装置的研究[D].南京:南京理工大学,2008.
    [114]陈忠仁,陈芳靖,李微波.自动消弧线圈的测量及调谐改进方法[J].高压电器,2009,45(2):77-80.
    [115]陈忠仁,吴维宁,张勤等.调匝式消弧线圈自动调谐新方法[J].高压电器,2005,41(5):370-372.
    [116]贾雅君,蔡旭.偏磁式消弧线圈自动调谐新原理及应用[J].继电器,2004,32(10):1-5.
    [117]孔宁,尹忠东,杨坡.基于PWM可控电抗器的自调谐消弧线圈的研究[J].电力系统保护与控制,2010,38(23):133-140.
    [118]梁利华,陈国民,张松涛.非线性耦合系统的自适应蚁群滑模控制[J].电机与控制学报,2011,15(12):67-72.
    [119]刘然,孙建忠,罗亚琴,孙伟.基于环形耦合策略的多电机同步控制研究[J].控制与决策,2011,26(6):957-960.
    [120]陈庆.谐振接地系统关键技术的研究[D]江苏:中国矿业大学,2009.
    [121]李锋,傅正财,江秀臣,李福寿.调匝式消弧电抗器的自动调谐[J].上海交通大学学报,1996,30(1):70-77.
    [122]易兆林,胥军.自动调匝式消弧线圈接地成套装置及其串-并联电阻的设置[J].电器工业,2006,04:74-76.
    [123]陈忠仁,吴维宁,张勤.调匝式消弧线圈自动调谐新方法[J].高压电器,2005,41(5):370-372.
    [124]陈忠仁,吴维宁,陈家宏,等.自动消弧装置新型测控系统的研制[J].继电器,2005,33(1):64-67.
    [125]蔡旭,李仕平,杜永忠等.变阻尼调匝式消弧线圈及接地选线装置[J].电力系统自动化,2004,28(10):85-90.
    [126]李景禄,刘春生,孙春雷等.自动跟踪补偿消弧装置的并联运行[J].供用电,1998,15(4):25-28.
    [127] Giffel D,Harmand Y.Leitloff V etal.A New Deal for Safety And Quality on MVNetworks.IEEE Trans on Power Delivery,1997,12(4):1428-1433.
    [128]曾翔君,尹项根,于永源等.基于注入变频信号法的经消弧线圈接地系统控制与保护新方法[J].中国电机工程学报,2000,20(1):29-36.
    [129]杜永忠,陈刚,蔡旭.并阻尼电阻消弧线圈自动跟踪装置的研究与应用[J].继电器,2001,29(9):53-55.
    [130]王德江,陈晓英.小电流接地系统选线和补偿一体化装置[J].电力系统自动化,2001,25(9):53-57.
    [131]胡航帆.预调式消弧装置存在的问题及对策[J].黑龙江电力,2006,33(5):378-380.
    [132]李继红.预调式和随调式消弧线圈的比较[J].内蒙古电力技术,2004,24:175-180.
    [133]张立伟,胡天禄,消弧线圈自动补偿原理中相位法存在的问题[J].煤炭科学技术,1995,23(2):48-50.
    [134]闫静,马志瀛.自动补偿消弧装置新型测控方法的研究及其实现[J].高压电器,2007,43(3):165-168.
    [135]潘贞存,王成山,赵建国.分级调节式消弧线圈自动跟踪补偿的综合调节判据[J].天津大学学报,2008,3:326-330.
    [136] Thomas Baldwin,Frank Renovich.Fault Locating in Ungrounded and High-ResistanceGrounded Systems[J].IEEE Trans on IndustryApplication,2001,37(4):1152-1159.
    [137]伍家驹,王文婷,李学勇等.单相SPWM逆变桥输出电压的谐波分析[J].电力自动化设备,2008,28(4):45-52.
    [138]胡庆波,吕征宇.一种新颖的基于空间矢量PWM的死区补偿方法[J].中国电机工程学报,2005,25(3):13-17.
    [139]毛鸿,吴兆麟.基于三相PWM整流器的无死区空间矢量调制策略[J].中国电机工程学报,2001,21(11):100-104.
    [140] DODSON R C,EUANS P D,YAZDI H,etal.Compensation for dead time degredation ofPWM inverter waveforms[J].IEEE Proc,1990,137(2):73-81.
    [141] LIU Y H,CHEN C L.Novel dead time compensation method for induction motor drivesusing space vector modulation[J].IEEE Proc Electr Power Appl,1998,145(4):387-392.
    [142] ATTAIANESE C,TOMASSO G.Predictive compensation of dead-time effects in VSIfeeding induction motors[J].IEEE Trans IndAppl,2001,37(3):856-863.
    [143] JEONG S G,PARK M H.The analysis and compensation of dead-time effects in PWMinverters[J].IEEE Trans Ind Electron,1991,38(4):108-114.
    [144] LEGGATE D,KERKMAN R J.Pulse-based dead-time compen-sation for PWM voltageinverters[J].IEEE Trans Ind Electron,1997,44(4):191-197.
    [145]王毅,李和明,石新春,等.多电平PWM逆变电路谐波分析与输出滤波器设计[J].中国电机工程学报,2003,23(10):78-82.
    [146] HOLMENS D G,MCGRATH B P.Opportunities for harmonic cancellation with carrierbased PWM for two level and multilevel cascaded inverters[J].IEEE Trans Ind Appl,2001,37(2):574-582.
    [147]王学华,阮新波.SPWM控制单相三电平逆变器[J].中国电机工程学报,2005,25(1):73-76.
    [148]刘凤君.现代逆变技术及应用[M].北京:科学出版社,2006.
    [149]梁希文,蔡丽娟.逆变器死区效应傅里叶分析及补偿方法[J].电力电子技术,2006,40(6):118-120.
    [150]王崇林,刘建华,董新伟.可控硅控制三相五柱式消弧线圈的工作原理及波形分析[J].煤炭学报,1999,24(6):638-642.
    [151]吕天伟.三相五柱变压器可控整流系统及其谐波分析技术的研究[D].哈尔滨:哈尔滨工业大学,2006.
    [152]蔡旭,刘勇.三相五柱偏磁式接地消弧变压器及其自动调谐[J].电力系统自动化,2004,28(2):84-88.
    [153]滕广林,王振,薛天山.三相五柱式消弧线圈工作原理分析[J].煤炭科技,2005,2:24-25.
    [154]王崇林,刘建华.三相五柱式消弧线圈及其补偿原理[J].华北电力大学学报,1999,26(2):36-39.
    [155]王崇林,刘建华.三相五柱式消弧线圈及其自动跟踪补偿原理[J].中国矿业大学学报,1999,28(5):468-472.
    [156]马仁明,黄安利. ATP-EMTP程序使用说明[K].武汉:武汉高压研究所,1991:5-32.
    [157]徐政.免费使用的电磁暂态分析程序——ATP-EMTP程序介绍[J].电网技术,1999,23(7):64-69.
    [158]顾丹珍,艾芊,陈陈,付慧,李长益.基于ATP-EMTP的大型电力系统暂态稳定仿真[J].电力系统自动化,2006,30(21):54-55.
    [159] LUCAS J R,MCLAREN P G.A computationally effieient MOV model for seriescompensation studies.IEEE Trans on Power Delivery.1991,6(4):1491-1497.
    [160] ARVIND K S,CHAUDHARY K S,PNAKE A G.Protection system representation in theelectromagnetic transient program[J].IEEE Trans on Power Delivery,1994,9(2):700-711.
    [161] DUBE L,BONFANTI I.MODELS: a new simulation tool in the EMTP[J].EuropeanTransactions on Electrical Power Engineering,1992,2(1):45-50.
    [162] ALLEMONG J J,BENNON R J,SELENT P W.Multiphase power flow solutions usingEMTPand Newton’s method[J].IEEE Trans on Power Systems,1993,8(4):1455-1462.
    [163]孟新军.电磁暂态仿真用户自定义建模方法研究及软件开发[D].中国电力科学研究院,2009.
    [164]韩丽娜,杨志坚,李虎.ATP-EMTP在500kV配电系统中的应用[J].电测与仪表,2005,42(480):14-17.
    [165]李广凯,李庚银.电力系统仿真软件综述[J].电气电子教学学报,2005,27(3):61-65.
    [166]林良真,叶林.电磁暂态分析软件包PSCAD/EMTDC[J].电网技术,2000,24(1):65-66.
    [167]李维.基于PSCAD的电力系统机电暂态与电磁暂态混合仿真[D].天津:天津大学,2011.
    [168]杨健维,麦瑞坤,何正友.PSCAD/EMTDC与Matlab接口研究[J].电力自动化设备,,2007,27(11):83-87.
    [169]肖异,尹项根,张哲,等.PSCAD/EMTDC程序与继电保护仿真模型接口技术及应用[J].电力自动化设备,2006,26(11):67-70.
    [170]钟波,赵华军.PSCAD/EMTDC程序与Matlab语言接口的研究[J].广东电力,2005,18(8):1-3.
    [171]李东东,易桂平.瞬时无功功率理论的谐波检测法及PSCAD/EMTDC仿真[J].电气自动化,2009,31(6):169-173.
    [172]孙宏伟,李梅,寇晓括,李彦明.基于PSCAD/EMTDC的谐波仿真分析[J].电力电子技术,2004,38(3):22-24.
    [173]吴天明,谢小竹,彭彬等.Matlab电力系统设计与仿真[M].北京:国防工业出版社,2004.
    [174]张志涌.精通Matlab6.5版[M].北京:北京航空航天大学出版社,2003.
    [175]韩笑,徐曦,陈卓平.基于Matlab与VB数据交换的继电保护仿真[J].电力自动化设备,2006,26(5):92-95.
    [176]许允之,刘昊,冯宇等.Matlab在电力系统仿真实验中的应用[J].实验技术与管理,2007,24(1):103-105,125.
    [177]于娟娟.基于MATLAB的电弧炉谐波分析软件的研究[D].西安:西安理工大学,2004.
    [178]姬大潜.有源全电流补偿消弧线圈实验装置的研究[D].武汉:华北电力大学,2009.
    [179]陈国呈.PWM变频调速及软开关电力变换技术[M].北京:机械工业出版社,2001.
    [180]李战鹰,任震,杨泽明.有源滤波装置及其应用研究综述[J].电网技术,2004,22:41-43.
    [181]何苏勤,王忠勇.TMS32OF2812系列DSP原理及实用技术.北京:电子工业出版社,2003.
    [182]徐万方.基于DSP的新型混合有源滤波器SRTHAF研制[D].湖南:中南大学,2004.
    [183]王广柱.有源电力滤波器谐波及无功检测的不必要性探讨(一)——理论分析与比较[J].电工技术学报,2007,22(l):137-141.
    [184]王广柱.有源电力滤波器谐波及无功检测的不必要性探讨(二)一一仿真及实验[J].电工技术学报,2007,22(2):137-141.
    [185]于惠.基于瞬时无功功率理论的DSP谐波检测的应用研究[D].山东:山东大学,2006.
    [186] T Paga.Active Filtering and Power Factor Correction Using a DSP Controller RectifierBridge[J].IEEE Proc-Power Elec,2000,9:382-384.
    [187]王璐.基于DSP的有源电力滤波器研究[D].四川:西南交通大学,2003.
    [188]赵世廉.TMS320x240xDSP原理及应用开发指南[M].北京:北京航空航天大学出版社.2007.
    [189] Moriyama,Ando,Takahashi.“Sinusoidal voltage control of a single phase uninterruptiblepower supply by a high gain PI circuit”[J].Industrial Electronics Society,1998:574-579.
    [190]李鹏.电流平均值检测法DSP实现及其有源电力滤波器实验研究[D].河南:郑州大学,2004.
    [191]王冬平,陈树君,黄继强.基于瞬时功率理论的谐波检测的DSP实现[J].北京工业大学学报,2002,12(4):495-499.
    [192]唐中琦,谢运祥.有源滤波器补偿电流的检测与控制[J].电工电能新技术,1998(4):28-31.
    [193]张红莲,袁兆强.基于单位功率因数的谐波和无功电流实时检测方法[J].电力自动化设备.2006,26(2):37-39.
    [194]洪乃刚等.电力电子和电力拖动控制系统的MATLAB仿真[M].北京:机械工业出版社,2006.
    [195]周国梁.基于DSP的有源电力滤波器装置的实现[D].武汉:华北电力大学,2005.
    [196]丁海波.基于DSP的有源电力滤波器的研究[D].内蒙古:内蒙古工业大学,2006.
    [197]郑筝,陈劲操,郑尧山.基于双DSP的模糊变步长自适应谐波检测的研究[J].电测与仪表,2011,48(541):13-17.
    [198]张文,刘丽,唐杰.基于DSP的谐波检测有源电力滤波器设计[J].仪表技术,2011,3:40-43.
    [199]戴增辉.基于DSP的并联型电能质量控制器的研究[D].内蒙古:内蒙古工业大学,2007.
    [200]贺明智,黄念慈,张代润,宋婷婷.基于双CPU的有源电力滤波器[J].电力系统自动化,2004,28(9):92-94.
    [201]管恩振.并联型有源电力滤波装置的研制[D].内蒙古:内蒙古工业大学,2005.
    [202]朱连成,王琳,宁春明,刁嫣妲.基于EXB841的IGBT驱动保护电路的设计[J].辽宁科技大学学报,2008,31(1):42-45.
    [203]胡俊达.IGBT的驱动与保护电路研究[J].电机电器技术,2003,6:37-40.
    [204]田颖,陈培红,聂圣芳等.功率MOSFET驱动保护电路设计与应用[J].电力电子技术,2005,39(1):73-74.
    [205]丁留宝.基于DSP的STATCOM的研究与设计[D].南京:南京理工大学,2008.
    [206]刘翔宇,杨仁刚,王文成.基于Ip-Iq法谐波检测中数字低通滤波器的设计及其DSP实现[J].电力自动化设备,2006,26(8):81-84.
    [207]粟时平,郑小平,金维宇.电力系统谐波检测方法及其实现技术的发展[J].电气开关,2004(1):33-38.
    [208]李娟,陈劲操.基于TMS320F240的电力系统谐波检测的开发[J].电测与仪表,2003,40(6):12-15.
    [209]汤正道,鲁昌华.基于TMS320F240的FFT实现[J].仪器仪表学报,2006,27(6):2383-2385.
    [210]杜艳生,谢克明,杨斌虎.基于DSP的数据采集及FFT实现[J].太原理工大学学报,2004,35(3):279-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700