混凝土结构收缩裂缝的机理分析与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土结构的收缩裂缝是学术界和工程应用中长期关注的重要课题。本文从制约其发展的视角,针对混凝土收缩变形的大小,混凝土力学行为,以及混凝土变形的约束程度等方面展开了试验研究及理论分析,从而深入地认识收缩裂缝的发展机理,并在此基础上,结合混凝土结构的特点提出有效的裂缝控制措施,以满足工程应用需要。
     1.本文对28个素混凝土标准收缩构件进行了为期360d龄期的干缩变形检测,详细地分析了混凝土龄期、混凝土28d立方体抗压强度、构件所处的环境条件以及构件尺度等因素对自由干燥收缩的影响。从结构的应用出发,以混凝土28d立方体抗压强度作为一综合变量,观察、研究混凝土各个组分对收缩的影响;对于构件所处的环境条件,不仅考虑了相对湿度对自由干缩的影响,也考虑了温度对自由于缩的影响;并以构件的理论厚度来反映构件尺寸对混凝土自由干缩的影响。在标准条件下,通过对67组试验数据的回归分析,提出了自由干燥收缩的基本方程。在此基础上,改变构件所处的环境条件(温度及湿度)和构件尺寸,依据试验数据并参考已有试验资料,确定了环境中的温湿度影响系数及构件尺寸影响系数,采用多系数累积法提出了非标准条件下混凝土的自由干燥收缩估算公式,公式的计算值与130组实测干燥收缩应变值吻合良好。公式中混凝土龄期、混凝土抗压强度、环境温湿度影响系数和构件尺寸影响系数具有连续性、运算简便的特点,可在工程中推广应用。
     2.将本文自由干缩估算公式、现行ACI209收缩公式和文献[1]收缩公式的计算值与实测收缩应变值进行了比较,结果表明,本文自由干缩估算公式与实测结果接近,计算精度高;此外,为了验证该式在工程应用中的适用性,将广东省洛溪大桥混凝土的收缩试验结果与本文所提出公式的计算结果进行了比较,结果表明,该式不仅可用于洛溪大桥非泵送混凝土自由干缩应变的估算,而且修正后的公式也可用于洛溪大桥泵送混凝土自由干缩应变的估算。由此,本文自由干缩估算公式反映出了混凝土自由干燥收缩随龄期、混凝
The shrinkage cracking of concrete is an important problem in the academic circles and structure engineering. From the point of restraint for the shrinkage cracking, the experimental and theoretic studies are further conducted on the three basic factors (the shrinkage strains of concrete, the mechanical properties of concrete, and the degree of restraint for concrete). So, the mechanism of the shrinkage cracking is deeply studied, and the effective control measures of the shrinkage cracking for concrete structure are supposed to reply the need of the engineering.
    1. The drying shrinkage strains of 28 plain concrete test specimens are measured on series 360 days. The main factors (the age, the compressive strength, the environmental condition and the dimension of specimen) of shrinkage for concrete are analyzed in detail. From the point of applicability, the 28-day compressive strength for concrete is regarded as a comprehensive variable, the changes of temperature and relative humidity are all considered in the environmental condition, and the theoretic thickness of specimen is also considered. Based on 67 experimental strains, considering the influence of the concrete age and the compressive strength, the basic formula of free drying shrinkage for concrete is gained under standard condition by aggression analysis; Based on the basic formula of free drying shrinkage for concrete, the multi-coefficient formula of free drying shrinkage for concrete under non-standard condition is gained by multi-coefficient superposition method. In the formula, the temperature-relative humidity coefficient and the dimension coefficient are all considered. The calculation strains of the multi-coefficient formula are well identical with the 130 experimental strains. The above coefficients in the formula are simply, and change continually.
引文
[1] 王铁梦.钢筋混凝土结构的裂缝控制[J].安徽建筑,2001(1):10~13
    [2] 陶建民,王旭峰.现浇钢筋混凝土楼板采用商品混凝土施工的裂缝分析及控制.现浇楼板的裂缝控制[M],北京:中国建筑工业出版社,2003
    [3] 游宝坤,李光明,黄春江.建筑结构裂缝控制与防水新技术,中国建筑材料科学研究院,2002(内部资料)
    [4] 昆建华.现浇混凝土楼板裂缝控制工程实例.钢筋混凝土裂缝控制指南[M],北京:化学工业出版社,2004
    [5] 冯乃谦主编.实用混凝土大全[M].北京:科学出版社,2001
    [6] 昆建华.现浇钢筋混凝土楼板裂缝工程实例.钢筋混凝土裂缝控制指南[M],北京:化学工业出版社,2004
    [7] 缪昌文,刘加平等.外加剂对混凝土收缩性能的影响.钢筋混凝土裂缝控制指南[M],北京:化学工业出版社,2004
    [8] 陈士良,徐伟,潘延平.现浇楼板的裂缝控制[M].北京:中国建筑工业出版社, 2003
    [9] 覃维祖.混凝土收缩、开裂与结构物的耐久性.钢筋混凝土裂缝控制指南[M],北京:化学工业出版社,2004
    [10] 徐友邻.混凝土结构裂缝的控制与防治指南(内部资料).2003
    [11] 徐伟,任洪峰,王旭峰,陶建民.商品混凝土的材料性能对混凝土早期裂缝的影响分析.现浇楼板的裂缝控制[M],北京:中国建筑工业出版社,2003
    [12] 潘延平.住宅工程钢筋混凝土现浇楼板裂缝分析. 现浇楼板的裂缝控[M],北京:中国建筑工业出版社,2003
    [13] 熊耀莹.住宅建筑裂缝因果关系漫谈.现浇楼板的裂缝控制[M],北京:中国建筑工业出版社,2003
    [14] 周磊.现浇钢筋混凝土楼板裂缝的成因及防治.现浇楼板的裂缝控制[M],北京:中国建筑工业出版社,2003
    [15] 中国建筑科学研究院.混凝土收缩与徐变的试验研究,1987(内部资料)
    [16] 广东省交通科学研究所.洛溪大桥高强混凝土的配制与收缩徐变试验研究,1989(内部资料)
    [17] 苏清洪.加筋混凝土构件正常使用状态的通用计算方法[J].桥梁建设, 1994(4):3~10
    [18] 王国森,叶列平.劲性钢筋混凝土收缩应力的试验分析[J].南京建筑工程学院学报,1992(3):31~37
    [19] 梅明荣,葛世平,陈军,卓家寿.混凝土结构收缩应力问题研究[J].河海大学学报,2002,30(1):73~78
    [20] 韩重庆,孟少平.大面积混凝土梁板结构温度应力问题的探讨[J].建筑技术,2000,31(12):820~822
    [21] 金建民.防止和减轻超长混凝土结构温度收缩裂缝的设计建议[J].工业建筑,2002,32(6):57~59
    [22] 陈肇元,崔京浩,朱金铨,安明喆,俞哲夫.钢筋混凝土裂缝分析与控 制[J].工程力学增刊,2001:57~84
    [23] 王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1998
    [24] 文梓芸,杨医博.化学外加剂和矿物掺合料对水泥砂浆干缩与开裂影响的研究.钢筋混凝土裂缝控制指南[M],北京:化学工业出版社,2004
    [25] 姚燕,马丽嫒等.高强混凝土早期收缩开裂影响因素的研究.钢筋混凝土裂缝控制指南[M],北京:化学工业出版社,2004
    [26] 高小建,巴恒静等.混凝土水灰比与其早期收缩特性关系的研究.钢筋混凝土裂缝控制指南[M],北京:化学工业出版社,2004
    [27] 刘旭晨,黄卫等.胶凝材料体系对早期收缩开裂的影响.钢筋混凝土裂缝控制指南[M],北京:化学工业出版社,2004
    [28] 赵茜.混凝土极限拉伸测试技术及误差分析[J].建筑经济,2001, (11):47~48
    [29] 张林俊,宋玉普,吴智敏.混凝土轴拉试验轴拉保证措施的研究[J].实验技术与管理,2003,20(2):99~102
    [30] 尹健,周士琼.高强度性能混凝土极限拉应变性能研究[J].工业建筑, 2000.30(7):47~49
    [31] 游宝坤.混凝土建筑结构裂缝控制的技术措施[J].建筑结构,2002,32 (10): 21~25
    [32] 游宝坤.建筑物裂缝控制新技术[M].北京:中国建筑工业出版社,1998
    [33] 韩素芳主编.钢筋混凝土结构裂缝控制指南[M].北京:化学工业出版社,2004
    [34] 覃维祖.混凝土的收缩、开裂及其评价与防治[J].混凝土,2001(7):3~7
    [35] 3D Structural Analysis of Crack Risk in Hardening Concrete, IPACS report BE96-3843/2001: 53-2
    [36] Mechanical properties of young concrete, IPACS report BE96-3843/2001: 49-4
    [37] 3D Restraint Analyses of Typical Structures with Early Age Cracking Problems, IPACS REPORT No.: 2001: 32-X
    [38] Mats Emborg and Stig Berander. Assessment of risk of thermal cracking in hardening concrete [J]. Journal of Structural ngineering, Vol.120,No.10, October, 1994, pp. 2893-2912
    [39] Steen Lykke, Erik Skotting and Ulla Kjar, Prediction and control of early-age cracking, Concrete International, September 2000,pp.61-65
    [40] H.R.Lu, Swaddiwudhipong and T.H.W.ee, Evaluation of thermal crack by a probabilistic model using the tensile strain capacity, Magazine of Concrete Research, Vol.53,No.01,February,2001,25-30
    [41] Omar Chaallal, BrahimBenmokrane, Gerard Ballivy. Drying shrinkage strains: Experimental versus Codes[J].ACI Materials Journal, No.(5-6), 1992,pp.263~266
    [42] M.Sarigaphuti, S. P. Shah, and K.D.Vinson. Shrinkage cracking and durability characteristics of cellulose fiber reinforced concrete [J].ACI Materials Journal, No. (7-8), 1993, pp. 309~318
    [43] Elie El Hindy, Buquan Miao, Omar Chaallal, and Pierre-Claude Aitcin. Drying shrinkage of ready-mixed high-performance concrete[J].ACI Structural Journal, Vol.(5-6), 1994, pp. 300~305
    [44] Ei-ichi Tazawa and Shingo Miyazawa. Influence of cement and admixture on autogenous shrinkage of cement paste [J]. Cement and Concrete Research, Vol.25, 1995, pp. 281~287
    [45] O.Kayali, M.N.Haque, B.Zhu. Drying shrinkage of fiber-reinforced lightweight aggregate concrete containing fly ash [J]. Cement and Concrete Research, Vol.29, 1999, pp. 1835~1840
    [46] J.Branch, D.J.Hannant and M.Mulheron. Factors affecting the plastic shrinkage cracking of high-strength concrete [J]. Magazine of Concrete Research, Vol. 54, May 2002, pp. 347~354
    [47] Pietro Lura, Klaas van Breugel, Ippei Maruyama. Effect of curing temperature and type of cement on early-age shrinkage of high-performance concrete[J]. Cement and Concrete Research, Vol. 31, 2001, pp . 1846~1872
    [48] Li Jianyong, Yao Yah. A study on creep and drying shrinkage of high performance concrete[J].Cement and Concrete Research, Vol. 31, 2001, pp. 1203~1206
    [49] O.Bernard and E.BrUhwiler. Influence of autogenous shrinkage on early age behaviour of structural elements consisting of concretes of different ages [J].Materials and structures, Vol. 35, 2002, pp. 550~556
    [50] B.Barr, S.B.Hoseinian, M.A.Beygi. Shrinkage of concrete stored in natural environments[J].Cement &Composites, Vol. 25, 2003, pp. 19~29
    [51] 黄国兴,惠荣炎.混凝土的收缩[M].北京:中国铁道出版社,1990
    [52] 过镇海主编.钢筋混凝土原理[M].北京:清华大学出版社,1999
    [53] 江见鲸主编.混凝土结构工程学[M].北京:中国建筑工业出版社,1998
    [54] David W. Mokarem. Development of concrete shrinkage performance specifications[D]. USA: Faculty of the Virginia Polytechnic Institute and State University, 2002
    [55] James Andrew Gilliand. Thermal and shrinkage effects in high performance concrete structures during construction[D]. USA: the University of Calgary, 2000
    [56] 肖瑞敏,张雄,张小伟,毛若卿,石福弟,张华.混凝土配合比对其干缩性能的影响[J].混凝土,2003(7):38~40
    [57] Benoit Bissonnette, Pascale Pierre, Michel Pigeon. Influence of key parameters on drying shrinkage of cementitious materials[J].Cement and Concrete Research, Vol. 29, 1999, pp. 1655~1662
    [58] 耿飞,钱春香,樊建平.纤维和膨胀剂对混凝土收缩性能的影响[J].混凝土与水泥制品,2003(5):33~35
    [59] W. P. S. Dias. Influence of mix and environment on plastic shrinkage cracking[J]. Magazine of Concrete Research, Vol. 55, April, 2003, pp. 385~374
    [60] 焦亚明,孙延福.混凝土及钢筋混凝土收缩变形的浅析[J].低温建筑技术, 2000(2):20~21
    [61] Y. Yuan, Z.L.Wan. Prediction of cracking within early-age concrete due to thermal, drying and creep behavior[J]. Cement and Concrete Research, Vol. 32, 2002, pp. 1053~1059
    [62] W. J. Weiss and S. P. Shah. Restrained shrinkage cracking: the role of shrinkage reducing admixtures and specimen geometry [J].Materials and structures, Vol.35, 2002,pp. 85~91
    [63] 王铁梦.王铁梦教授谈控制混凝土工程收缩裂缝的18个主要因素[J].混凝土,2003(11):25
    [64] 唐运交.混凝土工程早期裂缝问题探析[J].株洲工学院学报,2001,15(3): 57~58
    [65] 苏清洪.加筋混凝土收缩徐变的试验研究[J].桥梁建筑,1994(4):11~18
    [66] B.Persson. Experimental studies on shrinkage of high-performance concrete[J]. Cement and Concrete Research, Vol.28, 1998,pp. 1023~1036
    [67] 吴培明主编.混凝土结构(上册)[M].武汉:武汉工业大学出版社,2001
    [68] 富文权,韩素芳编著.混凝土工程裂缝分析与控制[M].北京:中国铁道出版社,2002
    [69] 汪荣鑫,数理统计[M],西安交通大学出版社,1996
    [70] Arshad A. Khan, William D.Cook, and Denis Mithell. Creep, shrinkage, and temperature strains in normal, medium, and high-strength concretes during hydration[J].ACI Material Journal,Vol. (3-4), 1997,pp. 156~163
    [71] 石现峰,梁志广,李建中.几种常用混凝土收缩徐变模式的比较分析[J]. 石家庄铁道学院学报,1998,11(1):8~13
    [72] Zdenek, P. Bazant. Prediction of concrete creep and shrinkage: past, present and future[J].Nuclear Engineering and Design, Vol. 203,2001,pp. 27~38
    [73] ACI Committee 209. Prediction of creep,shrinkage and temperature effects in concrete structures[S]. American Concrete Institute, Detroit,1971
    [74] Arshad A.Khan, William D.Cook, and Denis Mithell. Early age compressive stress-strain properties of low-, medium, and high-strength concretes[J]. ACI Material Journal, Vol. (3-4), 1995, pp. 617~624
    [75] 张勇强,林皋,阎东明.混凝土早期强度的试验研究[J].沈阳建筑工程学院学报,2003(4):85~89
    [76] 李家康,王巍.高强混凝土的几个基本力学指标[J].工业建筑,1997(8): 50~54
    [77] 吴科如,张雄主编.建筑材料(第二版)[M].上海:同济大学出版社,1999
    [78] 赵述智,王忠德编著.实用建筑材料试验手册[M].北京:中国建筑工业出版社,1998
    [79] 罗才毅.不同掺合料混凝土早龄期力学性能试验研究[D].浙江大学,2002
    [80] 马智英.钢纤维混凝土早期力学性能发展规律的试验研究[D].北京工业大学,2003
    [81] ACI Committee 318.Building Code Requirements for Structural Concrete(ACI 318-02) and Commentary (ACI 318R-02)
    [82] European Committee for Standardization. Eurocade 2: Design of Concrete Structures, 2001
    [83] Alireza Mokhtarzadeh. Mechanical Properties of High-strength Concrete[D]. USA: Faculty of the Graduate School of the University of Minnesota, 1998
    [84] Francis A. Oluokun, Edwin G. Burdette, and J. Harold Deatherae. Splitting tensile strength and compressive strength relationship at early ages [J]. ACI Material Journal, Vol.(3-4),1991,pp.115~121
    [85] 金贤玉,沈毅,李宗津.高强混凝土的早龄期特性试验研究[J].混凝土与水泥制品,2003(5):5~7
    [86] 张树青,王彩英,吴学礼.混凝土早期抗裂性与强度的关系[J].混凝土与水泥制品,2003(6):6~8
    [87] Arshad A. Khan, William' D.Cook, and Denis Mithell. Early ages tensile strength of low-, medium, and high-strength concretes at early ages[J].ACI Material Journal, Vol. (9-10),1995,pp. 487~493
    [88] Francis A.Oluokun, Edwin G.Burdette, and J.Harold Deatherae. Elastic modulus, Poisson's ratio, and compressive strength relationship at early ages [J].ACI Material Journal,Vol.(1-2),1991,pp. 3~9
    [89] 段进峰.避免和减小钢筋混凝土结构及构件的收缩裂缝浅议[J].工程设计与研究,1998(6):48~50
    [90] 陈萌.常用混凝土收缩公式的比较研究[J].邮电设计技术,2004(6): 53~56
    [91] 吴胜兴.混凝土结构温度应力与温度裂缝控制研究,[博士学位论文].南京:河海大学,1994.63~64
    [92] CECS 21:2000,超声法检测混凝土缺陷技术规程[S]
    [93] JGJ/T23-2001,回弹法检测混凝土抗压强度技术规程[S]
    [94] 唐兴伦等编著.ANSYS工程应用教程——热与电磁学篇[M].北京:中国铁道出版社.2003
    [95] Saeed Moaveni著.有限元分析——ANSYS理论与应用[M].北京:电子工业出版社.2003
    [96] 陈经一,蔡国忠.电脑辅助工程分析ANSYS使用指南[M].北京:中国铁道出版社.2001
    [97] 王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西北工业大学出版社.2000
    [98] 朱伯芳著.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社.1999
    [99] 王芳,地下室墙体早期混凝土开裂性能研究[D].武汉理工大学,2002
    [100] 张岫文,地下混凝土结构早期温度应力与裂缝控制研究[D].清华大学, 2003
    [101] 王树和,许平,朱伯芳.高拱坝全过程温度应力研究[J].水利水电技术,2000(7):15~17
    [102] 万在龙.混凝土结构早期温度和收缩变形的理论分析和数值模拟. [硕士学位论文].上海:同济大学,2000.
    [103] 田敬学.大体积混凝土地下结构温度应力场研究.[博士学位论文]. 上海:同济大学土木工程学院地下建筑与工程系,2002
    [104] 刘杰.地下室现浇墙板早期温度应力及裂缝发展研究.[硕士学位论文].上海:同济大学,1997.
    [105] K. van Breugel. Prediction of Temperature Development in Hardening Concrete. Munich, March 1998. Avoidance of Thermal Cracking in Concrete at Early Ages. 51-75.
    [106] T. Tanabe. Measurement of Thermal Stress in Situ, March 1998. Avoidance of Thermal Cracking in Concrete at Early Ages. 232-254.
    [107] Enrique Mirambell, Antonio Aguado. Temperature and Stress Distribution in Concrete Box Girder Bridges. Journal of Structure Engineering, 1990, 116(9).2388~2409
    [108] H. R.Thomas, S. W. Rees. The Thermal Performance of Ground Floor Slab-a Full Scale in-situ Experiment. Building and Environment, 1999, Vol.34: 139-164
    [109] Fernado. Hue, G.Serrano,J.A.Bolano, Oresund Bridge. Temperature and Cracking Control of the Deck Slab at Early Ages. Automation in Construction, 2000, (9): 437-445
    [110] 张越,周达.上海浦东国际机场混凝土早期裂缝的防治[J].建筑施工, 2001(3):188~189
    [111] 张弓,孙阳.高层住宅商品混凝土裂缝原因分析及控制措施[J].混凝土, 2003(5):
    [112] 林建宁.泵送混凝土施工裂缝的成因和防治[J].混凝土,2000(5):15~19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700